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On a group functor describing invariants of algebraic surfaces

Heiko Dietrich and Primož Moravec

ABSTRACT. Liedtke (2008) has introduced group functors K and K̃, which are used in the
context of describing certain invariants for complex algebraic surfaces. He proved that these
functors are connected to the theory of central extensions and Schur multipliers. In this work
we relate K and K̃ to a group functor τ arising in the construction of the non-abelian exterior
square of a group. In contrast to K̃, there exist efficient algorithms for constructing τ , especially
for polycyclic groups. Supported by computations with the computer algebra system GAP, we
investigate when K(G, 3) is a quotient of τ(G), and when τ(G) and K̃(G, 3) are isomorphic.

1. Introduction

In the study of complex algebraic surfaces it is of interest to find strong invariants which are
not too complicated to be useful. Towards this aim, Liedtke [10] introduced group theoretical
functors K and K̃ that are related to the fundamental groups of the associated Galois closures.
More precisely, let X be a smooth projective surface, fix a generic projection f : X → P2 of
degree n, and let fgal : Xgal → P2 be its Galois closure. Let A2 be the complement of a fixed
generic line in P2, and set Xaff = f−1(A2) and Xaff

gal = f−1
gal (A

2). It is proved in [10, Theorems
5.1 & 5.2] that π1(Xaff

gal) has images isomorphic to K̃(π1(Xaff), n) and to K(π1(Xaff), n). It is
the constructions of K(−, n) and K̃(−, n) that are central to Liedtke’s investigation in [10,11].
As pointed out in these papers, it is important to have a better understanding of K̃ in order to
describe the above mentioned fundamental groups.

The aim of this work is to extend the group theoretical analysis of the functors K̃ and K, and to
relate these to a functor τ associated with Brown and Loday’s construction of the non-abelian
tensor square of a group [3]. The latter has applications in topology and K-theory, and can
efficiently be computed for several classes of groups, such as polycyclic groups.

In Section 2, we set the notations and give the definitions of K(G,n), K̃(G,n), and τ(G). In
Section 3, we elaborate on these and provide explicit descriptions that enable efficient computa-
tions for polycyclic groups. In Section 4, we introduce the concept of an AI-automorphism and
show that the existence of such an automorphism for a group G yields a central extension

1 H2(G,Z) τ(G) K(G, 3) 1,

2010 Mathematics Subject Classification. 20J06, 14J29.
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2 On a group functor describing invariants of algebraic surfaces

similar to the one proved in [10, Theorem 2.2]:

1 H2(G,Z) K̃(G, 3) K(G, 3) 1.

It is therefore natural to ask when τ(G) and K̃(G, 3) are isomorphic. In Section 5, we explore
this question for several classes of groups. For example, we show that if G is a finite group and
its Schur cover H/M = G admits an AI-automorphism which acts as inversion on M , then
τ(G) ∼= K̃(G, 3).

In Section 6, we show that K(G, 3) and K̃(G, 3) are closely related to the unramified Brauer
group of the field of G-fixed points in a complex function field. This group is also known as the
Bogomolov multiplier B0(G), and has various applications in algebraic geometry, in particular,
to Noether’s Problem. In Section 7 we comment on our computational experiments with the
system GAP [7].

2. Definitions and preliminary results

Unless stated otherwise, all groups are finite and written multiplicatively. For a group G and
integer n > 0 we denote by Gn the direct product of n copies of G. We write Cn for the
cyclic group of size n. The commutator subgroup G′ is the subgroup of G generated by all
commutators [g, h] = g−1h−1gh = g−1hg with g, h ∈ G. A free presentation for G is a
free group F with normal subgroup N � F such that G ∼= F/N . A polycyclic presentation
pc〈g1, . . . , gn | r1, . . . , rm〉 for G is a group presentation with abstract generators g1, . . . , gn
and relations r1, . . . , rm that are power or conjugate relations, with the convention that trivial
conjugate relations are omitted; see [6, Section 2.1] for details. For example, pc〈g1, g2 | g2

1, g
2
1〉

describes the Klein 4-group 〈g1, g2 | g2
1, g

2
2, g

g1
2 = g2〉. A group extension of A by B is written

G = B.A, meaning that A�G with quotient G/A = B.

2.1. Liedtke’s constructions. For a group G and positive integer n, the group K(G,n)
is the kernel of the map Gn → G/G′ that sends an n-tuple (g1, . . . , gn) to the product of its
components modulo the commutator subgroups, that is,

K(G,n) = {(g1, . . . , gn) ∈ Gn : g1 · · · gn ∈ G′}.

To define the group K̃(G,n), choose a free presentation G = F/R for G, and set

K̃(G,n) = K(F, n)/K(N,n)F
n
,

where K(N,n)F
n

is the normal closure of K(N,n) in Fn; if n > 3, then this is simply the
normal closure of K(N,n) in K(F, n), see [10, p. 248]. It is shown in [10, Theorem 2.2] that
the definition of K̃(G,n) does not depend on the choice of presentation for G.

2.2. Non-abelian exterior square. Let G and G∗ be groups, with isomorphism G → G∗,
g 7→ g∗; we continue to use “∗” to denote elements and subsets of G∗. Let G ? G∗ be the free
product of G and G∗, and, following [16], define ν(G) as a quotient group of G ? G∗ via

ν(G) = (G ? G∗)/〈{[x, y∗]z[xz, (yz)∗]−1, [x, y∗](z
∗)[xz, (yz)∗]−1 : x, y, z ∈ G}〉G?G∗ .

To simplify notation, we identify elements in ν(G) with elements inG?G∗, keeping in mind that
further relations hold in ν(G). If we want to emphasise the parent group, then we sometimes
use subscripts at generated groups 〈−〉A or at commutators [−,−]A to indicate that the corre-
sponding structures are to be considered in the group A. For example, if g ∈ G and g∗ ∈ G∗,
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then [g, g∗]ν(G) denotes their commutator in ν(G), not inG∗G∗. With this convention, consider
∇(G) = 〈[x, x∗]ν(G) : x ∈ G〉 as a subgroup of ν(G), and define

τ(G) = ν(G)/∇(G).

Note that the homomorphism G ? G∗ → G2, g1h
∗
1g2h

∗
2 . . . gkh

∗
k 7→ (g1 · · · gk, h1 · · ·hk), maps

commutators [x, y∗] to 1, hence it induces short exact sequences

1 G⊗G ν(G) G×G 1

1 G ∧G τ(G) G×G 1

cν

cτ

where G⊗G and G ∧G are the non-abelian tensor square and non-abelian exterior square of
G, respectively, see [3]. We conclude with a lemma that will be useful later.

Lemma 2.1. Let H/M = G. The projection H → G induces epimorphisms β : ν(H)→ ν(G)
and γ : τ(H)→ τ(G) whose kernels are

〈M,M∗〉ν(H)[M,H∗]ν(H)[H,M
∗]ν(H) and 〈M,M∗〉τ(H)[M,H∗]τ(H)[H,M

∗]τ(H).

PROOF. For β this is [16, Proposition 2.5]. Since β maps ∇(H) to ∇(G), this induces γ.
Note that ker γ = {x∇H : x ∈ β−1(∇(G))}, and β−1(∇(G)) = kerβ∇(H), so the claim
follows. �

2.3. Schur multiplier. We recall some facts about the Schur multiplier of a group. A Schur
cover of G is a group H such that H/M ∼= G for some M 6 H ′ ∩ Z(H) isomorphic to the
Schur multiplier

M(G) = H2(G,C×),

see [9, p. 16]. Hopf’s formula [9, Theorem 2.4.6] says that if F/R = G is a free presentation
for the finite group G, then M(G) is isomorphic to the torsion subgroup of (F ′ ∩R)/[F,R]. In
particular, if G is finite, then [9, Theorem 2.7.3] shows that

M(G) ∼= H2(G,Z);

if G is abelian, then M(G) ∼= G ∧ G, see [9, Theorem 2.6.7]. By [9, Theorem 2.5.1], the
isomorphism type of H ′ depends only on G, and not on the chosen cover H . By [2, Corollary
2], if M(G) is finitely generated, then there is an isomorphism

G ∧G→ H ′, g ∧ h→ [g′, h′],

where g′, h′ ∈ H are lifts of g, h ∈ G; if G is abelian, then H ′ = M . If G = 〈g1, . . . , gn〉,
then H = 〈g′1, . . . , g′n〉: clearly, 〈g′1, . . . , g′n〉M/M = G, so every x ∈ H can be written as
x = wxmx where wx ∈ 〈g′1, . . . , g′n〉 and mx ∈ M . Each m ∈ M is a product of commutators
[x, y] in H; since M 6 Z(H), we have [x, y] = [wx, wy], so M 6 〈g′1, . . . , g′n〉 as well.

3. Explicit description

As a first step towards investigating the relation between τ(G) and K̃(G, 3) we provide a more
concrete description of these groups.
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3.1. An explicit description of τ . First we summarise some facts about τ(G) and ν(G).

Lemma 3.1. Every w ∈ ν(G) can be written uniquely as w = gh∗w′ with w′ ∈ [G,G∗]ν(G);
similarly in τ(G). Moreover, ker cν = [G,G∗]ν(G) and ker cτ = [G,G∗]τ(G).

PROOF. Let g = g1h
∗
1 · · · gnh∗n ∈ ν(G). The identities h∗g = gh∗[h∗, g] and

[h∗, g]k = k[h∗, g][h∗, g]−1[h∗, g]k = k[h∗, g][h∗, g]−1[(hk)∗, gk],

[h∗, g]k∗ = k∗[h∗, g][h∗, g]−1[h∗, g]k
∗

= k∗[h∗, g][h∗, g]−1[(hk)∗, gk].

can be used to collect g = g1h
∗
1 · · · gnh∗n = (g1 · · · gn)(h1 · · ·hn)∗w with w ∈ [G,G∗]. The

formula for the kernel of cν follows from [16, Proposition 2.6]. Clearly, cτ maps commutators
[x, y∗] to 1, so we have [G,G∗]τ(G) 6 ker cτ . Conversely, a representative w = g1h

∗
1 . . . gkh

∗
k ∈

G ? G∗ of an element in the kernel of cτ satisfies g1 · · · gk = 1 in G and h∗1 · · ·h∗k = 1 in G∗.
Writing w = g1 · · · gk(h1 · · ·hk)∗w′ = w′ for some w′ ∈ [G,G∗], we get ker cτ = [G,G∗]τ(G).
The uniqueness now follows from the exact sequences associated with cτ and cν . �

We identifyG⊗G = [G,G∗]ν(G) via g⊗h→ [g, h∗], and [G,G∗]τ = G∧G via g∧h→ [g, h∗].

Proposition 3.2. The group τ(G) is isomorphic to G2.(G ∧G) with multiplication

(a, b; c)(g, h; d) = (ag, bh; (bh ∧ gh)cghd),

and derived subgroup τ(G)′ ∼= (G′ ×G′).(G ∧G).

PROOF. By Lemma 3.1, the element gh∗w ∈ τ(G) corresponds to (g, h;w) ∈ G2.(G∧G), and
this correspondence defines the multiplication in G2.(G∧G). Note that c ∈ G∧G corresponds
to an element of the form

∏
i[xi, y

∗
i ], and so cg and c(g∗) both correspond to

∏
i[x

g
i , (y

g
i )∗]. The

last claim is [16, Theorem 3.1]. �

3.2. An explicit description of K̃. The following result is based on [10, Theorem 3.2].
We use the convention that the components of a tuple g are written g1, g2, . . ., that is, g ∈ Gn−1

is g = (g1, . . . , gn−1).

Proposition 3.3. Let G be a group with Schur cover H and H/M = G. The following hold for
n > 3.

a) We have K(G,n) ∼= Gn−1.G′, where the product of u = (g; c) and v = (h; d) in Gn−1.G′

is defined as
uv = (gh; cdα(u, v))

with α(u, v) = (h−1
n−1g

−1
n−1 · · ·h

−1
1 g−1

1 cd)−1 · (g−1
n−1 · · · g

−1
1 ch−1

n−1 · · ·h
−1
1 d) ∈ G′.

b) We have K̃(G,n) ∼= Gn−1.H ′, where the product of u = (g; c) and v = (h; d) in Gn−1.H ′

is defined as
uv = (gh; cdα(u′, v′));

here α is the map defining K(H,n) as in a) and u′, v′ ∈ Hn−1.H ′ map onto u, v ∈
Gn−1.H ′; in particular, K̃(G,n) ∼= G2.(G ∧G).

PROOF. a) Clearly, K(G,n) = {(g1, . . . , gn−1, g
−1
n−1 · · · g

−1
1 d) : g1, . . . , gn−1 ∈ G, d ∈ G′}.

The isomorphism from Gn−1.G′ to K(G,n) maps (g; c) ∈ Gn−1.G′ to (g, g−1
n−1 · · · g

−1
1 c) ∈

K(G,n); the definition of α guarantees that this is an isomorphism.
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b) It is shown in [10, Theorem 3.2] that K̃(G,n) ∼= K(H,n)/K(M,n), independent of the
chosen Schur cover. By a), we have K(H,n) ∼= Hn−1.H ′, and K(M,n) ∼= Mn−1 corresponds
to the central subgroup Mn−1.1 of Hn−1.H ′. Note that the multiplication is well-defined since
M 6 Z(H). Recall that we assume that all groups are finite, so G is finite and H ′ ∼= G ∧G by
Section 2.3. �

Corollary 3.4. If H has nilpotency class 2, then K(H,n) ∼= Hn−1.H ′ with multiplication

(g; c)(h, d) = (gh; cd
∏n−1

i=1

∏n−1

j=i
[gi, hj ]).

PROOF. ConsiderK(H,n) = Hn−1.H ′ with multiplication defined byα as in Proposition 3.3a),
that is, the product of u = (g; c) and v = (h; d) in Hn−1.H ′ is uv = (gh; cdα(u, v)) where

α(u, v) = (h−1
n−1g

−1
n−1 · · ·h

−1
1 g−1

1 cd)−1 · (g−1
n−1 · · · g

−1
1 ch−1

n−1 · · ·h
−1
1 d)

= d−1c−1g1h1 . . . gn−1hn−1 · g−1
n−1 · · · g

−1
1 ch−1

n−1 · · ·h
−1
1 d

=
∏n−1

i=1

∏n−1

j=i
[hj , g

−1
i ][c, hi] =

∏n−1

i=1

∏n−1

j=i
[hj , g

−1
i ];

for the last equations note that c ∈ H ′ 6 Z(H) and [hj , g
−1
i ] = [hj , g

−1
i ](g

hj
i ) = [gi, hj ]. �

3.3. Abelian groups. For a group G let Z∧(G) = {g ∈ G : g ∧ x = 1 for all x ∈ G} be
the epicentre of G. Note that Z∧(G) is equal to the projection of the center of a Schur cover of
G on G, see [5, p. 254], therefore the next result agrees with [10, Proposition 4.7]. It is shown
in [5, Proposition 16(vii)] that there exists H with H/Z(H) ∼= G if and only if Z∧(G) = 1.

Proposition 3.5. If G is an abelian group, then K̃(G,n) is isomorphic to the group Gn−1.(G∧
G) with multiplication

(g; c)(h; d) = (gh; cd
∏n−1

i=1
gi ∧ hi · · ·hn−1).

Under this identification,

Z(K̃(G,n)) = {(u, uy2, . . . , uyn−1; c) ∈ Gn−1.(G ∧G) : y2, . . . , yn−1, u
n ∈ Z∧(G)}

∼= Z∧(G)n−1 × (G ∧G)× {u ∈ G : un ∈ Z∧(G)}/Z∧(G).

PROOF. Let H be a Schur cover of G with H/M = G. It follows from Corollary 3.4 and
Proposition 3.3b) that K̃(G,n) ∼= Gn−1.H ′ with multiplication

(g; c)(h, d) = (gh; cd
∏n−1

i=1

∏n−1

j=i
[g′i, h

′
j ]),

where each g′i and k′j is a lift of gi, kj ∈ G to H; note that H ′ = M 6 Z(H) and H ′ = M ∼=
G∧G since G is abelian. Recall that G∧G = ker cτ , that is, G∧G = 〈g ∧ h : x, y ∈ G〉 with
the convention g ∧ h = [g, h∗]τ(G). In particular, if [g′, h′]H ∈ H where g′, h′ ∈ H are lifts of
g, h ∈ G, then H ′ ∼= G ∧G via [g′, h′] 7→ g ∧ h. The first claim follows.

If (a; c) ∈ Z(K̃(G,n)), then the following is equal for all (g; d) ∈ K̃(G, 3):∏n−1

i=1
ai ∧ gi · · · gn−1 =

∏n−1

i=1
gi ∧ ai · · · an−1.

Assuming g has only one nontrivial entry gi = h, this forces

a1 . . . ai−1a
2
i ai+1 . . . an−1 ∧ h = 1 for all h ∈ G and i ∈ {1, . . . , n− 1}.
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Thus, each zi = a1 . . . ai−1a
2
i ai+1 . . . an−1 lies in Z∧(G); now z−1

i−1zi = a−1
i−1ai shows that

each ai = a1yi for some yi ∈ Z∧(G). Now z1 ∈ Z∧(G) yields an1 ∈ Z∧(G). Conversely, it
is easy to check that every such element yields a central (a; c); note that an−i = aiz for some
z ∈ Z∧(G). �

Proposition 3.6. If G is an abelian group, then τ(G) is isomorphic to the group G2.(G ∧ G),
where the multiplication is given by (g1, g2; c)(h1, h2; d) = (g1h1, g2h2; cd(g2 ∧ h1)). Under
this identification, Z(τ(G)) = {(a, b; c) : a, b ∈ Z∧(G), c ∈ G ∧G} ∼= Z∧(G)2 × (G ∧G).

PROOF. The first claim follows from Proposition 3.2. As above, (a, b; c) ∈ Z(τ(G)) if and only
if b∧g = h∧a for all g, h ∈ G. In particular, it follows that ab ∈ Z∧(G), so b = a−1z for some
z ∈ Z∧(G). Now b ∧ g = h ∧ a implies a ∧ hg−1 = 1 for all g, h ∈ G, thus a ∈ Z∧(G), and
so also b ∈ Z∧(G). Conversely, every such (a, b; c) lies in the centre; the claim follows. �

4. Relating τ(G) with K̃(G, 3) and K(G, 3)

The aim of this section is to relate τ(G) with K̃(G, 3). As a first step, we first consider a
construction of an epimorphism τ(G)→ K(G, 3). Our construction requires an automorphism
of G which acts as inversion on the abelianisation of G.

4.1. AI-automorphisms. An automorphism α ∈ Aut(G) of a group G is an AI-auto-
morphism if it induces the inversion automorphism on the abelianisation G/G′; this is not
to be confused with an IA-automorphism introduced by Bachmuth (1966), which is an au-
tomorphism that induces the identity on the abelianisation. Clearly, the composition of two
AI-automorphisms is an IA-automorphism; for abelian groups the only AI-automorphism is
inversion.

Example 4.1. Let F be a free group on X . The map X → X given by x 7→ x−1 for all
x ∈ X induces an AI-automorphism ιF of F . If a group G is given by a free presentation
G = F/N and ιF (N) = N , then ιF induces an AI-automorphism of G. Note that if F/N is
abelian, then F ′ 6 N , hence ιF (N) = N and ιF induces inversion on G. If ιF (N) 6= N , then
define M = ιF (N)N � F . By definition, ιF (M) = M , and F/M is the largest quotient of
G on which ιF induces an AI-automorphism. In particular, every group G has such a quotient
since ιF induces inversion on F/F ′N ∼= G/G′. We give two examples. First, the dihedral
group of order 2n can be defined as D2n = F/R where F is free on {r,m} and N is the
normal closure of {rn,m2, rmr}. Clearly, ιF (rn) = (r−1)n and ιF (m2) = m−2 lie in N ;
moreover, (ιF (rmr)−1)m = (rrm

−1
)m = rmr ∈ N , hence ιF induces an AI-automorphism

on F/R. Second, consider G = F/N where F is free on {g, h} and N is the normal closure
of {g4, h5, hgh2}, that is, G is a semidirect product C4 n C5. A direct computation shows that
G does not admit an AI-automorphism, which implies that ιF (N) 6= N . If M is the normal
closure of {g4, h5, (h−1)(g−1)h−2}, then ιF (M) = M , and G/M ∼= C4 is the largest quotient
of G on which ιF induces an AI-automorphism.

Example 4.2. Let α ∈ Aut(G) be an automorphism which inverts every element of a gener-
ating set X of G. Such an automorphism is called GI-automorphism in [1], where GI can be
interpreted as “generator inversion”. (Another interpretation is that GI stands for “generating-
involutions” because 〈α〉 n G is generated by involutions {(α, x) : x ∈ X}.) Clearly, every
GI-automorphism is an AI-automorphism. To give an example, consider the alternating group
Altn of rank n > 3: Conjugation by the transposition (1, 2) defines an automorphism α of Altn
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that inverts every element of the generating set {(1, 2, 3), (1, 2, 4), . . . , (1, 2, n)}; thus α is a GI-
and AI-automorphism.

4.2. An epimorphism. Suppose G has an AI-automorphism α; we use α to construct
K(G, 3) as a quotient of τ(G). Note that the homomorphism

G ? G∗ → G3, g1h
∗
1 . . . gkh

∗
k 7→ (g1 . . . gk, h1 . . . hk, α(g1h1 . . . gkhk))

maps commutators [x, x∗] to 1; since the above map forgets “∗”, it also maps the relations of
τ(G) to 1. Thus there is an induced homomorphism

Φα : τ(G)→ G3.

Remark 4.3. Recall from above that G ∧G = [G,G∗]τ(G), and now let

κ : [G,G∗]τ(G) → G′,
∏

i
[xi, y

∗
i ] 7→

∏
i
[xi, yi].

It is shown in [12] that kerκ is central in [G,G∗]τ(G) and isomorphic to H2(G,Z).

Theorem 4.4. If α ∈ Aut(G) is an AI-automorphism, then

im Φα = K(G, 3) and ker Φα = kerκ = H2(G,Z).

PROOF. The inclusion im Φα 6 K(G, 3) follows immediately from the definition and the fact
that α is an AI-automorphism. If (g, h, k) ∈ K(G, 3), then k = h−1g−1c for some c ∈ G′.
Note that Φα maps gh∗ to (g, h, α(gh)) ∈ K(G, 3), and α(gh) = h−1g−1d for some d ∈ G′,
thus

Φα(gh∗)−1(g, h, k) = (1, 1, d−1c);

now d−1c =
∏
i[xi, yi] ∈ G′, and so (1, 1, d−1c) = Φα(

∏
i[α
−1(xi), (α

−1(yi))
∗]). This shows

that (g, h, k) ∈ im Φα, thus K(G, 3) 6 im Φα. Now we consider the kernel. Note that

ker Φα = {g1h
∗
1 . . . gkh

∗
k : g1 · · · gk = h1 · · ·hk = (g1h1) · · · (gkhk) = 1}.

If w = g1h
∗
1 . . . gkh

∗
k ∈ ker Φα, then Lemma 3.1 allows us to rewrite w as

w = g1 · · · gk(h1 · · ·hk)∗w′ = w′

for some w′ =
∏
i[xi, y

∗
i ] ∈ [G,G∗]; mapping this under κ yields κ(w) = κ(w′) =

∏
i[xi, yi].

If we use the above rewriting process of w in the opposite direction on κ(w), then we get w
without all “∗”, that is, κ(w) = g1h1 . . . gkhk; since this is 1 by assumption, w ∈ kerκ. Con-
versely, let w ∈ kerκ, that is, w =

∏
i[gi, h

∗
i ] ∈ [G,G∗]τ(G) with

∏
i[gi, hi] = 1. Writing w as

w =
∏
i g
−1
i (h−1

i )∗gih
∗
i and applying Φα shows that Φα(w) = (1, 1, α([g1, h1] . . . [gk, hk])) =

(1, 1, 1), hence kerκ 6 ker Φα. In conclusion, ker Φα = kerκ = H2(G,Z), as claimed. �

We have proved:

Corollary 4.5. The existence of an AI-automorphism of G yields a central extension

1 H2(G,Z) τ(G) K(G, 3) 1.

Remark 4.6. It is proved in [10, Theorem 2.2] that there is a central extension

1 H2(G,Z) K̃(G, 3) K(G, 3) 1.

It seems natural to ask when τ(G) ∼= K̃(G, 3). The next proposition shows that the lack of
AI-automorphisms may prevent this, see Example 7.1 below for more evidence supporting this:
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Proposition 4.7. If G = Cn n Cm with n > 3 is a Frobenius group with Frobenius kernel
Cm, then G does not have AI-automorphisms and τ(G) 6∼= K̃(G, 3). In particular, there is no
epimorphism τ(G)→ K(G, 3) as in Corollary 4.5.

PROOF. Let G = 〈g, u〉, where g and h generate Cn and Cm, respectively. By [8, Satz V.8.5],
every nontrivial element in Cn acts fixed-point freely on Cm, meaning that only the identity
is fixed. Now [8, Satz 8.3 & 8.10] imply that that m is a prime with n | m − 1, and G′ =
Cm. Assume, for a contradiction, that α is an AI-automorphism of G. Write α(u) = uy

and α(g) = g−1v with v ∈ Cm. Moreover, let ug = ux and u(g−1) = ux̄ where xx̄ ≡
1 mod m. Note that [g, u] = u1−x, and mapping this under α yields α(u1−x) = uy(1−x) and
α([g, u]) = [g−1v, uy] = [g−1, uy] = uy(1−x̄). This forces y(1 − x) ≡ y(1 − x̄) mod m and
so x ≡ x̄ mod m since m is prime. Now xx̄ ≡ 1 mod m implies that g2 has nontrivial fixed
points, which is not possible since g2 6= 1.

By [9, Theorem 2.11.3], together with [8, Satz V.8.9b], we have thatM(G) = 1. Thus, Remarks
4.6 and 4.3 show that K̃(G, 3) = K(G, 3) and G ∧ G ∼= G′ = 〈u〉. Note that τ(G) = G2.G′

with G′ = G ∧ G is generated by g1 = (g, 1; 1), h1 = (h, 1; 1), g2 = (1, g; 1), h2 = (1, h; 1),
k = (1, 1;h), which allows us to determine a polycyclic presentation

τ(G) = pc〈g1, h1, g2, h2, k | gn1 , gn2 , hm1 , hm2 , km, kg1 = kx, hg11 = hx1 , k
g2 = kx,

hg22 = hx2 , g
h1
2 = g2k〉;

recall that unspecified commutators between generators are trivial. Using the generating set
g1 = (g, 1, g−1), h1 = (h, 1, h−1), g1 = (1, g, g−1), h2 = (1, h, h−1), k = (1, 1, h) of
K(G, 3) shows that K(G, 3) is given by the following presentation

pc〈g1, h1, g2, h2, k | gn1 , gn2 , hm1 , hm2 , km, h
g1
1 = hx1k

x−x̄, hg12 = h2k
1−x̄, kg1 = kx̄,

gh12 = g2k
x̄−1, hg22 = hx2k

x−x̄, kg2 = kx̄〉.
In both cases, the derived subgroup is elementary abelian, generated by {h1, h2, k}. It follows
from the presentations that τ(G) and K(G, 3) act on their derived subgroups as ρT , ρK 6
GL3(m), where

ρT = 〈
(
x 0 0
0 1 0
0 0 x

)
,
(

1 0 0
0 x 0
0 0 x

)
〉 and ρK = 〈

(
x 0 x−x̄
0 1 1−x̄
0 0 x̄

)
,
(

1 0 1−x̄
0 x x−x̄
0 0 x̄

)
〉.

Since x2 6= 1 mod m, we have ρK 6 SL3(m) but ρT 66 SL3(m). Thus these groups are not
conjugate in GL3(m), which implies that τ(G) 6∼= K(G, 3). Indeed, one can also verify that 〈k〉
is characteristic in τ(G), but not in K(G, 3). �

5. Some isomorphisms

On the positive side, there is a strong evidence that τ(G) is closely related to K̃(G, 3), see also
Section 7. The next theorem is a useful tool for establishing various isomorphisms.

Theorem 5.1. Let H be a Schur cover of G with H/M = G. If H admits an AI-automorphism
whose restriction to M is inversion, then τ(G) ∼= K̃(G, 3).

PROOF. If α is the said AI-isomorphism, then Φα : τ(H) → K(H, 3) is an epimorphism
with kernel H2(H,Z), see Corollary 4.5. It is shown in [10, Theorem 3.2] that K̃(G,n)

is isomorphic to K(H,n)/K(M,n), so we obtain an epimorphism τ(H) → K̃(G,n). By
Lemma 2.1, the projection H → G induces an epimorphism γ : τ(H) → τ(G) with kernel
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(〈M,M∗〉[M,H∗][H,M∗])τ(H). We can construct an induced epimorphism τ(G)→ K̃(G, 3)
if Φα(ker γ) 6 K(M, 3). Ifm ∈M , then Φα(m) = (m, 1, α(m)), which lies inK(M, 3) since
α(m) = m−1 by assumption; similarly for m∗ ∈M∗. If [m,h∗] is a generator of [M,H∗], then
this is mapped under Φα to (1, 1, α([m,h])) = (1, 1, 1) since M 6 Z(H); similarly for ele-
ments in [H,M∗]. This implies the claim. �

Proposition 5.2. Let G be an extra-special p-group.

a) If |G| = p3, and p = 2 or exp(G) = p, then τ(G) ∼= K̃(G, 3).
b) If p > 2 and exp(G) = p2, then G does not have an AI-automorphism.

PROOF. a) For p = 2 the claim can be checked by a direct computation, so let p > 2 and
suppose G is given by the polycyclic presentation G = pc〈g1, g2, g3 | gp1 , g

p
2 , g

p
3 , [g2, g1] = g3〉.

As the Schur multiplier is isomorphic to C2
p , it is straightforward to verify that the group

H = pc〈h1, h2, h3, h4, h5 | hp1, h
p
2, h

p
3, h

p
4, h

p
5, [h2, h1] = h3, [h3, h1] = h4, [h3, h2] = h5〉,

is a Schur cover of G with H/M = G for M = 〈h4, h5〉 ∼= C2
p . The elements h−1

1 h3,

h−1
2 h−1

3 , h3, h−1
4 , h−1

5 satisfy the relations of H , so von Dyck’s Theorem [15, 2.2.1] shows
that (h1, h2, h3, h4, h5) 7→ (h−1

1 h3, h
−1
2 h−1

3 , h3, h
−1
4 , h−1

5 ) extends to an automorphism α of
H . This is an AI-automorphism of H that inverts elements of M , so Theorem 5.1 proves the
claim.
b) First consider |G| = p3. We can define G = pc〈g1, g2, g3 | gp1 = g3, g

p
2 , g

p
3 , [g2, g1] = g−1

3 〉
with G′ = 〈g3〉. Suppose α ∈ Aut(G) is an AI-automorphism. Since G′ = Z(G), we have
α(g−1

3 ) = [α(g2), α(g1)] = [g−1
2 , g−1

1 ] = [g2, g1](−1)2 = g−1
3 , so α(g3) = g3. Now g3 =

α(g1)p = g−p1 = g−1
3 forces |g3| = 2, a contradiction. Thus, G has no AI-automorphism. If

|G| = p1+2n, then G is a central product of n extra-special groups of size p3, at least one of
exponent p3, see [8, Satz III.13.7]. The same argument shows that G has no AI-automorphisms.

�

Next, for n > 1 we consider the generalised quaternion group Qn and dihedral group Dn of
order 4n and 2n, respectively, which are defined as

Qn = 〈a, b | a2n, b2 = an, ab = a−1〉 and Dn = 〈a, b | an, b2, ab = a−1〉.

Proposition 5.3. We have τ(Qn) ∼= K̃(Qn, 3) and τ(Dn) ∼= K̃(Dn, 3).

PROOF. For Q1 = C4 and D1 = C2 × C2 the claim follows from a direct computation, so let
n > 2. It follows from [9, Example 2.4.8] that M(Qn) = 1, thus Qn is a Schur cover of Qn.
Note that {a−1, b−1} also satisfies the relations of Qn, so (a, b) 7→ (a−1, b−1) extends to a GI-
automorphism of Qn by von Dyck’s Theorem. Now τ(Qn) ∼= K̃(Qn, 3) by Theorem 5.1. Let
H be a Schur cover of Dn with H/M = Dn. By [9, Proposition 2.11.4], we have M = 1 and
H = Dn if n is odd, and M = C2 and H = Qn otherwise. As seen above and in Example 4.1,
the group H admits an AI-automorphism which necessarily stabilises M ; recall that n > 2, so
M ∼= Z(Qn) = 〈an〉 or M = 1. Again, the claim follows with Theorem 5.1. �

Proposition 5.4. Let G be a perfect group. If the exponent of M(G) divides 2, then τ(G) ∼=
K̃(G, 3).
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PROOF. LetH be a Schur cover ofGwithH/M ∼= G. Let π : H → G be the natural projection.
Note that H is perfect as well: this follows by observing that every π(h) with h ∈ H can
be written as a product of commutators in G, hence the same holds for h modulo M . Since
M 6 H ′, we have H = H ′. The identity automorphism of H is an AI-automorphism. Clearly
it acts as inversion on M since exp(M) divides 2. Now Theorem 5.1 proves the claim. �

Proposition 5.5. We have τ(Symn) ∼= K̃(Symn, 3) and τ(Altn) ∼= K̃(Altn, 3).

PROOF. By [9, Theorem 2.12.3], the Schur multiplier of Symn is cyclic of order 2 for n > 4,
and trivial otherwise, and a Schur cover for Symn is

Hn = 〈g1, g2, . . . , gn−1, z | g2
i = (gjgj+1)3 = (gkgl)

2 = z, z2 = [gi, z] = 1

for 1 6 i 6 n− 1, 1 6 j 6 n− 2, k 6 l − 2〉.
Note that the generators g−1

1 , . . . , g−1
n−1, z

−1 also satisfy the relations of Hn, so von Dyck’s
Theorem shows that there is a corresponding GI-automorphism of Hn. Note that M = 〈z〉
satisfies M ∼= M(Symn) ∼= C2 and Hn/M ∼= Symn. The given GI-automorphism acts as
inversion on M , so the claim for Symn follows by Theorem 5.1. The proof for the alternating
groups follows along the same lines using [9, Theorem 2.12.5]. �

The next result shows that Theorem 5.1 cannot be applied to abelian groupsG in general. Recall
that if M is a trivial G-module of exponent 2, then a 2-coboundary in B2(G,M) is a function
δ : G×G→M such that δ(g, h) = κ(gh)κ(g)κ(h) for all g, h ∈ G and some map κ : G→M .

Proposition 5.6. Let G be an abelian group and let H be a Schur cover of G with H/M = G.
Then H admits an AI-automorphism whose restriction to M is inversion if and only if G is
2-group, M has exponent 2, and the map G × G → G ∧ G defined by (g, h) 7→ g ∧ h is a
2-coboundary; in particular, any such AI-automorphism has order 2.

PROOF. Since G is abelian, H ′ 6M . Now M 6 H ′ ∩ Z(H) implies M = H ′ 6 Z(H). First
suppose that H admits an AI-automorphism, say α, whose restriction to M is inversion. Then
every h ∈ H can be written as α(h) = h−1ch for some ch ∈ H ′. Now

h−1g−1cgh = α(gh) = α(g)α(h) = g−1cgh
−1ch = h−1g−1[g−1, h−1]cgch

implies that cgh = [g−1, h−1]cgch for all g, h ∈ H . Note that [g, h] = [g−1, h−1]gh =
[g−1, h−1] since H ′ is central, so cgh = cgch[g, h]. Moreover, 1 = c1 = cgg−1 yields cg−1 =

(cg)
−1. This can be used to show that α2n+1(g) = g−1c2n+1

g and α2n(g) = gc−2n
g for all

g ∈ H and n > 1. If G has odd order, then m = |M | is odd, so αm(g) = g−1 describes an
isomorphism of H . This is not possible as H is non-abelian. By [9, Lemma 2.9.1], the same
contradiction can be reached if G has even order but a nontrivial Sylow subgroup of odd order.
So G is an abelian 2-group, and since

[h, g] = α([g, h]) = [α(g), α(h)] = [g−1cg, h
−1ch] = [g−1, h−1] = [g, h]h

−1g−1
= [g, h]

for all g, h ∈ H , we must have that H ′ = M has exponent 2. Thus, α is the identity on M ,
and so α2(h) = α(h−1ch) = hch−1ch = h for all h ∈ H proves that α has order 2. Note also
that [g, h] = cghcgch. The map γ : H ×H → H ′, (g, h) 7→ [g, h], is a 2-cocycle in Z2(H,H ′)
since for all g, h, k ∈ H we have γ(g, hk)γ(h, k) = γ(gh, k)γ(g, h). Since H ′ is central, γ
induces a 2-cocycle δ ∈ Z2(G,H ′). Since G is abelian, an isomorphism G ∧ G → H ′ is
given by g ∧ h → [g′, h′], where g′, h′ ∈ H are lifts of g, h ∈ G. This shows that the induced
2-cocycle δ lies in Z2(G,G∧G) and δ(g, h) = g ∧h for all g, h ∈ G. Recall that if h ∈ H and
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z ∈ H ′, then α(h) = h−1ch and (hz)−1chz = α(hz) = α(h)α(z) = h−1chz, which shows
that chz = ch. Thus for g ∈ G we can define κ(g) = cg′ where g′ ∈ H is a lift of g. This shows
that δ(g, h) = κ(gh)κ(g)κ(h), that is, δ is a 2-coboundary in B2(G,G ∧G).

Conversely, let G be an abelian 2-subgroup with G∧G of exponent 2 such that δ(g, h) = g ∧ h
defines a 2-coboundary in B2(G,G ∧ G), say g ∧ h = δ(g, h) = κ(gh)κ(g)κ(h) for some
map κ : G → G ∧ G. Let H be a Schur cover of G with natural projection π : H → G, such
that M = kerπ satisfies M = H ′ 6 Z(H). Note that under the isomorphism H ′ → G ∧ G,
[h, k] 7→ π(h)∧π(k) we have [h, k] = δ(π(h), π(k)) = κ(π(hk))κ(π(h))κ(π(k)). Now define
α ∈ Aut(H) by α(h) = h−1ch where ch = κ(π(h)); note that

α(hk) = k−1h−1chk = h−1k−1[k−1, h−1]chk = h−1k−1[k, h]chk = h−1chk
−1ck = α(h)α(k),

so α is indeed a homomorphism. Clearly, α acts as inversion (that is, as identity) on M , and as
inversion on H/M . This proves the claim. �

Proposition 5.7. If G is an abelian 2-group such that G ∧ G has exponent 2, then τ(G) ∼=
K̃(G, 3).

PROOF. We use Propositions 3.5 and 3.6 and identify

K̃(G, 3) = G2.(G ∧G) with (a, b; c)(d, e; f) = (ad, be; cf(a ∧ de)(b ∧ e)),
τ(G) = G2.(G ∧G) with (a, b; c)(d, e; f) = (ad, be; cf(b ∧ d)).

Let G = C2k1 × . . .×C2kn and write a ∈ G as a = xa11 . . . xann , where each xi generates C2ki ;
then

N = {(x1, 1, 1), . . . , (xn, 1, 1), (1, x1, 1), . . . , (1, xn, 1), (1, 1, xi ∧ xj) : i < j}

generates K̃(G, 3) and τ(G). We now show that mapping the generating set N of τ(G) to the
generating setN of K̃(G, 3) defines an isomorphism ψ : τ(G)→ K̃(G, 3). Note that the image
of (a, b; c) ∈ τ(G) under ψ can be computed by decomposing (a, b; c) in τ(G) as

(a, b; c) =
∏

i
(xi, 1, 1)ai ·

∏
j
(1, xj , 1)bj · (1, 1; c),

and then considering this product in K̃(G, 3). In K̃(G, 3) we have (xi, 1, 1)ai = (xaii , 1, 1), and∏
i
(xi, 1, 1)ai = (a, 1;

∏
i<j

(xi ∧ xj)aiaj ) and (a ∧ b) =
∏

i<j
(xi ∧ xj)(aibj−ajbi),

which shows that

ψ : (a, b; c) 7→ (a, b; c
∏

i<j
(xi ∧ xj)(aiaj+bibj+aibj−ajbi)).

Now consider a product (a, b; c)(d, e; f) = (ad, be; cf(b ∧ d)) in τ(G). We have

ψ((a, b; c))ψ((d, e; f)) = (ad, be; cf
∏

i<j
(xi ∧ xj)pi,j )

where

pi,j = aiaj + bibj + aibj − ajbi + didj + eiej

+diej − djei + biej − bjei + ai(dj + ej)− aj(di + ei),

and
ψ((ad, be; cf(b ∧ d))) = (ad, be; cf

∏
i<j

(xi ∧ xj)ri,j )
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where

ri,j = (ai + di)(aj + dj) + (bi + ei)(bj + ej) + (ai + di)(bj + ej)

−(aj + dj)(bi + ei) + bidj − bjdi.

It follows that pi,j − ri,j = −2(bjei + ajdi) ≡ 0 mod 2, that is, if G ∧G has exponent 2, then
ψ is an isomorphism, as claimed. �

Example 5.8. The assumptions on G in Proposition 5.7 hold if G ∼= C2m × Cn2 for some
n,m. On the other hand, for A = C3

4 , we determine τ(A) 6∼= K̃(A, 3) by computing that
Aut(τ(A)) and Aut(K̃(G, 3)) have orders 94575592174780416 and 283726776524341248,
respectively. Since A ∧A has exponent 4, this is also an example showing that the assumptions
in Proposition 5.7 cannot be relaxed. Similarly, it shows that the next result, Proposition 5.9,
cannot be extended to higher rank. A comparison of the automorphism group orders also shows
that τ(B) 6∼= K̃(B, 3) for B = C3

5 .

Proposition 5.9. Let G be an abelian group.

a) Suppose all Sylow p-subgroups of G have rank at most 2. Then τ(G) ∼= K̃(G, 3) if and
only if the Sylow 3-subgroup of G is cyclic.

b) If the Sylow 3-subgroup of G has rank at least 2, then τ(G) 6∼= K̃(G, 3).

PROOF. Let G =
∏
pGp be the decomposition of G into its Sylow subgroups. By [10, Propo-

sition 4.1] and [16, Corollary 3.7], we can also decompose τ(G) =
∏
p τ(Gp) and K̃(G,n) =∏

p K̃(Gp, n), and every isomorphism τ(G) → K̃(G,n) induces an isomorphism from τ(Gp)

to K̃(Gp, n). Thus it is sufficient to assume that G is an abelian p-group.

a) We have G ∼= Cm × Cn with m = pa and n = pb for a > b. Let g and h be generators of
Cm and Cn, respectively. Considering the description of τ(G) as in Proposition 3.6, set g1 =
(g, 1; 1), h1 = (h, 1; 1), g2 = (1, g; 1), h2 = (1, h; 1), and k = (1, 1; g ∧ h). These elements
form a polycyclic generating sequence of τ(G), with corresponding polycyclic presentation

τ(G) = pc〈g1, h1, g2, h2, k | gm1 , gm2 , hn1 , hn2 , kn, g
h1
2 = g2k

−1, hg12 = h2k〉.

Using the identification of K̃(G, 3) = G2.(G ∧G) as in Proposition 3.5, we obtain

K̃(G, 3) = pc〈g1, h1, g2, h2, k | gm1 , gm2 , hn1 , hn2 , kn, h
g1
1 = h1k

2,

gh12 = g2k
−1, hg12 = h2k, h

g2
2 = h2k

2〉.

If p 6= 3, then a short calculation confirms that (g1, h1, g2, h2, k) 7→ (g1g
2
2, h1, g2g

2
1, h2, k)

extends to an isomorphism τ(G)→ K̃(G, 3). If p = 3 andG has rank 2, then τ(G) 6∼= K̃(G, 3),
see part b). If G is a cyclic 3-group, then τ(G) = K(G, 3) = K̃(G, 3) follows from Corollary
4.5 and Remark 4.6; note that M(G) = 1.
b) As G3 is not cyclic, hence Z∧(G3) 6= G3, it follows that there exists u ∈ G3 \ Z∧(G3)

with u3 ∈ Z∧(G). Now Propositions 3.5 and 3.6 imply τ(G3) 6∼= K̃(G3, 3), hence τ(G) 6∼=
K̃(G, 3). �
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6. Bogomolov multiplier

Let G be a group with AI-automorphism α, and let Φα : τ(G)→ K(G, 3) be the epimorphism
defined above. Set

M [(G) = 〈[x, y∗] : x, y ∈ G, [x, y] = 1〉τ(G);

note thatM [(G) is contained in the kernel of the commutator map κ : [G,G∗]τ(G) → G′. Define

τ [(G) = τ(G)/M [(G).

If x and y commute in G, then Φα([x, y∗]) = (x−1x, y−1y, α([x, y])) = (1, 1, 1), therefore Φα

induces an epimorphism Φ[
α : τ [(G) → K(G, 3). Theorem 4.4 implies that the kernel of this

map is (kerκ)/M [(G), which is isomorphic to the Bogomolov multiplier B0(G) of G, see [14].

Corollary 6.1. The existence of an AI-automorphism of G yields a central extension

1 B0(G) τ [(G) K(G, 3) 1.

Proposition 6.2. Let H be a Schur cover of a group G with H/M = G. If α is an AI-
automorphism of H , then the map

ι : M2 → τ [(H), (m1,m2) 7→ m1m
∗
2

∏
i
[α−1(hi), (α

−1(ki))
∗],

where m1m2α(m1m2) =
∏
i[hi, ki], is a monomorphism. Moreover, K̃(G, 3) ∼= τ [(H)/ im ι.

PROOF. Since M is abelian, M2 ∼= K(M, 3) via (m1,m2) 7→ (m1,m2,m
−1
1 m−1

2 ). Note that
K(M, 3) is naturally embedded in K(H, 3). From [13, Proposition 6.12] we conclude that
B0(H) is trivial, therefore Φ[

α : τ [(H) → K(H, 3) is an isomorphism by Corollary 6.1. It is
easy to see that ι is an embedding; now the result follows from taking quotients in the following
commutative diagram:

M2 K(M, 3)

τ [(H) K(H, 3).

∼=

ι

Φ[α

�

7. Computations

If G is a finite polycyclic group, then also K̃(G, 3) is polycyclic, see [10, Proposition 1.5]. In
this situation, the algorithms described in [6] can be used to compute τ(G); these algorithms are
implemented in the software package Polycyclic, distributed with the computer algebra system
GAP [7]. Our explicit formulas in Section 3 can be used to compute a polycyclic presentation
for K̃(G, 3). We have done this to test whether τ(G) and K̃(G, 3) are isomorphic for certain
examples of groups (abelian, Frobenius, extra-special, . . . ). Even though there exist powerful
algorithms for working with polycyclic groups, approaching this isomorphism problem with
conventional methods poses a serious computational challenge. This is due to the fact that if
G is an abelian group of order pn, then K̃(G, 3) and τ(G) are both large central extensions of
G∧G by G2; they have class 2, order p2n|G∧G|, and often seem indistinguishable. The latter
is not a surprise, given the folklore conjecture that most p-groups have class 2: for example, note
that among the 49499125314 groups of order at most 1024 (up to isomorphism), 99.976% of
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TABLE 1. Statistics for solvable non-abelian groups of cubefree order at most 100

τ ∼= K̃ has AI # groups
yes yes 96
yes no 0
no yes 2
no no 25

these are 2-groups and 98.595% are 2-groups of class 2, see [4, Section 4]. A computational iso-
morphism test for these groups reduces to orbit calculations of huge matrix groups on very large
vector spaces; often these computations turn out to be infeasible. For example, the powerful im-
plementations of the p-group algorithms for automorphism groups and isomorphisms (provided
by the GAP package Anupq) struggle to compute automorphisms and isomorphisms for τ(G)

and K̃(G, 3) already for moderately sized p-groups such as G = C3
7 . Most of our computer

experiments have therefore focused on groups of cubefree order, that is, groups whose order is
not divisible by any prime power p3.

Example 7.1. In Table 1 we report on some example computations: there are 237 cubefree
groups of order at most 100. Of these, 113 groups are abelian, 123 groups are non-abelian
solvable, and 1 group is simple. Every abelian G admits AI-automorphisms and, being cube-
free, τ(G) ∼= K̃(G, 3) if and only if G has a cyclic Sylow 3-subgroup, see Proposition 5.9.
Our computations show that, with two exceptions, τ(G) ∼= K̃(G, 3) if and only if G has
AI-automorphisms. The exceptions are G = C3 × Alt4 and H = C2

3 × D10; we have
Z(K̃(G, 3)) = C6 × C3 and Z(τ(G)) = C6, and non-isomorphism of τ(H) and K̃(H, 3)
follows from Proposition 5.9.

Example 7.2. Running over GAP’s group data base, there are 6505 non-abelian solvable groups
of order < 256; of these groups, 6127 have AI-automorphisms. Note that every simple and
every abelian group admits AI-automorphisms. This computation suggests that for many groups
we can apply Corollary 4.5 to describe τ(G) as a central extension of H2(G,Z) by K(G, 3).
Table 1 and Proposition 4.7 suggest that the existence of AI-automorphisms for G is connected
to the property τ(G) ∼= K̃(G, 3). Proposition 5.2b) shows that an extra-special group G of
exponent p2 (with p odd) has no AI-automorphisms; a calculation of several examples suggests
that τ(G) 6∼= K̃(G, 3) as well.
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