Mathematisches
Forschungsinstitut
Oberwolfach

Oberwolfach Preprints

OWP 2019-08
Heiko Dietrich and Primož Moravec

On a Group Functor Describing Invariants of Algebraic Surfaces

Mathematisches Forschungsinstitut Oberwolfach gGmbH Oberwolfach Preprints (OWP) ISSN 1864-7596

Oberwolfach Preprints (OWP)

The MFO publishes a preprint series Oberwolfach Preprints (OWP), ISSN 1864-7596, which mainly contains research results related to a longer stay in Oberwolfach, as a documentation of the research work done at the MFO. In particular, this concerns the Research in Pairs-Programme (RiP) and the Oberwolfach-Leibniz-Fellows (OWLF), but this can also include an Oberwolfach Lecture, for example.

A preprint can have a size from 1-200 pages, and the MFO will publish it on its website as well as by hard copy. Every RiP group or Oberwolfach-Leibniz-Fellow may receive on request 30 free hard copies (DIN A4, black and white copy) by surface mail.

The full copyright is left to the authors. With the submission of a manuscript, the authors warrant that they are the creators of the work, including all graphics. The authors grant the MFO a perpetual, non-exclusive right to publish it on the MFO's institutional repository.

In case of interest, please send a pdf file of your preprint by email to rip@mfo.de or owlf@mfo.de, respectively. The file should be sent to the MFO within 12 months after your stay as RiP or OWLF at the MFO.

There are no requirements for the format of the preprint, except that the introduction should contain a short appreciation and that the paper size (respectively format) should be DIN A4, "letter" or "article".

On the front page of the hard copies, which contains the logo of the MFO, title and authors, we shall add a running number ($20 X X$ - XX). Additionally, each preprint will get a Digital Object Identifier (DOI).

We cordially invite the researchers within the RiP or OWLF programme to make use of this offer and would like to thank you in advance for your cooperation.

Imprint:

Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO)
Schwarzwaldstrasse 9-11
77709 Oberwolfach-Walke
Germany
Tel $\quad+49783497950$
Fax $\quad+49783497955$
Email admin@mfo.de
URL www.mfo.de
The Oberwolfach Preprints (OWP, ISSN 1864-7596) are published by the MFO.
Copyright of the content is held by the authors.

On a group functor describing invariants of algebraic surfaces

Heiko Dietrich and Primož Moravec

Abstract

Liedtke (2008) has introduced group functors K and \tilde{K}, which are used in the context of describing certain invariants for complex algebraic surfaces. He proved that these functors are connected to the theory of central extensions and Schur multipliers. In this work we relate K and \tilde{K} to a group functor τ arising in the construction of the non-abelian exterior square of a group. In contrast to \tilde{K}, there exist efficient algorithms for constructing τ, especially for polycyclic groups. Supported by computations with the computer algebra system GAP, we investigate when $K(G, 3)$ is a quotient of $\tau(G)$, and when $\tau(G)$ and $\tilde{K}(G, 3)$ are isomorphic.

1. Introduction

In the study of complex algebraic surfaces it is of interest to find strong invariants which are not too complicated to be useful. Towards this aim, Liedtke [10] introduced group theoretical functors K and \tilde{K} that are related to the fundamental groups of the associated Galois closures. More precisely, let X be a smooth projective surface, fix a generic projection $f: X \rightarrow \mathbb{P}^{2}$ of degree n, and let $f_{\text {gal }}: X_{\text {gal }} \rightarrow \mathbb{P}^{2}$ be its Galois closure. Let \mathbb{A}^{2} be the complement of a fixed generic line in \mathbb{P}^{2}, and set $X^{\text {aff }}=f^{-1}\left(\mathbb{A}^{2}\right)$ and $X_{\text {gal }}^{\text {aff }}=f_{\text {gal }}^{-1}\left(\mathbb{A}^{2}\right)$. It is proved in [10, Theorems $5.1 \& 5.2]$ that $\pi_{1}\left(X_{\mathrm{gal}}^{\mathrm{aff}}\right)$ has images isomorphic to $\tilde{K}\left(\pi_{1}\left(X^{\mathrm{aff}}\right), n\right)$ and to $K\left(\pi_{1}\left(X^{\mathrm{aff}}\right), n\right)$. It is the constructions of $K(-, n)$ and $\tilde{K}(-, n)$ that are central to Liedtke's investigation in [10, 11]. As pointed out in these papers, it is important to have a better understanding of \tilde{K} in order to describe the above mentioned fundamental groups.
The aim of this work is to extend the group theoretical analysis of the functors \tilde{K} and K, and to relate these to a functor τ associated with Brown and Loday's construction of the non-abelian tensor square of a group [3]. The latter has applications in topology and K-theory, and can efficiently be computed for several classes of groups, such as polycyclic groups.
In Section 2, we set the notations and give the definitions of $K(G, n), \tilde{K}(G, n)$, and $\tau(G)$. In Section 3, we elaborate on these and provide explicit descriptions that enable efficient computations for polycyclic groups. In Section 4, we introduce the concept of an AI-automorphism and show that the existence of such an automorphism for a group G yields a central extension

$$
1 \longrightarrow H_{2}(G, \mathbb{Z}) \longrightarrow \tau(G) \longrightarrow K(G, 3) \longrightarrow 1,
$$

similar to the one proved in [10, Theorem 2.2]:

$$
1 \longrightarrow H_{2}(G, \mathbb{Z}) \longrightarrow \tilde{K}(G, 3) \longrightarrow K(G, 3) \longrightarrow 1 \text {. }
$$

It is therefore natural to ask when $\tau(G)$ and $\tilde{K}(G, 3)$ are isomorphic. In Section 5, we explore this question for several classes of groups. For example, we show that if G is a finite group and its Schur cover $H / M=G$ admits an AI-automorphism which acts as inversion on M, then $\tau(G) \cong \tilde{K}(G, 3)$.
In Section 6, we show that $K(G, 3)$ and $\tilde{K}(G, 3)$ are closely related to the unramified Brauer group of the field of G-fixed points in a complex function field. This group is also known as the Bogomolov multiplier $B_{0}(G)$, and has various applications in algebraic geometry, in particular, to Noether's Problem. In Section 7 we comment on our computational experiments with the system GAP [7].

2. Definitions and preliminary results

Unless stated otherwise, all groups are finite and written multiplicatively. For a group G and integer $n>0$ we denote by G^{n} the direct product of n copies of G. We write C_{n} for the cyclic group of size n. The commutator subgroup G^{\prime} is the subgroup of G generated by all commutators $[g, h]=g^{-1} h^{-1} g h=g^{-1} h^{g}$ with $g, h \in G$. A free presentation for G is a free group F with normal subgroup $N \unlhd F$ such that $G \cong F / N$. A polycyclic presentation $\operatorname{pc}\left\langle g_{1}, \ldots, g_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ for G is a group presentation with abstract generators g_{1}, \ldots, g_{n} and relations r_{1}, \ldots, r_{m} that are power or conjugate relations, with the convention that trivial conjugate relations are omitted; see [6, Section 2.1] for details. For example, pc $\left\langle g_{1}, g_{2} \mid g_{1}^{2}, g_{1}^{2}\right\rangle$ describes the Klein 4-group $\left\langle g_{1}, g_{2} \mid g_{1}^{2}, g_{2}^{2}, g_{2}^{g_{1}}=g_{2}\right\rangle$. A group extension of A by B is written $G=B . A$, meaning that $A \unlhd G$ with quotient $G / A=B$.
2.1. Liedtke's constructions. For a group G and positive integer n, the group $K(G, n)$ is the kernel of the map $G^{n} \rightarrow G / G^{\prime}$ that sends an n-tuple $\left(g_{1}, \ldots, g_{n}\right)$ to the product of its components modulo the commutator subgroups, that is,

$$
K(G, n)=\left\{\left(g_{1}, \ldots, g_{n}\right) \in G^{n}: g_{1} \cdots g_{n} \in G^{\prime}\right\}
$$

To define the group $\tilde{K}(G, n)$, choose a free presentation $G=F / R$ for G, and set

$$
\tilde{K}(G, n)=K(F, n) / K(N, n)^{F^{n}},
$$

where $K(N, n)^{F^{n}}$ is the normal closure of $K(N, n)$ in F^{n}; if $n \geqslant 3$, then this is simply the normal closure of $K(N, n)$ in $K(F, n)$, see [10, p. 248]. It is shown in [10, Theorem 2.2] that the definition of $\tilde{K}(G, n)$ does not depend on the choice of presentation for G.
2.2. Non-abelian exterior square. Let G and G^{*} be groups, with isomorphism $G \rightarrow G^{*}$, $g \mapsto g^{*}$; we continue to use "*" to denote elements and subsets of G^{*}. Let $G \star G^{*}$ be the free product of G and G^{*}, and, following [16], define $\nu(G)$ as a quotient group of $G \star G^{*}$ via

$$
\nu(G)=\left(G \star G^{*}\right) /\left\langle\left\{\left[x, y^{*}\right]^{z}\left[x^{z},\left(y^{z}\right)^{*}\right]^{-1},\left[x, y^{*}\right]^{\left(z^{*}\right)}\left[x^{z},\left(y^{z}\right)^{*}\right]^{-1}: x, y, z \in G\right\}\right\rangle^{G \star G^{*}} .
$$

To simplify notation, we identify elements in $\nu(G)$ with elements in $G \star G^{*}$, keeping in mind that further relations hold in $\nu(G)$. If we want to emphasise the parent group, then we sometimes use subscripts at generated groups $\langle-\rangle_{A}$ or at commutators $[-,-]_{A}$ to indicate that the corresponding structures are to be considered in the group A. For example, if $g \in G$ and $g^{*} \in G^{*}$,
then $\left[g, g^{*}\right]_{\nu(G)}$ denotes their commutator in $\nu(G)$, not in $G * G^{*}$. With this convention, consider $\nabla(G)=\left\langle\left[x, x^{*}\right]_{\nu(G)}: x \in G\right\rangle$ as a subgroup of $\nu(G)$, and define

$$
\tau(G)=\nu(G) / \nabla(G)
$$

Note that the homomorphism $G \star G^{*} \rightarrow G^{2}, g_{1} h_{1}^{*} g_{2} h_{2}^{*} \ldots g_{k} h_{k}^{*} \mapsto\left(g_{1} \cdots g_{k}, h_{1} \cdots h_{k}\right)$, maps commutators $\left[x, y^{*}\right]$ to 1 , hence it induces short exact sequences

$$
\begin{aligned}
& 1 \longrightarrow G \otimes G \longrightarrow \nu(G) \xrightarrow{c_{\nu}} G \times G \longrightarrow 1 \\
& 1 \longrightarrow G \wedge G \longrightarrow \tau(G) \xrightarrow{c_{\tau}} G \times G \longrightarrow 1
\end{aligned}
$$

where $G \otimes G$ and $G \wedge G$ are the non-abelian tensor square and non-abelian exterior square of G, respectively, see [3]. We conclude with a lemma that will be useful later.
Lemma 2.1. Let $H / M=G$. The projection $H \rightarrow G$ induces epimorphisms $\beta: \nu(H) \rightarrow \nu(G)$ and $\gamma: \tau(H) \rightarrow \tau(G)$ whose kernels are

$$
\left\langle M, M^{*}\right\rangle_{\nu(H)}\left[M, H^{*}\right]_{\nu(H)}\left[H, M^{*}\right]_{\nu(H)} \quad \text { and }\left\langle M, M^{*}\right\rangle_{\tau(H)}\left[M, H^{*}\right]_{\tau(H)}\left[H, M^{*}\right]_{\tau(H)} .
$$

Proof. For β this is [16, Proposition 2.5]. Since β maps $\nabla(H)$ to $\nabla(G)$, this induces γ. Note that $\operatorname{ker} \gamma=\left\{x \nabla H: x \in \beta^{-1}(\nabla(G))\right\}$, and $\beta^{-1}(\nabla(G))=\operatorname{ker} \beta \nabla(H)$, so the claim follows.
2.3. Schur multiplier. We recall some facts about the Schur multiplier of a group. A Schur cover of G is a group H such that $H / M \cong G$ for some $M \leqslant H^{\prime} \cap Z(H)$ isomorphic to the Schur multiplier

$$
M(G)=H^{2}\left(G, \mathbb{C}^{\times}\right)
$$

see [9, p. 16]. Hopf's formula [9, Theorem 2.4.6] says that if $F / R=G$ is a free presentation for the finite group G, then $M(G)$ is isomorphic to the torsion subgroup of $\left(F^{\prime} \cap R\right) /[F, R]$. In particular, if G is finite, then [9 , Theorem 2.7.3] shows that

$$
M(G) \cong H_{2}(G, \mathbb{Z})
$$

if G is abelian, then $M(G) \cong G \wedge G$, see [9, Theorem 2.6.7]. By [9, Theorem 2.5.1], the isomorphism type of H^{\prime} depends only on G, and not on the chosen cover H. By [2, Corollary 2], if $M(G)$ is finitely generated, then there is an isomorphism

$$
G \wedge G \rightarrow H^{\prime}, \quad g \wedge h \rightarrow\left[g^{\prime}, h^{\prime}\right]
$$

where $g^{\prime}, h^{\prime} \in H$ are lifts of $g, h \in G$; if G is abelian, then $H^{\prime}=M$. If $G=\left\langle g_{1}, \ldots, g_{n}\right\rangle$, then $H=\left\langle g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right\rangle$: clearly, $\left\langle g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right\rangle M / M=G$, so every $x \in H$ can be written as $x=w_{x} m_{x}$ where $w_{x} \in\left\langle g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right\rangle$ and $m_{x} \in M$. Each $m \in M$ is a product of commutators $[x, y]$ in H; since $M \leqslant Z(H)$, we have $[x, y]=\left[w_{x}, w_{y}\right]$, so $M \leqslant\left\langle g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right\rangle$ as well.

3. Explicit description

As a first step towards investigating the relation between $\tau(G)$ and $\tilde{K}(G, 3)$ we provide a more concrete description of these groups.
3.1. An explicit description of τ. First we summarise some facts about $\tau(G)$ and $\nu(G)$.

Lemma 3.1. Every $w \in \nu(G)$ can be written uniquely as $w=g h^{*} w^{\prime}$ with $w^{\prime} \in\left[G, G^{*}\right]_{\nu(G)}$; similarly in $\tau(G)$. Moreover, $\operatorname{ker} c_{\nu}=\left[G, G^{*}\right]_{\nu(G)}$ and $\operatorname{ker} c_{\tau}=\left[G, G^{*}\right]_{\tau(G)}$.

Proof. Let $g=g_{1} h_{1}^{*} \cdots g_{n} h_{n}^{*} \in \nu(G)$. The identities $h^{*} g=g h^{*}\left[h^{*}, g\right]$ and

$$
\begin{aligned}
{\left[h^{*}, g\right] k } & =k\left[h^{*}, g\right]\left[h^{*}, g\right]^{-1}\left[h^{*}, g\right]^{k}=k\left[h^{*}, g\right]\left[h^{*}, g\right]^{-1}\left[\left(h^{k}\right)^{*}, g^{k}\right], \\
{\left[h^{*}, g\right] k^{*} } & =k^{*}\left[h^{*}, g\right]\left[h^{*}, g\right]^{-1}\left[h^{*}, g\right]^{k^{*}}=k^{*}\left[h^{*}, g\right]\left[h^{*}, g\right]^{-1}\left[\left(h^{k}\right)^{*}, g^{k}\right] .
\end{aligned}
$$

can be used to collect $g=g_{1} h_{1}^{*} \cdots g_{n} h_{n}^{*}=\left(g_{1} \cdots g_{n}\right)\left(h_{1} \cdots h_{n}\right)^{*} w$ with $w \in\left[G, G^{*}\right]$. The formula for the kernel of c_{ν} follows from [16, Proposition 2.6]. Clearly, c_{τ} maps commutators $\left[x, y^{*}\right]$ to 1 , so we have $\left[G, G^{*}\right]_{\tau(G)} \leqslant \operatorname{ker} c_{\tau}$. Conversely, a representative $w=g_{1} h_{1}^{*} \ldots g_{k} h_{k}^{*} \in$ $G \star G^{*}$ of an element in the kernel of c_{τ} satisfies $g_{1} \cdots g_{k}=1$ in G and $h_{1}^{*} \cdots h_{k}^{*}=1$ in G^{*}. Writing $w=g_{1} \cdots g_{k}\left(h_{1} \cdots h_{k}\right)^{*} w^{\prime}=w^{\prime}$ for some $w^{\prime} \in\left[G, G^{*}\right]$, we get ker $c_{\tau}=\left[G, G^{*}\right]_{\tau(G)}$. The uniqueness now follows from the exact sequences associated with c_{τ} and c_{ν}.

We identify $G \otimes G=\left[G, G^{*}\right]_{\nu(G)}$ via $g \otimes h \rightarrow\left[g, h^{*}\right]_{\text {, and }}\left[G, G^{*}\right]_{\tau}=G \wedge G$ via $g \wedge h \rightarrow\left[g, h^{*}\right]$.
Proposition 3.2. The group $\tau(G)$ is isomorphic to $G^{2} .(G \wedge G)$ with multiplication

$$
(a, b ; c)(g, h ; d)=\left(a g, b h ;\left(b^{h} \wedge g^{h}\right) c^{g h} d\right)
$$

and derived subgroup $\tau(G)^{\prime} \cong\left(G^{\prime} \times G^{\prime}\right) \cdot(G \wedge G)$.
Proof. By Lemma 3.1, the element $g h^{*} w \in \tau(G)$ corresponds to $(g, h ; w) \in G^{2} .(G \wedge G)$, and this correspondence defines the multiplication in $G^{2} .(G \wedge G)$. Note that $c \in G \wedge G$ corresponds to an element of the form $\prod_{i}\left[x_{i}, y_{i}^{*}\right]$, and so c^{g} and $c^{\left(g^{*}\right)}$ both correspond to $\prod_{i}\left[x_{i}^{g},\left(y_{i}^{g}\right)^{*}\right]$. The last claim is [16, Theorem 3.1].
3.2. An explicit description of \tilde{K}. The following result is based on [10, Theorem 3.2]. We use the convention that the components of a tuple g are written g_{1}, g_{2}, \ldots, that is, $g \in G^{n-1}$ is $g=\left(g_{1}, \ldots, g_{n-1}\right)$.
Proposition 3.3. Let G be a group with Schur cover H and $H / M=G$. The following hold for $n \geqslant 3$.
a) We have $K(G, n) \cong G^{n-1} \cdot G^{\prime}$, where the product of $u=(g ; c)$ and $v=(h ; d)$ in $G^{n-1} \cdot G^{\prime}$ is defined as

$$
u v=(g h ; c d \alpha(u, v))
$$

with $\alpha(u, v)=\left(h_{n-1}^{-1} g_{n-1}^{-1} \cdots h_{1}^{-1} g_{1}^{-1} c d\right)^{-1} \cdot\left(g_{n-1}^{-1} \cdots g_{1}^{-1} c h_{n-1}^{-1} \cdots h_{1}^{-1} d\right) \in G^{\prime}$.
b) We have $\tilde{K}(G, n) \cong G^{n-1} \cdot H^{\prime}$, where the product of $u=(g ; c)$ and $v=(h ; d)$ in $G^{n-1} \cdot H^{\prime}$ is defined as

$$
u v=\left(g h ; c d \alpha\left(u^{\prime}, v^{\prime}\right)\right) ;
$$

here α is the map defining $K(H, n)$ as in a) and $u^{\prime}, v^{\prime} \in H^{n-1} . H^{\prime}$ map onto $u, v \in$ $G^{n-1} \cdot H^{\prime}$; in particular, $\tilde{K}(G, n) \cong G^{2} .(G \wedge G)$.

Proof. a) Clearly, $K(G, n)=\left\{\left(g_{1}, \ldots, g_{n-1}, g_{n-1}^{-1} \cdots g_{1}^{-1} d\right): g_{1}, \ldots, g_{n-1} \in G, d \in G^{\prime}\right\}$. The isomorphism from $G^{n-1} . G^{\prime}$ to $K(G, n)$ maps $(g ; c) \in G^{n-1} \cdot G^{\prime}$ to $\left(g, g_{n-1}^{-1} \cdots g_{1}^{-1} c\right) \in$ $K(G, n)$; the definition of α guarantees that this is an isomorphism.
b) It is shown in [10, Theorem 3.2] that $\tilde{K}(G, n) \cong K(H, n) / K(M, n)$, independent of the chosen Schur cover. By a), we have $K(H, n) \cong H^{n-1} \cdot H^{\prime}$, and $K(M, n) \cong M^{n-1}$ corresponds to the central subgroup $M^{n-1} .1$ of $H^{n-1} . H^{\prime}$. Note that the multiplication is well-defined since $M \leqslant Z(H)$. Recall that we assume that all groups are finite, so G is finite and $H^{\prime} \cong G \wedge G$ by Section 2.3.

Corollary 3.4. If H has nilpotency class 2 , then $K(H, n) \cong H^{n-1}$. H^{\prime} with multiplication

$$
(g ; c)(h, d)=\left(g h ; c d \prod_{i=1}^{n-1} \prod_{j=i}^{n-1}\left[g_{i}, h_{j}\right]\right) .
$$

Proof. Consider $K(H, n)=H^{n-1} . H^{\prime}$ with multiplication defined by α as in Proposition 3.3a), that is, the product of $u=(g ; c)$ and $v=(h ; d)$ in $H^{n-1} \cdot H^{\prime}$ is $u v=(g h ; c d \alpha(u, v))$ where

$$
\begin{aligned}
\alpha(u, v) & =\left(h_{n-1}^{-1} g_{n-1}^{-1} \cdots h_{1}^{-1} g_{1}^{-1} c d\right)^{-1} \cdot\left(g_{n-1}^{-1} \cdots g_{1}^{-1} c h_{n-1}^{-1} \cdots h_{1}^{-1} d\right) \\
& =d^{-1} c^{-1} g_{1} h_{1} \ldots g_{n-1} h_{n-1} \cdot g_{n-1}^{-1} \cdots g_{1}^{-1} c h_{n-1}^{-1} \cdots h_{1}^{-1} d \\
& =\prod_{i=1}^{n-1} \prod_{j=i}^{n-1}\left[h_{j}, g_{i}^{-1}\right]\left[c, h_{i}\right]=\prod_{i=1}^{n-1} \prod_{j=i}^{n-1}\left[h_{j}, g_{i}^{-1}\right]
\end{aligned}
$$

for the last equations note that $c \in H^{\prime} \leqslant Z(H)$ and $\left[h_{j}, g_{i}^{-1}\right]=\left[h_{j}, g_{i}^{-1}\right]^{\left(g_{i}^{h_{j}}\right)}=\left[g_{i}, h_{j}\right]$.
3.3. Abelian groups. For a group G let $Z^{\wedge}(G)=\{g \in G: g \wedge x=1$ for all $x \in G\}$ be the epicentre of G. Note that $Z^{\wedge}(G)$ is equal to the projection of the center of a Schur cover of G on G, see [5, p. 254], therefore the next result agrees with [10, Proposition 4.7]. It is shown in [5, Proposition 16(vii)] that there exists H with $H / Z(H) \cong G$ if and only if $Z^{\wedge}(G)=1$.
Proposition 3.5. If G is an abelian group, then $\tilde{K}(G, n)$ is isomorphic to the group $G^{n-1} \cdot(G \wedge$ G) with multiplication

$$
(g ; c)(h ; d)=\left(g h ; c d \prod_{i=1}^{n-1} g_{i} \wedge h_{i} \cdots h_{n-1}\right) .
$$

Under this identification,

$$
\begin{aligned}
Z(\tilde{K}(G, n)) & =\left\{\left(u, u y_{2}, \ldots, u y_{n-1} ; c\right) \in G^{n-1} \cdot(G \wedge G): y_{2}, \ldots, y_{n-1}, u^{n} \in Z^{\wedge}(G)\right\} \\
& \cong Z^{\wedge}(G)^{n-1} \times(G \wedge G) \times\left\{u \in G: u^{n} \in Z^{\wedge}(G)\right\} / Z^{\wedge}(G) .
\end{aligned}
$$

Proof. Let H be a Schur cover of G with $H / M=G$. It follows from Corollary 3.4 and Proposition 3.3 b) that $\tilde{K}(G, n) \cong G^{n-1} \cdot H^{\prime}$ with multiplication

$$
(g ; c)(h, d)=\left(g h ; c d \prod_{i=1}^{n-1} \prod_{j=i}^{n-1}\left[g_{i}^{\prime}, h_{j}^{\prime}\right]\right)
$$

where each g_{i}^{\prime} and k_{j}^{\prime} is a lift of $g_{i}, k_{j} \in G$ to H; note that $H^{\prime}=M \leqslant Z(H)$ and $H^{\prime}=M \cong$ $G \wedge G$ since G is abelian. Recall that $G \wedge G=\operatorname{ker} c_{\tau}$, that is, $G \wedge G=\langle g \wedge h: x, y \in G\rangle$ with the convention $g \wedge h=\left[g, h^{*}\right]_{\tau(G)}$. In particular, if $\left[g^{\prime}, h^{\prime}\right]_{H} \in H$ where $g^{\prime}, h^{\prime} \in H$ are lifts of $g, h \in G$, then $H^{\prime} \cong G \wedge G$ via $\left[g^{\prime}, h^{\prime}\right] \mapsto g \wedge h$. The first claim follows.
If $(a ; c) \in Z(\tilde{K}(G, n))$, then the following is equal for all $(g ; d) \in \tilde{K}(G, 3)$:

$$
\prod_{i=1}^{n-1} a_{i} \wedge g_{i} \cdots g_{n-1}=\prod_{i=1}^{n-1} g_{i} \wedge a_{i} \cdots a_{n-1}
$$

Assuming g has only one nontrivial entry $g_{i}=h$, this forces

$$
a_{1} \ldots a_{i-1} a_{i}^{2} a_{i+1} \ldots a_{n-1} \wedge h=1 \quad \text { for all } h \in G \text { and } i \in\{1, \ldots, n-1\} .
$$

Thus, each $z_{i}=a_{1} \ldots a_{i-1} a_{i}^{2} a_{i+1} \ldots a_{n-1}$ lies in $Z^{\wedge}(G)$; now $z_{i-1}^{-1} z_{i}=a_{i-1}^{-1} a_{i}$ shows that each $a_{i}=a_{1} y_{i}$ for some $y_{i} \in Z^{\wedge}(G)$. Now $z_{1} \in Z^{\wedge}(G)$ yields $a_{1}^{n} \in Z^{\wedge}(G)$. Conversely, it is easy to check that every such element yields a central $(a ; c)$; note that $a^{n-i}=a^{i} z$ for some $z \in Z^{\wedge}(G)$.
Proposition 3.6. If G is an abelian group, then $\tau(G)$ is isomorphic to the group $G^{2} \cdot(G \wedge G)$, where the multiplication is given by $\left(g_{1}, g_{2} ; c\right)\left(h_{1}, h_{2} ; d\right)=\left(g_{1} h_{1}, g_{2} h_{2} ; c d\left(g_{2} \wedge h_{1}\right)\right)$. Under this identification, $Z(\tau(G))=\left\{(a, b ; c): a, b \in Z^{\wedge}(G), c \in G \wedge G\right\} \cong Z^{\wedge}(G)^{2} \times(G \wedge G)$.

Proof. The first claim follows from Proposition 3.2. As above, $(a, b ; c) \in Z(\tau(G))$ if and only if $b \wedge g=h \wedge a$ for all $g, h \in G$. In particular, it follows that $a b \in Z^{\wedge}(G)$, so $b=a^{-1} z$ for some $z \in Z^{\wedge}(G)$. Now $b \wedge g=h \wedge a$ implies $a \wedge h g^{-1}=1$ for all $g, h \in G$, thus $a \in Z^{\wedge}(G)$, and so also $b \in Z^{\wedge}(G)$. Conversely, every such ($a, b ; c$) lies in the centre; the claim follows.

4. Relating $\tau(G)$ with $\tilde{K}(G, 3)$ and $K(G, 3)$

The aim of this section is to relate $\tau(G)$ with $\tilde{K}(G, 3)$. As a first step, we first consider a construction of an epimorphism $\tau(G) \rightarrow K(G, 3)$. Our construction requires an automorphism of G which acts as inversion on the abelianisation of G.
4.1. AI-automorphisms. An automorphism $\alpha \in \operatorname{Aut}(G)$ of a group G is an AI-automorphism if it induces the inversion automorphism on the abelianisation G / G^{\prime}; this is not to be confused with an IA-automorphism introduced by Bachmuth (1966), which is an automorphism that induces the identity on the abelianisation. Clearly, the composition of two AI-automorphisms is an IA-automorphism; for abelian groups the only AI-automorphism is inversion.

Example 4.1. Let F be a free group on X. The map $X \rightarrow X$ given by $x \mapsto x^{-1}$ for all $x \in X$ induces an AI-automorphism ι_{F} of F. If a group G is given by a free presentation $G=F / N$ and $\iota_{F}(N)=N$, then ι_{F} induces an AI-automorphism of G. Note that if F / N is abelian, then $F^{\prime} \leqslant N$, hence $\iota_{F}(N)=N$ and ι_{F} induces inversion on G. If $\iota_{F}(N) \neq N$, then define $M=\iota_{F}(N) N \unlhd F$. By definition, $\iota_{F}(M)=M$, and F / M is the largest quotient of G on which ι_{F} induces an AI-automorphism. In particular, every group G has such a quotient since ι_{F} induces inversion on $F / F^{\prime} N \cong G / G^{\prime}$. We give two examples. First, the dihedral group of order $2 n$ can be defined as $D_{2 n}=F / R$ where F is free on $\{r, m\}$ and N is the normal closure of $\left\{r^{n}, m^{2}, r^{m} r\right\}$. Clearly, $\iota_{F}\left(r^{n}\right)=\left(r^{-1}\right)^{n}$ and $\iota_{F}\left(m^{2}\right)=m^{-2}$ lie in N; moreover, $\left(\iota_{F}\left(r^{m} r\right)^{-1}\right)^{m}=\left(r r^{m^{-1}}\right)^{m}=r^{m} r \in N$, hence ι_{F} induces an AI-automorphism on F / R. Second, consider $G=F / N$ where F is free on $\{g, h\}$ and N is the normal closure of $\left\{g^{4}, h^{5}, h^{g} h^{2}\right\}$, that is, G is a semidirect product $C_{4} \ltimes C_{5}$. A direct computation shows that G does not admit an AI-automorphism, which implies that $\iota_{F}(N) \neq N$. If M is the normal closure of $\left\{g^{4}, h^{5},\left(h^{-1}\right)^{\left(g^{-1}\right)} h^{-2}\right\}$, then $\iota_{F}(M)=M$, and $G / M \cong C_{4}$ is the largest quotient of G on which ι_{F} induces an AI-automorphism.
Example 4.2. Let $\alpha \in \operatorname{Aut}(G)$ be an automorphism which inverts every element of a generating set X of G. Such an automorphism is called GI-automorphism in [1], where GI can be interpreted as "generator inversion". (Another interpretation is that GI stands for "generatinginvolutions" because $\langle\alpha\rangle \ltimes G$ is generated by involutions $\{(\alpha, x): x \in X\}$.) Clearly, every GI-automorphism is an AI-automorphism. To give an example, consider the alternating group Alt_{n} of rank $n \geqslant 3$: Conjugation by the transposition $(1,2)$ defines an automorphism α of Alt_{n}
that inverts every element of the generating set $\{(1,2,3),(1,2,4), \ldots,(1,2, n)\}$; thus α is a GIand AI-automorphism.
4.2. An epimorphism. Suppose G has an AI-automorphism α; we use α to construct $K(G, 3)$ as a quotient of $\tau(G)$. Note that the homomorphism

$$
G \star G^{*} \rightarrow G^{3}, \quad g_{1} h_{1}^{*} \ldots g_{k} h_{k}^{*} \mapsto\left(g_{1} \ldots g_{k}, h_{1} \ldots h_{k}, \alpha\left(g_{1} h_{1} \ldots g_{k} h_{k}\right)\right)
$$

maps commutators $\left[x, x^{*}\right]$ to 1 ; since the above map forgets " *", it also maps the relations of $\tau(G)$ to 1 . Thus there is an induced homomorphism

$$
\Phi_{\alpha}: \tau(G) \rightarrow G^{3} .
$$

Remark 4.3. Recall from above that $G \wedge G=\left[G, G^{*}\right]_{\tau(G)}$, and now let

$$
\kappa:\left[G, G^{*}\right]_{\tau(G)} \rightarrow G^{\prime}, \quad \prod_{i}\left[x_{i}, y_{i}^{*}\right] \mapsto \prod_{i}\left[x_{i}, y_{i}\right] .
$$

It is shown in [12] that ker κ is central in $\left[G, G^{*}\right]_{\tau(G)}$ and isomorphic to $H_{2}(G, \mathbb{Z})$.
Theorem 4.4. If $\alpha \in \operatorname{Aut}(G)$ is an AI-automorphism, then

$$
\operatorname{im} \Phi_{\alpha}=K(G, 3) \quad \text { and } \quad \operatorname{ker} \Phi_{\alpha}=\operatorname{ker} \kappa=H_{2}(G, \mathbb{Z}) .
$$

Proof. The inclusion $\operatorname{im} \Phi_{\alpha} \leqslant K(G, 3)$ follows immediately from the definition and the fact that α is an AI-automorphism. If $(g, h, k) \in K(G, 3)$, then $k=h^{-1} g^{-1} c$ for some $c \in G^{\prime}$. Note that Φ_{α} maps $g h^{*}$ to $(g, h, \alpha(g h)) \in K(G, 3)$, and $\alpha(g h)=h^{-1} g^{-1} d$ for some $d \in G^{\prime}$, thus

$$
\Phi_{\alpha}\left(g h^{*}\right)^{-1}(g, h, k)=\left(1,1, d^{-1} c\right) ;
$$

now $d^{-1} c=\prod_{i}\left[x_{i}, y_{i}\right] \in G^{\prime}$, and so $\left(1,1, d^{-1} c\right)=\Phi_{\alpha}\left(\prod_{i}\left[\alpha^{-1}\left(x_{i}\right),\left(\alpha^{-1}\left(y_{i}\right)\right)^{*}\right]\right)$. This shows that $(g, h, k) \in \operatorname{im} \Phi_{\alpha}$, thus $K(G, 3) \leqslant \operatorname{im} \Phi_{\alpha}$. Now we consider the kernel. Note that

$$
\operatorname{ker} \Phi_{\alpha}=\left\{g_{1} h_{1}^{*} \cdots g_{k} h_{k}^{*}: g_{1} \cdots g_{k}=h_{1} \cdots h_{k}=\left(g_{1} h_{1}\right) \cdots\left(g_{k} h_{k}\right)=1\right\}
$$

If $w=g_{1} h_{1}^{*} \ldots g_{k} h_{k}^{*} \in \operatorname{ker} \Phi_{\alpha}$, then Lemma 3.1 allows us to rewrite w as

$$
w=g_{1} \cdots g_{k}\left(h_{1} \cdots h_{k}\right)^{*} w^{\prime}=w^{\prime}
$$

for some $w^{\prime}=\prod_{i}\left[x_{i}, y_{i}^{*}\right] \in\left[G, G^{*}\right]$; mapping this under κ yields $\kappa(w)=\kappa\left(w^{\prime}\right)=\prod_{i}\left[x_{i}, y_{i}\right]$. If we use the above rewriting process of w in the opposite direction on $\kappa(w)$, then we get w without all " $*$ ", that is, $\kappa(w)=g_{1} h_{1} \ldots g_{k} h_{k}$; since this is 1 by assumption, $w \in \operatorname{ker} \kappa$. Conversely, let $w \in \operatorname{ker} \kappa$, that is, $w=\prod_{i}\left[g_{i}, h_{i}^{*}\right] \in\left[G, G^{*}\right]_{\tau(G)}$ with $\prod_{i}\left[g_{i}, h_{i}\right]=1$. Writing w as $w=\prod_{i} g_{i}^{-1}\left(h_{i}^{-1}\right)^{*} g_{i} h_{i}^{*}$ and applying Φ_{α} shows that $\Phi_{\alpha}(w)=\left(1,1, \alpha\left(\left[g_{1}, h_{1}\right] \ldots\left[g_{k}, h_{k}\right]\right)\right)=$ $(1,1,1)$, hence $\operatorname{ker} \kappa \leqslant \operatorname{ker} \Phi_{\alpha}$. In conclusion, $\operatorname{ker} \Phi_{\alpha}=\operatorname{ker} \kappa=H_{2}(G, \mathbb{Z})$, as claimed.

We have proved:
Corollary 4.5. The existence of an AI-automorphism of G yields a central extension

$$
1 \longrightarrow H_{2}(G, \mathbb{Z}) \longrightarrow \tau(G) \longrightarrow K(G, 3) \longrightarrow 1 \text {. }
$$

Remark 4.6. It is proved in [10, Theorem 2.2] that there is a central extension

$$
1 \longrightarrow H_{2}(G, \mathbb{Z}) \longrightarrow \tilde{K}(G, 3) \longrightarrow K(G, 3) \longrightarrow 1 \text {. }
$$

It seems natural to ask when $\tau(G) \cong \tilde{K}(G, 3)$. The next proposition shows that the lack of AI-automorphisms may prevent this, see Example 7.1 below for more evidence supporting this:

Proposition 4.7. If $G=C_{n} \ltimes C_{m}$ with $n \geqslant 3$ is a Frobenius group with Frobenius kernel C_{m}, then G does not have AI-automorphisms and $\tau(G) \not \equiv \tilde{K}(G, 3)$. In particular, there is no epimorphism $\tau(G) \rightarrow K(G, 3)$ as in Corollary 4.5.

Proof. Let $G=\langle g, u\rangle$, where g and h generate C_{n} and C_{m}, respectively. By [8, Satz V.8.5], every nontrivial element in C_{n} acts fixed-point freely on C_{m}, meaning that only the identity is fixed. Now [8 , Satz $8.3 \& 8.10$] imply that that m is a prime with $n \mid m-1$, and $G^{\prime}=$ C_{m}. Assume, for a contradiction, that α is an AI-automorphism of G. Write $\alpha(u)=u^{y}$ and $\alpha(g)=g^{-1} v$ with $v \in C_{m}$. Moreover, let $u^{g}=u^{x}$ and $u^{\left(g^{-1}\right)}=u^{\bar{x}}$ where $x \bar{x} \equiv$ $1 \bmod m$. Note that $[g, u]=u^{1-x}$, and mapping this under α yields $\alpha\left(u^{1-x}\right)=u^{y(1-x)}$ and $\alpha([g, u])=\left[g^{-1} v, u^{y}\right]=\left[g^{-1}, u^{y}\right]=u^{y(1-\bar{x})}$. This forces $y(1-x) \equiv y(1-\bar{x}) \bmod m$ and so $x \equiv \bar{x} \bmod m$ since m is prime. Now $x \bar{x} \equiv 1 \bmod m$ implies that g^{2} has nontrivial fixed points, which is not possible since $g^{2} \neq 1$.
By [9, Theorem 2.11.3], together with [8, Satz V.8.9b], we have that $M(G)=1$. Thus, Remarks 4.6 and 4.3 show that $\tilde{K}(G, 3)=K(G, 3)$ and $G \wedge G \cong G^{\prime}=\langle u\rangle$. Note that $\tau(G)=G^{2} . G^{\prime}$ with $G^{\prime}=G \wedge G$ is generated by $g_{1}=(g, 1 ; 1), h_{1}=(h, 1 ; 1), g_{2}=(1, g ; 1), h_{2}=(1, h ; 1)$, $k=(1,1 ; h)$, which allows us to determine a polycyclic presentation

$$
\begin{gathered}
\tau(G)=\operatorname{pc}\left\langle g_{1}, h_{1}, g_{2}, h_{2}, k\right| g_{1}^{n}, g_{2}^{n}, h_{1}^{m}, h_{2}^{m}, k^{m}, k^{g_{1}}=k^{x}, h_{1}^{g_{1}}=h_{1}^{x}, k^{g_{2}}=k^{x} \\
\left.h_{2}^{g_{2}}=h_{2}^{x}, g_{2}^{h_{1}}=g_{2} k\right\rangle
\end{gathered}
$$

recall that unspecified commutators between generators are trivial. Using the generating set $g_{1}=\left(g, 1, g^{-1}\right), h_{1}=\left(h, 1, h^{-1}\right), g_{1}=\left(1, g, g^{-1}\right), h_{2}=\left(1, h, h^{-1}\right), k=(1,1, h)$ of $K(G, 3)$ shows that $K(G, 3)$ is given by the following presentation

$$
\begin{gathered}
\operatorname{pc}\left\langle g_{1}, h_{1}, g_{2}, h_{2}, k\right| g_{1}^{n}, g_{2}^{n}, h_{1}^{m}, h_{2}^{m}, k^{m}, h_{1}^{g_{1}}=h_{1}^{x} k^{x-\bar{x}}, h_{2}^{g_{1}}=h_{2} k^{1-\bar{x}}, k^{g_{1}}=k^{\bar{x}}, \\
\left.g_{2}^{h_{1}}=g_{2} k^{\bar{x}-1}, h_{2}^{g_{2}}=h_{2}^{x} k^{x-\bar{x}}, k^{g_{2}}=k^{\bar{x}}\right\rangle .
\end{gathered}
$$

In both cases, the derived subgroup is elementary abelian, generated by $\left\{h_{1}, h_{2}, k\right\}$. It follows from the presentations that $\tau(G)$ and $K(G, 3)$ act on their derived subgroups as $\rho_{T}, \rho_{K} \leqslant$ $\mathrm{GL}_{3}(m)$, where

$$
\rho_{T}=\left\langle\left(\begin{array}{lll}
x & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & x
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & x & 0 \\
0 & 0 & x
\end{array}\right)\right\rangle \quad \text { and } \quad \rho_{K}=\left\langle\left(\begin{array}{ccc}
x & 0 & x-\bar{x} \\
0 & 1 & -\bar{x} \\
0 & 0 & \bar{x}
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 1-\bar{x} \\
0 & x & x-\bar{x} \\
0 & 0 & \bar{x}
\end{array}\right)\right\rangle .
$$

Since $x^{2} \neq 1 \bmod m$, we have $\rho_{K} \leqslant \mathrm{SL}_{3}(m)$ but $\rho_{T} \nless \mathrm{SL}_{3}(m)$. Thus these groups are not conjugate in $\mathrm{GL}_{3}(m)$, which implies that $\tau(G) \not \neq K(G, 3)$. Indeed, one can also verify that $\langle k\rangle$ is characteristic in $\tau(G)$, but not in $K(G, 3)$.

5. Some isomorphisms

On the positive side, there is a strong evidence that $\tau(G)$ is closely related to $\tilde{K}(G, 3)$, see also Section 7. The next theorem is a useful tool for establishing various isomorphisms.
Theorem 5.1. Let H be a Schur cover of G with $H / M=G$. If H admits an AI-automorphism whose restriction to M is inversion, then $\tau(G) \cong \tilde{K}(G, 3)$.

Proof. If α is the said AI-isomorphism, then $\Phi_{\alpha}: \tau(H) \rightarrow K(H, 3)$ is an epimorphism with kernel $H_{2}(H, \mathbb{Z})$, see Corollary 4.5. It is shown in [10, Theorem 3.2] that $\tilde{K}(G, n)$ is isomorphic to $K(H, n) / K(M, n)$, so we obtain an epimorphism $\tau(H) \rightarrow \tilde{K}(G, n)$. By Lemma 2.1, the projection $H \rightarrow G$ induces an epimorphism $\gamma: \tau(H) \rightarrow \tau(G)$ with kernel
$\left(\left\langle M, M^{*}\right\rangle\left[M, H^{*}\right]\left[H, M^{*}\right]\right)_{\tau(H)}$. We can construct an induced epimorphism $\tau(G) \rightarrow \tilde{K}(G, 3)$ if $\Phi_{\alpha}(\operatorname{ker} \gamma) \leqslant K(M, 3)$. If $m \in M$, then $\Phi_{\alpha}(m)=(m, 1, \alpha(m)$), which lies in $K(M, 3)$ since $\alpha(m)=m^{-1}$ by assumption; similarly for $m^{*} \in M^{*}$. If $\left[m, h^{*}\right]$ is a generator of $\left[M, H^{*}\right]$, then this is mapped under Φ_{α} to $(1,1, \alpha([m, h]))=(1,1,1)$ since $M \leqslant Z(H)$; similarly for elements in $\left[H, M^{*}\right]$. This implies the claim.

Proposition 5.2. Let G be an extra-special p-group.
a) If $|G|=p^{3}$, and $p=2$ or $\exp (G)=p$, then $\tau(G) \cong \tilde{K}(G, 3)$.
b) If $p>2$ and $\exp (G)=p^{2}$, then G does not have an AI-automorphism.

Proof. a) For $p=2$ the claim can be checked by a direct computation, so let $p>2$ and suppose G is given by the polycyclic presentation $G=\operatorname{pc}\left\langle g_{1}, g_{2}, g_{3} \mid g_{1}^{p}, g_{2}^{p}, g_{3}^{p},\left[g_{2}, g_{1}\right]=g_{3}\right\rangle$. As the Schur multiplier is isomorphic to C_{p}^{2}, it is straightforward to verify that the group

$$
H=\operatorname{pc}\left\langle h_{1}, h_{2}, h_{3}, h_{4}, h_{5} \mid h_{1}^{p}, h_{2}^{p}, h_{3}^{p}, h_{4}^{p}, h_{5}^{p},\left[h_{2}, h_{1}\right]=h_{3},\left[h_{3}, h_{1}\right]=h_{4},\left[h_{3}, h_{2}\right]=h_{5}\right\rangle,
$$

is a Schur cover of G with $H / M=G$ for $M=\left\langle h_{4}, h_{5}\right\rangle \cong C_{p}^{2}$. The elements $h_{1}^{-1} h_{3}$, $h_{2}^{-1} h_{3}^{-1}, h_{3}, h_{4}^{-1}, h_{5}^{-1}$ satisfy the relations of H, so von Dyck's Theorem [15, 2.2.1] shows that $\left(h_{1}, h_{2}, h_{3}, h_{4}, h_{5}\right) \mapsto\left(h_{1}^{-1} h_{3}, h_{2}^{-1} h_{3}^{-1}, h_{3}, h_{4}^{-1}, h_{5}^{-1}\right)$ extends to an automorphism α of H. This is an AI-automorphism of H that inverts elements of M, so Theorem 5.1 proves the claim.
b) First consider $|G|=p^{3}$. We can define $G=\mathrm{pc}\left\langle g_{1}, g_{2}, g_{3} \mid g_{1}^{p}=g_{3}, g_{2}^{p}, g_{3}^{p},\left[g_{2}, g_{1}\right]=g_{3}^{-1}\right\rangle$ with $G^{\prime}=\left\langle g_{3}\right\rangle$. Suppose $\alpha \in \operatorname{Aut}(G)$ is an AI-automorphism. Since $G^{\prime}=Z(G)$, we have $\alpha\left(g_{3}^{-1}\right)=\left[\alpha\left(g_{2}\right), \alpha\left(g_{1}\right)\right]=\left[g_{2}^{-1}, g_{1}^{-1}\right]=\left[g_{2}, g_{1}\right]^{(-1)^{2}}=g_{3}^{-1}$, so $\alpha\left(g_{3}\right)=g_{3}$. Now $g_{3}=$ $\alpha\left(g_{1}\right)^{p}=g_{1}^{-p}=g_{3}^{-1}$ forces $\left|g_{3}\right|=2$, a contradiction. Thus, G has no AI-automorphism. If $|G|=p^{1+2 n}$, then G is a central product of n extra-special groups of size p^{3}, at least one of exponent p^{3}, see [8, Satz III.13.7]. The same argument shows that G has no AI-automorphisms.

Next, for $n \geqslant 1$ we consider the generalised quaternion group Q_{n} and dihedral group D_{n} of order $4 n$ and $2 n$, respectively, which are defined as

$$
Q_{n}=\left\langle a, b \mid a^{2 n}, b^{2}=a^{n}, a^{b}=a^{-1}\right\rangle \quad \text { and } \quad D_{n}=\left\langle a, b \mid a^{n}, b^{2}, a^{b}=a^{-1}\right\rangle .
$$

Proposition 5.3. We have $\tau\left(Q_{n}\right) \cong \tilde{K}\left(Q_{n}, 3\right)$ and $\tau\left(D_{n}\right) \cong \tilde{K}\left(D_{n}, 3\right)$.
Proof. For $Q_{1}=C_{4}$ and $D_{1}=C_{2} \times C_{2}$ the claim follows from a direct computation, so let $n \geqslant 2$. It follows from [9, Example 2.4.8] that $M\left(Q_{n}\right)=1$, thus Q_{n} is a Schur cover of Q_{n}. Note that $\left\{a^{-1}, b^{-1}\right\}$ also satisfies the relations of Q_{n}, so $(a, b) \mapsto\left(a^{-1}, b^{-1}\right)$ extends to a GIautomorphism of Q_{n} by von Dyck's Theorem. Now $\tau\left(Q_{n}\right) \cong \tilde{K}\left(Q_{n}, 3\right)$ by Theorem 5.1. Let H be a Schur cover of D_{n} with $H / M=D_{n}$. By [9, Proposition 2.11.4], we have $M=1$ and $H=D_{n}$ if n is odd, and $M=C_{2}$ and $H=Q_{n}$ otherwise. As seen above and in Example 4.1, the group H admits an AI-automorphism which necessarily stabilises M; recall that $n \geqslant 2$, so $M \cong Z\left(Q_{n}\right)=\left\langle a^{n}\right\rangle$ or $M=1$. Again, the claim follows with Theorem 5.1.

Proposition 5.4. Let G be a perfect group. If the exponent of $M(G)$ divides 2 , then $\tau(G) \cong$ $\tilde{K}(G, 3)$.

Proof. Let H be a Schur cover of G with $H / M \cong G$. Let $\pi: H \rightarrow G$ be the natural projection. Note that H is perfect as well: this follows by observing that every $\pi(h)$ with $h \in H$ can be written as a product of commutators in G, hence the same holds for h modulo M. Since $M \leqslant H^{\prime}$, we have $H=H^{\prime}$. The identity automorphism of H is an AI-automorphism. Clearly it acts as inversion on M since $\exp (M)$ divides 2 . Now Theorem 5.1 proves the claim.
Proposition 5.5. We have $\tau\left(\operatorname{Sym}_{n}\right) \cong \tilde{K}\left(\operatorname{Sym}_{n}, 3\right)$ and $\tau\left(\operatorname{Alt}_{n}\right) \cong \tilde{K}\left(\operatorname{Alt}_{n}, 3\right)$.
Proof. By [9, Theorem 2.12.3], the Schur multiplier of Sym_{n} is cyclic of order 2 for $n \geqslant 4$, and trivial otherwise, and a Schur cover for Sym_{n} is

$$
\begin{aligned}
H_{n}=\left\langle g_{1}, g_{2}, \ldots, g_{n-1}, z\right| & g_{i}^{2}=\left(g_{j} g_{j+1}\right)^{3}=\left(g_{k} g_{l}\right)^{2}=z, z^{2}=\left[g_{i}, z\right]=1 \\
& \text { for } 1 \leqslant i \leqslant n-1,1 \leqslant j \leqslant n-2, k \leqslant l-2\rangle .
\end{aligned}
$$

Note that the generators $g_{1}^{-1}, \ldots, g_{n-1}^{-1}, z^{-1}$ also satisfy the relations of H_{n}, so von Dyck's Theorem shows that there is a corresponding GI-automorphism of H_{n}. Note that $M=\langle z\rangle$ satisfies $M \cong M\left(\operatorname{Sym}_{n}\right) \cong C_{2}$ and $H_{n} / M \cong \operatorname{Sym}_{n}$. The given GI-automorphism acts as inversion on M, so the claim for Sym_{n} follows by Theorem 5.1. The proof for the alternating groups follows along the same lines using [9, Theorem 2.12.5].

The next result shows that Theorem 5.1 cannot be applied to abelian groups G in general. Recall that if M is a trivial G-module of exponent 2 , then a 2 -coboundary in $B^{2}(G, M)$ is a function $\delta: G \times G \rightarrow M$ such that $\delta(g, h)=\kappa(g h) \kappa(g) \kappa(h)$ for all $g, h \in G$ and some map $\kappa: G \rightarrow M$.
Proposition 5.6. Let G be an abelian group and let H be a Schur cover of G with $H / M=G$. Then H admits an AI-automorphism whose restriction to M is inversion if and only if G is 2-group, M has exponent 2 , and the map $G \times G \rightarrow G \wedge G$ defined by $(g, h) \mapsto g \wedge h$ is a 2-coboundary; in particular, any such AI-automorphism has order 2 .

Proof. Since G is abelian, $H^{\prime} \leqslant M$. Now $M \leqslant H^{\prime} \cap Z(H)$ implies $M=H^{\prime} \leqslant Z(H)$. First suppose that H admits an AI-automorphism, say α, whose restriction to M is inversion. Then every $h \in H$ can be written as $\alpha(h)=h^{-1} c_{h}$ for some $c_{h} \in H^{\prime}$. Now

$$
h^{-1} g^{-1} c_{g h}=\alpha(g h)=\alpha(g) \alpha(h)=g^{-1} c_{g} h^{-1} c_{h}=h^{-1} g^{-1}\left[g^{-1}, h^{-1}\right] c_{g} c_{h}
$$

implies that $c_{g h}=\left[g^{-1}, h^{-1}\right] c_{g} c_{h}$ for all $g, h \in H$. Note that $[g, h]=\left[g^{-1}, h^{-1}\right]^{g h}=$ [$\left.g^{-1}, h^{-1}\right]$ since H^{\prime} is central, so $c_{g h}=c_{g} c_{h}[g, h]$. Moreover, $1=c_{1}=c_{g g^{-1}}$ yields $c_{g^{-1}}=$ $\left(c_{g}\right)^{-1}$. This can be used to show that $\alpha^{2 n+1}(g)=g^{-1} c_{g}^{2 n+1}$ and $\alpha^{2 n}(g)=g c_{g}^{-2 n}$ for all $g \in H$ and $n \geqslant 1$. If G has odd order, then $m=|M|$ is odd, so $\alpha^{m}(g)=g^{-1}$ describes an isomorphism of H. This is not possible as H is non-abelian. By [9, Lemma 2.9.1], the same contradiction can be reached if G has even order but a nontrivial Sylow subgroup of odd order. So G is an abelian 2-group, and since

$$
[h, g]=\alpha([g, h])=[\alpha(g), \alpha(h)]=\left[g^{-1} c_{g}, h^{-1} c_{h}\right]=\left[g^{-1}, h^{-1}\right]=[g, h]^{h^{-1} g^{-1}}=[g, h]
$$

for all $g, h \in H$, we must have that $H^{\prime}=M$ has exponent 2 . Thus, α is the identity on M, and so $\alpha^{2}(h)=\alpha\left(h^{-1} c_{h}\right)=h c_{h^{-1}} c_{h}=h$ for all $h \in H$ proves that α has order 2. Note also that $[g, h]=c_{g h} c_{g} c_{h}$. The map $\gamma: H \times H \rightarrow H^{\prime},(g, h) \mapsto[g, h]$, is a 2-cocycle in $Z^{2}\left(H, H^{\prime}\right)$ since for all $g, h, k \in H$ we have $\gamma(g, h k) \gamma(h, k)=\gamma(g h, k) \gamma(g, h)$. Since H^{\prime} is central, γ induces a 2-cocycle $\delta \in Z^{2}\left(G, H^{\prime}\right)$. Since G is abelian, an isomorphism $G \wedge G \rightarrow H^{\prime}$ is given by $g \wedge h \rightarrow\left[g^{\prime}, h^{\prime}\right]$, where $g^{\prime}, h^{\prime} \in H$ are lifts of $g, h \in G$. This shows that the induced 2-cocycle δ lies in $Z^{2}(G, G \wedge G)$ and $\delta(g, h)=g \wedge h$ for all $g, h \in G$. Recall that if $h \in H$ and
$z \in H^{\prime}$, then $\alpha(h)=h^{-1} c_{h}$ and $(h z)^{-1} c_{h z}=\alpha(h z)=\alpha(h) \alpha(z)=h^{-1} c_{h} z$, which shows that $c_{h z}=c_{h}$. Thus for $g \in G$ we can define $\kappa(g)=c_{g^{\prime}}$ where $g^{\prime} \in H$ is a lift of g. This shows that $\delta(g, h)=\kappa(g h) \kappa(g) \kappa(h)$, that is, δ is a 2-coboundary in $B^{2}(G, G \wedge G)$.
Conversely, let G be an abelian 2-subgroup with $G \wedge G$ of exponent 2 such that $\delta(g, h)=g \wedge h$ defines a 2-coboundary in $B^{2}(G, G \wedge G)$, say $g \wedge h=\delta(g, h)=\kappa(g h) \kappa(g) \kappa(h)$ for some map $\kappa: G \rightarrow G \wedge G$. Let H be a Schur cover of G with natural projection $\pi: H \rightarrow G$, such that $M=\operatorname{ker} \pi$ satisfies $M=H^{\prime} \leqslant Z(H)$. Note that under the isomorphism $H^{\prime} \rightarrow G \wedge G$, $[h, k] \mapsto \pi(h) \wedge \pi(k)$ we have $[h, k]=\delta(\pi(h), \pi(k))=\kappa(\pi(h k)) \kappa(\pi(h)) \kappa(\pi(k))$. Now define $\alpha \in \operatorname{Aut}(H)$ by $\alpha(h)=h^{-1} c_{h}$ where $c_{h}=\kappa(\pi(h))$; note that
$\alpha(h k)=k^{-1} h^{-1} c_{h k}=h^{-1} k^{-1}\left[k^{-1}, h^{-1}\right] c_{h k}=h^{-1} k^{-1}[k, h] c_{h k}=h^{-1} c_{h} k^{-1} c_{k}=\alpha(h) \alpha(k)$, so α is indeed a homomorphism. Clearly, α acts as inversion (that is, as identity) on M, and as inversion on H / M. This proves the claim.

Proposition 5.7. If G is an abelian 2-group such that $G \wedge G$ has exponent 2 , then $\tau(G) \cong$ $\tilde{K}(G, 3)$.

Proof. We use Propositions 3.5 and 3.6 and identify

$$
\begin{aligned}
\tilde{K}(G, 3) & =G^{2} \cdot(G \wedge G) \quad \text { with } \quad(a, b ; c)(d, e ; f)=(a d, b e ; c f(a \wedge d e)(b \wedge e)), \\
\tau(G) & =G^{2} .(G \wedge G) \quad \text { with } \quad(a, b ; c)(d, e ; f)=(a d, b e ; c f(b \wedge d)) .
\end{aligned}
$$

Let $G=C_{2^{k_{1}}} \times \ldots \times C_{2^{k_{n}}}$ and write $a \in G$ as $a=x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$, where each x_{i} generates $C_{2^{k_{i}}}$; then

$$
N=\left\{\left(x_{1}, 1,1\right), \ldots,\left(x_{n}, 1,1\right),\left(1, x_{1}, 1\right), \ldots,\left(1, x_{n}, 1\right),\left(1,1, x_{i} \wedge x_{j}\right): i<j\right\}
$$

generates $\tilde{K}(G, 3)$ and $\tau(G)$. We now show that mapping the generating set N of $\tau(G)$ to the generating set N of $\tilde{K}(G, 3)$ defines an isomorphism $\psi: \tau(G) \rightarrow \tilde{K}(G, 3)$. Note that the image of $(a, b ; c) \in \tau(G)$ under ψ can be computed by decomposing $(a, b ; c)$ in $\tau(G)$ as

$$
(a, b ; c)=\prod_{i}\left(x_{i}, 1,1\right)^{a_{i}} \cdot \prod_{j}\left(1, x_{j}, 1\right)^{b_{j}} \cdot(1,1 ; c),
$$

and then considering this product in $\tilde{K}(G, 3)$. In $\tilde{K}(G, 3)$ we have $\left(x_{i}, 1,1\right)^{a_{i}}=\left(x_{i}^{a_{i}}, 1,1\right)$, and

$$
\prod_{i}\left(x_{i}, 1,1\right)^{a_{i}}=\left(a, 1 ; \prod_{i<j}\left(x_{i} \wedge x_{j}\right)^{a_{i} a_{j}}\right) \quad \text { and } \quad(a \wedge b)=\prod_{i<j}\left(x_{i} \wedge x_{j}\right)^{\left(a_{i} b_{j}-a_{j} b_{i}\right)}
$$

which shows that

$$
\psi:(a, b ; c) \mapsto\left(a, b ; c \prod_{i<j}\left(x_{i} \wedge x_{j}\right)^{\left(a_{i} a_{j}+b_{i} b_{j}+a_{i} b_{j}-a_{j} b_{i}\right)}\right) .
$$

Now consider a product $(a, b ; c)(d, e ; f)=(a d, b e ; c f(b \wedge d))$ in $\tau(G)$. We have

$$
\psi((a, b ; c)) \psi((d, e ; f))=\left(a d, b e ; c f \prod_{i<j}\left(x_{i} \wedge x_{j}\right)^{p_{i, j}}\right)
$$

where

$$
\begin{aligned}
p_{i, j}= & a_{i} a_{j}+b_{i} b_{j}+a_{i} b_{j}-a_{j} b_{i}+d_{i} d_{j}+e_{i} e_{j} \\
& +d_{i} e_{j}-d_{j} e_{i}+b_{i} e_{j}-b_{j} e_{i}+a_{i}\left(d_{j}+e_{j}\right)-a_{j}\left(d_{i}+e_{i}\right),
\end{aligned}
$$

and

$$
\psi((a d, b e ; c f(b \wedge d)))=\left(a d, b e ; c f \prod_{i<j}\left(x_{i} \wedge x_{j}\right)^{r_{i, j}}\right)
$$

where

$$
\begin{aligned}
r_{i, j}= & \left(a_{i}+d_{i}\right)\left(a_{j}+d_{j}\right)+\left(b_{i}+e_{i}\right)\left(b_{j}+e_{j}\right)+\left(a_{i}+d_{i}\right)\left(b_{j}+e_{j}\right) \\
& -\left(a_{j}+d_{j}\right)\left(b_{i}+e_{i}\right)+b_{i} d_{j}-b_{j} d_{i} .
\end{aligned}
$$

It follows that $p_{i, j}-r_{i, j}=-2\left(b_{j} e_{i}+a_{j} d_{i}\right) \equiv 0 \bmod 2$, that is, if $G \wedge G$ has exponent 2 , then ψ is an isomorphism, as claimed.

Example 5.8. The assumptions on G in Proposition 5.7 hold if $G \cong C_{2^{m}} \times C_{2}^{n}$ for some n, m. On the other hand, for $A=C_{4}^{3}$, we determine $\tau(A) \not \approx \tilde{K}(A, 3)$ by computing that $\operatorname{Aut}(\tau(A))$ and $\operatorname{Aut}(\tilde{K}(G, 3))$ have orders 94575592174780416 and 283726776524341248 , respectively. Since $A \wedge A$ has exponent 4, this is also an example showing that the assumptions in Proposition 5.7 cannot be relaxed. Similarly, it shows that the next result, Proposition 5.9, cannot be extended to higher rank. A comparison of the automorphism group orders also shows that $\tau(B) \neq \tilde{K}(B, 3)$ for $B=C_{5}^{3}$.
Proposition 5.9. Let G be an abelian group.
a) Suppose all Sylow p-subgroups of G have rank at most 2. Then $\tau(G) \cong \tilde{K}(G, 3)$ if and only if the Sylow 3-subgroup of G is cyclic.
b) If the Sylow 3-subgroup of G has rank at least 2 , then $\tau(G) \not \approx \tilde{K}(G, 3)$.

Proof. Let $G=\prod_{p} G_{p}$ be the decomposition of G into its Sylow subgroups. By [10, Proposition 4.1] and [16, Corollary 3.7], we can also decompose $\tau(G)=\prod_{p} \tau\left(G_{p}\right)$ and $\tilde{K}(G, n)=$ $\prod_{p} \tilde{K}\left(G_{p}, n\right)$, and every isomorphism $\tau(G) \rightarrow \tilde{K}(G, n)$ induces an isomorphism from $\tau\left(G_{p}\right)$ to $\tilde{K}\left(G_{p}, n\right)$. Thus it is sufficient to assume that G is an abelian p-group.
a) We have $G \cong C_{m} \times C_{n}$ with $m=p^{a}$ and $n=p^{b}$ for $a \geqslant b$. Let g and h be generators of C_{m} and C_{n}, respectively. Considering the description of $\tau(G)$ as in Proposition 3.6, set $g_{1}=$ $(g, 1 ; 1), h_{1}=(h, 1 ; 1), g_{2}=(1, g ; 1), h_{2}=(1, h ; 1)$, and $k=(1,1 ; g \wedge h)$. These elements form a polycyclic generating sequence of $\tau(G)$, with corresponding polycyclic presentation

$$
\tau(G)=\operatorname{pc}\left\langle g_{1}, h_{1}, g_{2}, h_{2}, k \mid g_{1}^{m}, g_{2}^{m}, h_{1}^{n}, h_{2}^{n}, k^{n}, g_{2}^{h_{1}}=g_{2} k^{-1}, h_{2}^{g_{1}}=h_{2} k\right\rangle
$$

Using the identification of $\tilde{K}(G, 3)=G^{2} \cdot(G \wedge G)$ as in Proposition 3.5, we obtain

$$
\begin{aligned}
\tilde{K}(G, 3)=\mathrm{pc}\left\langle g_{1}, h_{1}, g_{2}, h_{2}, k\right| & g_{1}^{m}, g_{2}^{m}, h_{1}^{n}, h_{2}^{n}, k^{n}, h_{1}^{g_{1}}=h_{1} k^{2} \\
& \left.g_{2}^{h_{1}}=g_{2} k^{-1}, h_{2}^{g_{1}}=h_{2} k, h_{2}^{g_{2}}=h_{2} k^{2}\right\rangle .
\end{aligned}
$$

If $p \neq 3$, then a short calculation confirms that $\left(g_{1}, h_{1}, g_{2}, h_{2}, k\right) \mapsto\left(g_{1} g_{2}^{2}, h_{1}, g_{2} g_{\tilde{N}}^{2}, h_{2}, k\right)$ extends to an isomorphism $\tau(G) \rightarrow \tilde{K}(G, 3)$. If $p=3$ and G has rank 2, then $\tau(G) \neq \tilde{K}(G, 3)$, see part b). If G is a cyclic 3 -group, then $\tau(G)=K(G, 3)=\tilde{K}(G, 3)$ follows from Corollary 4.5 and Remark 4.6; note that $M(G)=1$.
b) As G_{3} is not cyclic, hence $Z^{\wedge}\left(G_{3}\right) \neq G_{3}$, it follows that there exists $u \in G_{3} \backslash Z^{\wedge}\left(G_{3}\right)$ with $u^{3} \in Z^{\wedge}(G)$. Now Propositions 3.5 and 3.6 imply $\tau\left(G_{3}\right) \not \equiv \tilde{K}\left(G_{3}, 3\right)$, hence $\tau(G) \neq$ $\tilde{K}(G, 3)$.

6. Bogomolov multiplier

Let G be a group with AI-automorphism α, and let $\Phi_{\alpha}: \tau(G) \rightarrow K(G, 3)$ be the epimorphism defined above. Set

$$
M^{b}(G)=\left\langle\left[x, y^{*}\right]: x, y \in G,[x, y]=1\right\rangle_{\tau(G)} ;
$$

note that $M^{b}(G)$ is contained in the kernel of the commutator map $\kappa:\left[G, G^{*}\right]_{\tau(G)} \rightarrow G^{\prime}$. Define

$$
\tau^{b}(G)=\tau(G) / M^{b}(G)
$$

If x and y commute in G, then $\Phi_{\alpha}\left(\left[x, y^{*}\right]\right)=\left(x^{-1} x, y^{-1} y, \alpha([x, y])\right)=(1,1,1)$, therefore Φ_{α} induces an epimorphism $\Phi_{\alpha}^{b}: \tau^{b}(G) \rightarrow K(G, 3)$. Theorem 4.4 implies that the kernel of this map is $(\operatorname{ker} \kappa) / M^{\mathrm{b}}(G)$, which is isomorphic to the Bogomolov multiplier $B_{0}(G)$ of G, see [14].

Corollary 6.1. The existence of an AI-automorphism of G yields a central extension

$$
1 \longrightarrow B_{0}(G) \longrightarrow \tau^{b}(G) \longrightarrow K(G, 3) \longrightarrow 1 .
$$

Proposition 6.2. Let H be a Schur cover of a group G with $H / M=G$. If α is an AIautomorphism of H, then the map

$$
\iota: M^{2} \rightarrow \tau^{b}(H), \quad\left(m_{1}, m_{2}\right) \mapsto m_{1} m_{2}^{*} \prod_{i}\left[\alpha^{-1}\left(h_{i}\right),\left(\alpha^{-1}\left(k_{i}\right)\right)^{*}\right],
$$

where $m_{1} m_{2} \alpha\left(m_{1} m_{2}\right)=\prod_{i}\left[h_{i}, k_{i}\right]$, is a monomorphism. Moreover, $\tilde{K}(G, 3) \cong \tau^{b}(H) / \mathrm{im} \iota$.
Proof. Since M is abelian, $M^{2} \cong K(M, 3)$ via $\left(m_{1}, m_{2}\right) \mapsto\left(m_{1}, m_{2}, m_{1}^{-1} m_{2}^{-1}\right)$. Note that $K(M, 3)$ is naturally embedded in $K(H, 3)$. From [13, Proposition 6.12] we conclude that $B_{0}(H)$ is trivial, therefore $\Phi_{\alpha}^{b}: \tau^{b}(H) \rightarrow K(H, 3)$ is an isomorphism by Corollary 6.1. It is easy to see that ι is an embedding; now the result follows from taking quotients in the following commutative diagram:

7. Computations

If G is a finite polycyclic group, then also $\tilde{K}(G, 3)$ is polycyclic, see [10, Proposition 1.5]. In this situation, the algorithms described in [6] can be used to compute $\tau(G)$; these algorithms are implemented in the software package Polycyclic, distributed with the computer algebra system GAP [7]. Our explicit formulas in Section 3 can be used to compute a polycyclic presentation for $\tilde{K}(G, 3)$. We have done this to test whether $\tau(G)$ and $\tilde{K}(G, 3)$ are isomorphic for certain examples of groups (abelian, Frobenius, extra-special, ...). Even though there exist powerful algorithms for working with polycyclic groups, approaching this isomorphism problem with conventional methods poses a serious computational challenge. This is due to the fact that if G is an abelian group of order p^{n}, then $\tilde{K}(G, 3)$ and $\tau(G)$ are both large central extensions of $G \wedge G$ by G^{2}; they have class 2 , order $p^{2 n}|G \wedge G|$, and often seem indistinguishable. The latter is not a surprise, given the folklore conjecture that most p-groups have class 2: for example, note that among the 49499125314 groups of order at most 1024 (up to isomorphism), 99.976% of

TABLE 1. Statistics for solvable non-abelian groups of cubefree order at most 100

$\tau \cong \tilde{K}$	has AI	\# groups
yes	yes	96
yes	no	0
no	yes	2
no	no	25

these are 2-groups and 98.595\% are 2-groups of class 2, see [4, Section 4]. A computational isomorphism test for these groups reduces to orbit calculations of huge matrix groups on very large vector spaces; often these computations turn out to be infeasible. For example, the powerful implementations of the p-group algorithms for automorphism groups and isomorphisms (provided by the GAP package Anupq) struggle to compute automorphisms and isomorphisms for $\tau(G)$ and $\tilde{K}(G, 3)$ already for moderately sized p-groups such as $G=C_{7}^{3}$. Most of our computer experiments have therefore focused on groups of cubefree order, that is, groups whose order is not divisible by any prime power p^{3}.
Example 7.1. In Table 1 we report on some example computations: there are 237 cubefree groups of order at most 100. Of these, 113 groups are abelian, 123 groups are non-abelian solvable, and 1 group is simple. Every abelian G admits AI-automorphisms and, being cubefree, $\tau(G) \cong \tilde{K}(G, 3)$ if and only if G has a cyclic Sylow 3 -subgroup, see Proposition 5.9. Our computations show that, with two exceptions, $\tau(G) \cong \tilde{K}(G, 3)$ if and only if G has AI-automorphisms. The exceptions are $G=C_{3} \times \mathrm{Alt}_{4}$ and $H=C_{3}^{2} \times D_{10}$; we have $Z(\tilde{K}(G, 3))=C_{6} \times C_{3}$ and $Z(\tau(G))=C_{6}$, and non-isomorphism of $\tau(H)$ and $\tilde{K}(H, 3)$ follows from Proposition 5.9.

Example 7.2. Running over GAP's group data base, there are 6505 non-abelian solvable groups of order <256; of these groups, 6127 have AI-automorphisms. Note that every simple and every abelian group admits AI-automorphisms. This computation suggests that for many groups we can apply Corollary 4.5 to describe $\tau(G)$ as a central extension of $H_{2}(G, \mathbb{Z})$ by $K(G, 3)$. Table 1 and Proposition 4.7 suggest that the existence of AI-automorphisms for G is connected to the property $\tau(G) \cong \tilde{K}(G, 3)$. Proposition 5.2b) shows that an extra-special group G of exponent p^{2} (with p odd) has no AI-automorphisms; a calculation of several examples suggests that $\tau(G) \not \approx \tilde{K}(G, 3)$ as well.

Acknowledgements. This research was supported through the programme "Research in Pairs" by the Mathematisches Forschungsinstitut Oberwolfach in 2018; the authors thank the MFO for the great hospitality. Moravec acknowledges the financial support from the Slovenian Research Agency (research core funding No. P1-0222, and projects No. J1-8132, J1-7256 and N1-0061).

References

[1] N. Boston. Embedding 2-groups in groups generated by involutions. J. Algebra 300 (2006) 73-76.
[2] R. Brown, D. L. Johnson, and E. F. Robertson. Some computations of nonabelian tensor products of groups. J. Algebra 111 (1987) 177-202.
[3] R. Brown and J.-L. Loday. Van Kampen theorems for diagrams of spaces. Topology 26 (1987) 311-335.
[4] J. H. Conway, H. Dietrich, and E. A. O'Brien. Counting groups: gnus, moas and other exotica. Math. Intelligencer 30 (2008) 6-15
[5] G. Ellis. Tensor products and q-crossed modules. J. London Math. Soc. 51 (1995) 243-258.
[6] B. Eick and W. Nickel. Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group. J. Algebra 320 (2008) 927-944.
[7] The GAP Group. GAP - groups, algorithms, and programming. gap-system. org
[8] B. Huppert. Endliche Gruppen I. Springer, Berlin 1967.
[9] G. Karpilovsky. The Schur Multiplier. Clarendon Press, Oxford, 1987.
[10] C. Liedtke. Natural central extensions of groups. Groups Geom. Dyn. 2 (2008) 245-261.
[11] C. Liedtke. Fundamental groups of Galois closures of generic projections. Trans. Amer. Math. Soc. 362 (2010) 2167-2188.
[12] C. Miller. The second homology group of a group; relations among commutators. Proc. Amer. Math. Soc. 3 (1952) 588-595.
[13] G. Malle and B. H. Matzat. Inverse Galois theory. Springer Monographs in Mathematics, 1999.
[14] P. Moravec. Unramified Brauer groups of finite and infinite groups. Amer. J. Math. 134 (2012) 1679-1704.
[15] D. J. S. Robinson. A Course in the Theory of Groups. Springer, Berlin, 1982.
[16] N. R. Rocco. On a construction related to the nonabelian tensor square of a group. Bol. Soc. Brasil. Mat. (N.S.) 22 (1991) 63-79.

School of Mathematics, Monash University, Clayton VIC 3800, Australia
E-mail address: heiko.dietrich@monash.edu
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
E-mail address: primoz.moravec@fmf.uni-lj.si

