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What part does algebra play in representing the real
world abstractly? How can algebra be used to solve
hard mathematical problems with the aid of modern
computing technology? We provide answers to these
questions that rely on the theory of matrix groups
and new methods for handling matrix groups in a
computer.

1 Introduct ion

Nowadays, computers enable us not just to calculate, but also to use mathematics
in completely new ways. A real-life problem can sometimes be framed in
mathematical terms, providing a mathematical model of the problem. After
converting the model into a form that is understandable by a computer, we
then program the computer with an algorithm (a sequence of instructions) to
find a solution. 1

In this snapshot we consider mathematical problems that can be solved by
algebra with matrices, and focus on the hurdles that may be encountered in
using a computer to obtain solutions.

1 The word ‘algorithm’ derives from the name of the Persian mathematician Muham-
mad al-Khwarizmi (c. 780–c. 850); see http://www-history.mcs.st-and.ac.uk/Biographies/
Al-Khwarizmi.html.
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2 Basic ideas about matr ix groups

2.1 Matr ices

For complicated tasks, ordinary numbers (such as the real or complex numbers)
are not enough. To deal with these tasks, we need generalizations of the notion
of number. One such generalization is tables of numbers, called matrices. If the
table has m rows and n columns, where each entry in the table belongs to a set
F, then we say that it is an m× n matrix over F. If m = 1 or n = 1 then the
matrix is a vector.

Matrices are exceptionally useful tools. As just one application, we note that
the need to solve a system of linear equations arises frequently in real-world
problems (for example, from engineering), and the system is naturally described
as a matrix of the constants in the equations.

Moreover, n×n matrices have a geometrical interpretation as models of linear
transformations of n-dimensional Euclidean space. Examples are the Cartesian
(or x-y) plane when n = 2, or our surrounding three-dimensional space when
n = 3. A transformation A of the space is linear if it respects addition and scalar
multiplication of vectors within the space, that is, A(x+ y) = A(x) +A(y) and
A(sx) = sA(x) for all vectors x, y and any number (scalar) s; see Section 2.2
for the definition of matrix operations. If matrices are selected according to
specific restrictions, then we can model linear transformations that preserve a
metric (a measurement such as length, angle, volume; see Example 1 below), or
preserve symmetry of a geometrical object (such as one of the Platonic solids:
tetrahedron, cube, octahedron, dodecahedron, icosahedron).

2.2 Operat ions on matr ices

Algebraic operations combine matrices over F to produce more matrices over
F. We can add, subtract, multiply, and divide numbers. Can we do the same
with matrices? The answer is a qualified “yes”. Addition and subtraction of
n× n matrices are done entry-by-entry, extending these operations on numbers.
The multiplicative product of n× n matrices A and B is calculated differently.
It may be defined as the result of applying the transformations represented by
A and B one after the other. We write the product as AB. (More generally,
we can multiply an m× n matrix by an n× r matrix. That is, AB is defined
whenever the number of columns in A is equal to the number of rows in B.)

Some familiar properties of operations on numbers no longer hold for matrix
multiplication. For example, multiplication of numbers is commutative, meaning
that ab = ba for all numbers a and b, whereas AB = BA may not be true
for arbitrary matrices A and B. Furthermore, any non-zero number r has a
reciprocal r−1 = 1

r that is used to undo multiplication by r (to divide by r).
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However, a matrix A need not have a multiplicative inverse A−1: we may not
be able to do division when working with arbitrary matrices.

There is a special number in F associated to each n× n matrix over F, its
determinant, that tells us whether it has an inverse. To be more precise, the
matrix is invertible if and only if its determinant is invertible in F. The set
of all invertible n × n matrices over F is denoted GL(n,F). Therefore, each
A in GL(n,F) has an inverse B in GL(n,F) such that AB = BA = 1n. Here
1n is the n× n identity matrix, with 1s all down its main diagonal and zeros
everywhere else. Note that 1n is an element of GL(n,F).

Example 1. An n× n matrix that preserves the length of every Euclidean
vector of length n is called orthogonal. It can be shown that an orthogonal
matrixM has an inverse: the transpose M> ofM , whose entry in row r, column
c is equal to the entry in row c, column r of M .

In dimension n = 2, the matrix

M =
(

cos θ − sin θ
sin θ cos θ

)
represents a rotation of the plane about the origin through an angle of θ radians.
We have MM> = M>M = 12 because cos2 θ + sin2 θ = 1. The length l(v) ≥ 0
of any vector v = (x, y)> is defined by l(v)2 = v>v = x2 + y2. We rotate v
through θ radians by matrix multiplication withM , to get w = Mv. Then w and
v have the same length: l(w)2 = w>w = v>M>Mv = v>12v = v>v = l(v)2.

2.3 Matr ix entr ies

We say a little more about the set F from which matrix entries are drawn. This
symbol F will denote various generalizations of the natural numbers 0, 1, 2, . . .
Instances of F include:

• the integers Z = {. . . ,−2,−1, 0, 1, 2, . . .};
• the rationals Q (all fractions a

b for integers a and b, b 6= 0);
• the real numbers R (all points on a straight line);
• the set Fp of residues in Z modulo a fixed prime p (recall that a prime p

is an integer greater than 1 whose only positive integer divisors are 1 and
p). Each integer m can be written uniquely as m = pk + r where r, k are
integers and 0 ≤ r < p. The number r is the residue of m modulo p. Clearly
Fp is a finite set, of size p.

A common feature of each set Z, Q, R, Fp is that adding, subtracting, and
multiplying its elements produces an element from the same set (for Fp, this is
the foundation of modular arithmetic). Apart from Z, we can also divide by
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non-zero elements within each set. We call Q, R, and Fp fields, while Z is a ring.
Any subset G of GL(n,F) containing 1n that is ‘closed under multiplication
and inverses’ (contains AB and A−1, for all A, B in G) is a matrix group over
F. We observe that GL(n,F) itself is a matrix group, the general linear group
of degree n over F. Matrix groups, fields, and rings are algebraic structures:
sets equipped with algebraic operations (the set is closed under each operation)
that satisfy given conditions. Modern algebra studies these structures in depth.

3 The advantages of matr ix groups

Since matrix groups model transformations, they appear in science (physics,
chemistry, biology), and throughout mathematics: in number theory, geometry,
topology, differential equations; and, of course, in algebra, where matrix groups
are used to represent other algebraic structures.

Representation of a mathematical object by matrices makes it more amenable
to study. The theory of matrix groups began in the late 19th century; we see
origins in work [6] by the French mathematician C. Jordan (1838–1922). 2 It is
now a highly developed part of algebra.

Matrix groups also turn out to be a convenient format for handling by
computer. Here we remark that a large (even infinite!) algebraic structure can
correspond to input of much smaller size – as the following example shows.

Example 2. The set of all n× n matrices over F with determinant 1 is a
matrix group, denoted SL(n,F). The abbreviation SL stands for ‘special linear’.
Note that SL(n,F) is finite if and only if F is finite.

Take n = 5 and F = Z. Although it is infinite, we can input SL(5,Z) to a
computer as 50 bits. Explicitly, we only need to input the two matrices

a =


1 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

, b =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0


in SL(5,Z), since a and b generate all of SL(5,Z) using the algebraic operations
on matrices: see [7, Theorem VII.3] (here we have switched to lower case letters
for group elements, as is customary). If we suppose that a and b are defined over
F = F2, then again we get all of SL(5,F) by taking products of these matrices
and their inverses. The size of SL(5,F2) is 9999360, about ten million.

There is a tremendous amount of research aimed at the design of practical
algorithms for computing with matrix groups over finite fields. Our concern

2 http://www-groups.dcs.st-and.ac.uk/history/Biographies/Jordan.html
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is matrix groups over an infinite field F (say, Q or R). These are the matrix
groups that are most prevalent, with applications in crystallography, error-
correcting codes, theoretical physics, and elsewhere. They also pose the strongest
computational challenges, which we examine below.

4 Comput ing with matr ix groups

The increasing power and capabilities of computers have initiated a fresh burst
of activity in the classical subject of matrix groups. This development falls
under the heading of computational group theory (CGT for short), in turn a
part of computational algebra. These are exciting and growing areas situated at
the interface between mathematics and computer science.

Several requirements must be fulfilled in order to compute with a group.
First, we have to represent the group in a computer: we need to input the
group. Second, we must supply the computer with an algorithm to solve each
assigned problem. Third, we should be able to gauge how good an algorithm is
– how fast a computer will complete all steps in the algorithm, depending on
the input (say, depending on how ‘big’ the input is), and how much memory we
expect a computation to consume. Finally, we require a suitable environment
in which to write our algorithms. This will be provided by a computer algebra
system, containing all the ingredients needed for our computations.

In particular, to compute with matrix groups, the system will allow us to
define objects and calculate in GL(n,F) for various F, choosing from a menu
of functions (that may have been contributed by many authors). The system
also incorporates a programming language for implementation. Algorithms are
written as programs in the system’s language, understandable by any computer
on which the system has been installed. Currently the two main systems for
CGT are GAP [4] and Magma [1].

5 How to input a matr ix group

If the matrix group G is infinite, how can it be input? Obviously we cannot
feed all elements of G into the computer, one at a time. However, it might be
possible to designate G by a finite set S = {g1, . . . , gr} of its elements. What
this means is that every element of G is expressible as a ‘word in S’, that is, a
product gm1

i1
· · · gmk

ik
where m1, . . . ,mk are integers. Such groups G are finitely

generated, and can be input using the set S of generators gi. This ploy may not
work for an arbitrary group G in GL(n,F): not all matrix groups are finitely
generated.
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Example 3. It is known that GL(n,Q) is not finitely generated. On
the other hand, GL(n,Z) and SL(n,Z) are finitely generated, as illustrated in
Example 2.

Even if a matrix group is not finitely generated, it could still be defined by a
finite set, say, a finite set of polynomials in the entries of the group elements. In
this latter case we would be dealing with (linear) algebraic groups. For example,
GL(n,Q) and SL(n,Q) are algebraic groups.

There are other issues related to inputting matrix groups. How do we
specify the field F of the matrix entries? This is not difficult to manage if
F = Q, but what about F = R? Computing with real numbers often involves
floating point representation, which approximates the numbers by truncated
fractions. In contrast, group-theoretical computer algebra systems use symbolic
representations to get ‘exact’ solutions. Here finiteness of our input is crucial:
a finite generating set of G defines G over a ring inside F that is itself finitely
generated (as a ring). The next example demonstrates this fact.

Example 4. Each matrix in the group G ⊆ GL(2,Q) generated by(
1 1

2
0 1

)
,

(
1 0
1
3 1

)
has all entries of the form m/6k. The collection of such rational numbers
is a ring, denoted 1

6Z, and we have G ⊆ GL(2, 1
6Z). The ring 1

6Z is finitely
generated: its elements are obtained from repeated addition and multiplication
with the single element 1

6 .

Example 4 suggests how to specify the ring of entries for our input matrix
group G: replace the original field F by a smaller ring, determined by the
entries of all matrices in the finite generating set of G. This approach has added
bonuses, which we will say more about in Section 7.

6 Algor i thms

Having decided how to input a matrix group, we proceed with the design of
algorithms. Users will typically want to extract concrete information from an
input matrix group. For example, they might want to identify it as being of
a certain type, describe its internal composition, and so on. We would like to
have a library of algorithms for matrix groups over infinite fields that matches
the breadth and sophistication of the libraries for other classes of groups that
are available in GAP and Magma.
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Nevertheless, we keep in mind that not every computational problem has
a solution. This does not reflect our inability to design an algorithm to solve
the problem, but rather that no algorithm exists. Such problems are said to be
undecidable.

In the next section we discuss two fundamental group-theoretical properties.
One of these will supply us with a technique for computing, and the other will
guide our overall strategy.

7 Matr ix groups in more detai l

Modular arithmetic cropped up in Section 2, when we talked about finite
fields. For a fixed integer m ≥ 2, this arithmetic partitions the infinite ring Z
into m congruence classes modulo m (two integers a and b belong to the same
congruence class if their difference is exactly divisible bym). We extend modular
arithmetic to matrix groups. Suppose that G ⊆ GL(n,Q) has generating set
S = {g1, . . . , gr} ⊆ GL(n, 1

tZ), and select a prime p that does not divide t.
Replace each entry in each gi by its residue modulo p (do the reduction on
numerators and denominators). The matrix group with generating set consisting
of all reduced gis is defined over Fp. Denote this (finite) matrix group ϕp(G).
Remarkably, for every element g of the (perhaps infinite) matrix group G, there
will be a prime p such that ϕp(g) 6= 1n in GL(n,Fp). Moreover, this is true for
all but a finite set of primes p. We say that G is finitely approximated by the
ϕp(G).

Finite approximation was pioneered by the Russian mathematician A. Malcev
(1909–1967). 3 This method captures enough of G for our purposes. It transfers
computation over an infinite ring largely to the context of matrix groups over
the finite field Fp, for which established and efficient algorithms are available.
We also avoid the unfortunate possibility that calculations cause the entries in
matrices over Q to become enormous; in GL(n,Fp) the size of matrix entries is
limited by the size p of Fp.

As a consequence, our computation splits into two parts: computing with
the matrix group ϕp(G) over Fp, and computing with the elements of G that
map to 1n under reduction modulo p. The subset of these elements in G is the
kernel, denoted Gp.

Example 5. Let G be as in Example 4. If p is a prime greater than 3 then
ϕp(G) = SL(2,Fp), and Gp is all matrices in G of the form 12 + px where x is
a 2× 2 matrix over Q.

3 http://www-groups.dcs.st-and.ac.uk/history/Biographies/Malcev.html
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While matrix multiplication is not commutative, occasionally the order of
multiplication in a matrix group is irrelevant. In that case, the group is called
abelian (after the Norwegian mathematician N. H. Abel (1802–1829) 4 ). A
profound theorem due to the Belgian mathematician J. Tits (b. 1930) 5 states
that each finitely generated matrix group over a field F is one of two very
different kinds:

1. it can be built up from finite and abelian components;
2. it contains a free group (in which nontrivial relations – for example, xr = 1

or xy = yx, signifying that an element has finite order, or that elements
commute – do not hold).

This prompts a basic question, that drives our computational strategy: to
which class (1. or 2.) does a given matrix group belong? In other words, we
must ‘decide the Tits alternative’.

8 How things work

On the way to the Tits alternative we meet a simpler preliminary question. If
F is infinite then so too is GL(n,F), and vice versa. However, a matrix group
G ⊆ GL(n,F) for infinite F could well be finite.

Example 6. A matrix in GL(n,Z) is monomial if each row and column
contains exactly one non-zero entry, and that entry is 1 or −1. The set of all
monomial matrices in GL(n,Z) is a finite group, of size 2n · n!.

So, we should be able to solve the ‘finiteness problem’: given a finitely
generated matrix group G ⊆ GL(n,F), F infinite, determine whether G is finite.
We might attempt to do this by listing the elements of G. But if G really is
infinite then this job will never terminate. If G is finite, but has a huge number
of elements, then the job will take too long. More astute methods, harnessing
the power of a computer, are needed.

To explain the method used in one of our algorithms to test whether G is
finite (and compute the size of G if it happens to be finite), we cite a result
proved more than a century ago by the German mathematician H. Minkowski
(1864–1909). 6

4 http://www-history.mcs.st-and.ac.uk/Biographies/Abel.html
5 http://www-history.mcs.st-andrews.ac.uk/Biographies/Tits.html
6 http://www-history.mcs.st-andrews.ac.uk/Biographies/Minkowski.html
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Theorem 1 (Minkowski). Suppose that G ⊆ GL(n,Z), and g is a non-
identity element of the kernel Gp where p is an odd prime. Then gm 6= 1n for
all positive integers m.

Minkowski’s theorem yields a finiteness test: G is infinite if and only if it
has an element g 6= 1n in Gp for p = 3 (say). Detecting such a g is the main
computational part of the test.

If G is finite then ϕp is a one-to-one map on G, and therefore G will have
the same number of elements as ϕp(G) ⊆ GL(n,Fp). We can find this number
not by a brute force count, but by using the established algorithms for matrix
groups over finite fields.

9 What else can we do?

The problems (and their solutions) discussed above constitute merely a sample
of the many things that we are now able to do computationally with matrix
groups. We round out our introduction to this area by touching on the orbit-
stabilizer problem. Algorithms to solve this problem are vital in CGT, as they
can be adapted to solve other problems in disparate settings.

The central concept is a matrix group G ⊆ GL(n,F) acting on a vector space
V of dimension n over the field F: according to a defined action, G maps vectors
in V to vectors in V . The most natural action is via matrix multiplication,
that is, g in G multiplies on the left or right of an n× 1 or 1× n vector in V
respectively. Now, take two vectors u and v in V . Is there an element g of G
that maps u to v, under the action being considered? If so, u and v are said to
be in the same orbit. Note that there could be more than one g mapping u to
v. When u = v, the set of such g is the stabilizer of u, and it is a matrix group.

Example 7. Let SL(2,Z) ⊆ GL(2,Q) act via ordinary matrix multiplication
on the 2-dimensional vector space over Q. The stabilizer of (1, 1)> in SL(2,Z)
consists of all matrices (

1 + a −a
a 1− a

)
where a ranges over Z, hence is infinite.

We mention a more interesting action of SL(2,Z). Let C be the field of
complex numbers: this is the field of all numbers x+ yi where x, y are in R,
and i2 = −1. We view C as a 2-dimensional vector space over R, and depict it
as the x-y plane. Going by the name of modular group, SL(2,Z) acts on the set
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H of complex numbers x+ yi with y > 0 (the upper half plane) as follows:(
a b
c d

)
(x+ yi) = a(x+ yi) + b

c(x+ yi) + d
.

The orbits of points on the unit semicircle centered at (0, 0) are formed from the
blue curves in Figure 1 (which was drawn by computer using an orbit-stabilizer
algorithm!).

The orbit of any point in H intersects the shaded region; so all of H is
obtained as images of this shaded region under the modular group action.

The stabilizer of any point is finite. In fact, unless the point is an image of i,
1
2 +

√
3

2 i, or − 1
2 +

√
3

2 i, its stabilizer is {12,−12}.

Figure 1: Orbits of the modular group acting on the upper half plane.

10 Afterword

Computer solutions of the problems highlighted in this snapshot have become
possible only within the past few years (see [2] for a comprehensive survey
written at the specialist level). The area will continue to expand, as other
important problems await solution. For more general accounts of CGT, and
computing with matrix groups over finite fields, see [3, 5, 8, 9]. For an exposition
of classical theory of matrix groups, see [7].
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