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Snake graphs, perfect matchings
and cont inued fract ions

Ralf Schi f f ler 1

A continued fraction is a way of representing a real
number by a sequence of integers. We present a new
way to think about these continued fractions using
snake graphs, which are sequences of squares in the
plane. You start with one square, add another to
the right or to the top, then another to the right or
the top of the previous one, and so on. Each contin-
ued fraction corresponds to a snake graph and vice
versa, via “perfect matchings” of the snake graph. We
explain what this means and why a mathematician
would call this a combinatorial realization of contin-
ued fractions.

1 Cont inued fract ions

Let us start with an easy example. If we are given a rational number 30
13 , we

may ask ourselves ‘‘how big is this number?”. And our first answer to that
question may be, ‘‘well, it is greater than 2 and smaller than 3”. Or we could
be more precise and say

30
13 = 2 + 4

13 .

1 The author was supported by the Simons Foundation and by the NSF CAREER Grant
DMS-1254567.
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The integer 2 is called the integer part of 30
13 and the rational number 4

13 is the
remainder. Another way of writing the above equation would be

30
13 = 2 + 1

( 13
4 )

and although it may seem strange at first sight, I prefer this way. The reason is
that now we can continue our procedure with the fraction 13

4 . This number is
bigger than 3 and smaller than 4. In fact, we have

13
4 = 3 + 1

4 ,

which means of course that

30
13 = 2 +

1

3 +
1
4

. (1)

Note that now the numerator of the remainder 1
4 is equal to 1. Therefore, if we

repeat the same procedure again, we would replace a fraction 1
4 by 1 divided by

its inverse 4
1 , but this would not change anything, since 4

1 = 4, obviously. Thus
we can stop our construction as soon as the numerator of the remainder is 1.

The expression in (1) is called the continued fraction expansion of 30
13 . Since

all numerators are equal to 1, we will usually just write [2, 3, 4] for the right
hand side of (1). There is nothing special here about the integers 30 and 13;
we can compute such a continued fraction expansion for any rational number p

q ,
although we might need more than just two steps.

Conversely, given a sequence of positive integers we can certainly compute
the rational number of the continued fraction determined by it. If we take the
sequence [3, 2, 2] we find

[3, 2, 2] = 3 +
1

2 +
1
2

= 3 +
1
5
2

= 3 +
2
5 =

17
5 .

Let’s write down a formal definition.

Definition 1.1. A finite positive continued fraction is an expression of the
form

[a1, a2, a3 . . . , an] = a1 +
1

a2 +
1

a3 +
1

. . . +
1
an
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where a1, a2, a3 . . . , an are positive integers. Similarly, an infinite positive
continued fraction is an expression of the form

[a1, a2, a3 . . .] = a1 +
1

a2 +
1

a3 +
1
. . .

where we have an infinite sequence of positive integers a1, a2, a3, . . ..
If we were to compute a positive continued fraction [a1, a2, a3 . . . , an] whose

last entry an is equal to 1, then in the last step we would have an−1 + 1
1 which is

equal to an−1 + 1. This shows that [a1, a2, . . . , an−1, 1] = [a1, a2, . . . , an−1 + 1].
Thus it suffices to consider continued fractions whose last entry is at least 2.
The following classical result, which can be found (for instance) in [5], shows
that this is the only ambiguity for finite continued fractions.
Theorem 1.2. There is a bijection between the set Q>1 of rational numbers
that are greater than 1 and the set of finite positive continued fractions whose
last coefficient is at least 2.

For infinite continued fractions we have the following classical result, which
can also be found in [5].
Theorem 1.3. There is a bijection between the set R>1 \Q>1 of real numbers
greater than 1 that are not rational and the set of infinite positive continued
fractions.

Continued fractions have been studied, at least implicitly, since antiquity.
Evidence of the continued fraction expansion can be found in the approximation
of π given by Archimedes, and in the division algorithm of Euclid, which we
will return to in Section 4. The modern theory started with Euler in the 18th
century. An introduction to the topic can be found in most books on number
theory, for example in Chapter 10 of [5].

In some cases, the intrinsic beauty of a real number really becomes apparent
in its continued fraction expansion. For example the number known as the
golden ratio which is equal to 1+

√
5

2 ≈ 1.618 has the simplest possible infinite
continued fraction expansion

1 +
√

5
2 = [1, 1, 1, 1, . . .].

Sometimes certain patterns show up in the continued fraction. A famous
example is the base of the natural logarithm e ≈ 2.718 (Euler’s number). It has
the following infinite continued fraction expansion:
e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, . . .].
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2 Snake graphs

We now change our point of view and give a combinatorial interpretation of
continued fractions. We will use the word tile for a square in the plane whose
sides are only horizontal and vertical. To describe directions, we will use the
words east and west (for left and right), and north and south (for up and down).

We are now going to build snake graphs out of tiles. 2 Take a certain number
of tiles, let’s say d tiles, and start by laying down a first tile. Then place a
second tile either to the east of the first tile or to the north. You have the choice
here, and one way or the other will not produce the same snake graph. Then
place a third tile either to the east or to the north of the second tile. Again
you must choose. Continue this way until you have used all of the d tiles. An
example is shown in Figure 1. We will use the letter G to denote the snake
graph.

Figure 1: A snake graph (left) and the same snake graph with its sign sequence
(right)

Each tile has 4 vertices and 4 edges. A snake graph with 2 tiles has 6 vertices
and 7 edges, since the two tiles share two vertices and one edge. Each additional
tile produces 2 new vertices and 3 new edges, and therefore a snake graph
with d tiles has 2d + 2 vertices and 3d + 1 edges. The d − 1 edges that are
shared by two consecutive tiles are called interior edges, and we denote them
e1, e2, . . . , ed−1. We order them such that the interior edge ei lies between the
ith and (i+ 1)th tile as they are laid down.

To remember which snake graph you have constructed it is convenient to
use a sign function f . This is a map f from the set of edges of G to {+1,−1}
such that on every tile in G the north and the west edge have the same sign,
the south and the east edge have the same sign and the sign on the north edge
is opposite to the sign on the south edge. See Figure 1 for an example which
shows the sign on the interior edges.

A snake graph G is determined by the number of tiles it is made from and
the values of the sign function f on its interior edges. In addition, we will let
e0 be the south edge of the first tile and we choose one of the two edges, north

2 Snake graphs first appeared in the context of cluster algebras in [6, 7, 8] and were then
studied in a conceptual way in [1, 2, 3]. We follow the presentation in [4].
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or east, of the last tile and denote it by ed. Then we obtain a sign sequence

(f(e0), f(e1), . . . , f(ed−1), f(ed)). (2)

This sequence uniquely determines the snake graph and the choice of either
the north or east edge of the last tile as ed. We encourage you to choose for
yourself a sign sequence and draw the associated snake graph.

3 The snake graph of a cont inued fract ion

Now let [a1, a2, . . . , an] be a positive finite continued fraction, and let d =
a1 + a2 + · · ·+ an − 1. Consider the following sign sequence

(−, . . . ,−︸ ︷︷ ︸, +, . . . ,+︸ ︷︷ ︸, −, . . . ,−︸ ︷︷ ︸, . . . , ±, . . . ,±︸ ︷︷ ︸),

a1 a2 a3 . . . an

(3)

where each integer ai corresponds to a maximal subsequence of constant sign.

Definition 3.1. The snake graph G[a1, a2, . . . , an] of the positive continued
fraction [a1, a2, . . . , an] is the snake graph with d tiles determined by the sign
sequence (3).

For example, the snake graph in Figure 1 corresponds to the continued
fraction [2, 3, 4].

In order to really establish a relation to continued fractions, we need the
notion of perfect matchings. A perfect matching of a snake graph G is a subset
P of the set of edges of G such that every vertex of G is covered by exactly
one edge in P . For example, the snake graph G[2, 2] has precisely 5 perfect
matchings as shown in Figure 2.

Figure 2: The snake graph G[2, 2] (left), and its 5 perfect matchings (right).

The following result has been proved very recently, in 2016 [4].

Theorem 3.2. If m(G) denotes the number of perfect matchings of G then

[a1, a2, . . . , an] = m(G[a1, . . . , an])
m(G[a2, . . . , an])

and this fraction is reduced (that is, the numerator and denominator do not
have common divisors).
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This theorem gives a combinatorial realization of continued fractions. This
means that the numerator and the denominator of the continued fraction
are realized as the number of elements of sets that are constructed from the
continued fraction. In other words, these numbers count something.

Example 3.3. The snake graph G = G[1, 1, . . . , 1] is the straight snake graph
with n− 1 tiles and its number of perfect matchings is the n+ 1-st Fibonacci
number. The first few values are given in the table below.

n 1 2 3 4 5 6 7 8 9 10
m(G) 1 2 3 5 8 13 21 34 55 89

4 Divis ion algor i thm

Let’s go back to our example of the continued fraction [2, 3, 4] = 30
13 . Its snake

graph G[2, 3, 4] is given in Figure 1. To compute the continued fraction starting
from the rational number 30

13 , we used the following division algorithm.

30 = 2 · 13 + 4
13 = 3 · 4 + 1
4 = 4 · 1.

We can see this division algorithm on the level of the snake graph G[2, 3, 4]
and its subgraphs as illustrated in Figure 3. In this figure, the numbers in the
tiles represent the number of perfect matchings of the snake graph from that
tile onward to the end. Thus the number 30 in the first tile of G[2, 3, 4] means
that G[2, 3, 4] has exactly 30 perfect matchings. The number 17 in the second
tile means that the snake graph obtained from G[2, 3, 4] by removing the first
tile has 17 perfect matchings, and so on.

The first line in the figure counts the number of perfect matchings of G[2, 3, 4]
as follows. Start by choosing one of the two perfect matchings of the first tile.
How many ways are there to complete this choice to a perfect matching of the
whole snake graph G[2, 3, 4]? The only restriction is that we cannot use the two
horizontal edges of the second tile, since it would clash with the edges already
chosen on the first tile. Thus the number of ways to complete a matching of
the first tile to a matching of the whole graph is exactly the number of perfect
matchings of the graph consisting of the last 6 tiles of G[2, 3, 4] shown in the first
row of the figure. Note that this snake graph is exactly G[3, 4]. If you believe
for now that this graph has 13 perfect matchings, this accounts for 2 · 13 = 26
perfect matchings. But there are still a few more perfect matchings of G[2, 3, 4],
namely those that do not restrict to a perfect matching of the first tile. Such a
perfect matching must contain the two horizontal edges of the second tile, and
therefore must contain the west edge of the first tile, the east edge of the third
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tile, and the north edge of the fourth tile. Thus it is completely determined
except for the last three tiles, which means that there are exactly 4 ways to
complete it. Altogether this gives the equation 30 = 2 · 13 + 4 as shown in the
first row of Figure 3.

The second equation of the algorithm is shown in the second row of the
Figure. We want to count the number of perfect matchings of the snake graph
G[3, 4]. First we choose any of the 3 perfect matchings of the subgraph consisting
of the first 2 tiles (try to see for yourself why we don’t start here with only the
first tile). The number of ways to complete it to a perfect matching of G[3, 4]
is then precisely the number of perfect matchings of the graph given by the
last 3 tiles. Note that this graph is equal to G[4]. Finally, we need to count the
perfect matchings that do not restrict to a perfect matching of the first two
tiles. Such a perfect matching must use the two horizontal edges of the third
tile (the tile with label 5). Completing it in the front of the snake graph, we
need the west edge of the second tile and the south edge of the first. At the
other end the completion also is uniquely determined. We need the west edge
on the fourth tile, the north edge on the fifth tile and the west edge on the last
tile. Thus the total number of perfect matchings of G[3, 4] is 3 · 4 + 1 = 13.
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Figure 3: The division algorithm in terms of perfect matchings of snake graphs

5 An appl icat ion

To give just one illustration of why this combinatorial interpretation of continued
fractions is interesting let us prove the following theorem.

Theorem 5.1. The continued fractions [a1, . . . , an] and [an, . . . , a1] have the
same numerator.

Proof. The numerator of [a1, . . . , an] is the number of perfect matchings of
G[a1, . . . , an], and the numerator of [an, . . . , a1] is the number of perfect match-
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ings of G[an, . . . , a1]. But these two snake graphs are obtained from each
other by a rotation of 180 degrees, so they have the same number of perfect
matchings.

This theorem has been known for a long time and can be proved with a little
effort and without much difficulty using the recursive definition of the continued
fraction and the division algorithm. However, one has to go through this effort
to obtain a proof. The beauty of the snake graph approach is that the proof
becomes completely obvious.
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