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EXPERIMENTING WITH SYMPLECTIC HYPERGEOMETRIC
MONODROMY GROUPS

A. S. DETINKO, D. L. FLANNERY, AND A. HULPKE

ABSTRACT. We present new computational results for symplectic monodromy
groups of hypergeometric differential equations. In particular, we compute the
arithmetic closure of each group, sometimes justifying arithmeticity. The results
are obtained by extending our previous algorithms for Zariski dense groups,
based on the strong approximation and congruence subgroup properties.

1. INTRODUCTION

This paper continues work in [6], which treated symplectic monodromy groups
of hypergeometric differential equations as a test case. Deciding arithmeticity of
such a group in its Zariski closure is a basic problem (see [16, Section 3.5] and
[2, p. 326]). More generally, one asks whether the group is arithmetic, or whether
it is thin, i.e., Zariski dense but not arithmetic in the ambient algebraic group.
This problem has received considerable attention. It was solved completely for
monodromy groups associated with Calabi-Yau manifolds [3, 17, 18], which are
4-dimensional symplectic linear groups over Q. Note also the results of [9], that
demonstrate thinness of certain orthogonal hypergeometric monodromy groups.

Our approach to all questions emphasizes computer-aided experimentation. We
compute the arithmetic closure cl(H) of a dense group H , the ‘closest’ arithmetic
overgroup of H . Then cl(H) is used to investigate H . Sometimes we are able
to prove that H is arithmetic. Moreover, we process large amounts of data by
computer, producing information about all symplectic hypergeometric monodromy
groups of a specified degree.

Our methods are based on the strong approximation and congruence subgroup
properties for the symplectic group. In Section 2, we extend algorithms developed
in [6] for dense subgroups of Sp(n,Z) to accept dense subgroups of Sp(n,Q).
Section 3 provides relevant background on hypergeometric groups, and details of

2010 Mathematics Subject Classification. 20-04, 20G15, 20H25, 68W30.
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our experimental strategy. Output for all dense hypergeometric monodromy sub-
groups of the symplectic group of degree 4 is tabulated in the Appendix. As further
illustration, sample output for groups of degree 6 is also given.

We set down some notation. Let S = {g1, . . . , gr} be a generating set of H ≤
GL(n,Q). The subring of Q generated by the entries of the gi and g−1i will be
denoted R. Thus R = 1

µZ for a positive integer µ. If m is coprime to µ then the
congruence homomorphism ϕm induced by natural surjection Z → Zm = Z/mZ
maps GL(n,R) into GL(n,Zm).

Throughout, F is a field and 1m is the m × m identity matrix. Let V be the
F-vector space of dimension n = 2s > 2, and let Φ be the matrix of a non-
degenerate skew-symmetric bilinear form on V with respect to a basis of V . The
full symplectic group in GL(n,F) preserving Φ is denoted Sp(Φ,F). If D ⊆ F
is a unital subring then Sp(Φ, D) := Sp(Φ,F) ∩ GL(n,D). We write Sp(n,D)

instead of Sp(Φ, D) if

Φ = Jn :=

(
0s 1s

−1s 0s

)
.

Since Sp(Φ,F) and Sp(n,F) are GL(n,F)-conjugate, often it suffices to deal with
the latter rather than the former group. The shorthand Spn denotes the symplectic
group when field and matrix of the form do not matter.

2. COMPUTING WITH DENSE SUBGROUPS OF SYMPLECTIC GROUPS

In this section we establish the theoretical foundation for our algorithms.

2.1. Strong approximation and computing. Let H ≤ Sp(n,Q) be dense. The
strong approximation theorem guarantees that H surjects onto Sp(n, p) for almost
all primes p ∈ Z [13, Window 9]. Let Π(H) be the (finite) set of primes p such
that ϕp(H) 6= Sp(n, p). Below we discuss how to compute Π(H).

In [8] we developed a method to compute the set of primes p such that ϕp(H) 6=
SL(n, p) for dense H ≤ SL(n,Q). This relies on irreducibility testing of the
adjoint module ofH , and uses the classification of maximal subgroups of SL(n, p).
Something similar could be done for dense subgroups of Sp(n,Q).

For a dense subgroupH of SL(n,Z) or Sp(n,Z), another way to compute Π(H)

is described in [6, Section 3] (see also [7, Section 2.5]). Here we must know a
transvection in H (recall: a transvection τ ∈ GL(n,F) is a unipotent element such
that 1n − τ has rank 1). Although an arbitrary dense subgroup of Spn may not
contain a transvection, the groups in our experiments do.

Proposition 2.1. Suppose that H ≤ Sp(n,Q) contains a transvection τ . Then H
is dense if and only if 〈τ〉H is absolutely irreducible.
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Proof. The proof of [6, Proposition 3.7] for H ≤ Sp(n,Z) remains valid for H ≤
Sp(n,Q). �

Proposition 2.1 allows us to apply the procedure IsDense(H, τ) from [6,
Section 3.2] to test density of H ≤ Sp(n,Q) knowing a transvection τ ∈ H .
Given denseH , we compute Π(H) using PrimesForDense(H, τ) from [6, Sec-
tion 3.2] as follows. Let {A1, . . . , An2} be a basis of the enveloping algebra 〈N〉Q,
where N = 〈τ〉H and the Ai are words in S. We can find a finite set Π1 of primes
such that the ϕp(Ai) are linearly independent and ϕp(1n − τ) 6= 0 for any prime
p 6∈ Π1. That is, if p 6∈ Π1 then ϕp(N) is absolutely irreducible and contains the
transvection ϕp(τ); so ϕp(H) = Sp(n, p) by [6, Theorem 3.2]. Thus Π(H) ⊆ Π1.
We obtain Π(H) after checking whether ϕp(H) = Sp(n, p) for each p ∈ Π1. This
last step uses recognition algorithms for matrix groups over finite fields [14].

2.2. Integrality and computing the Z-intercept. Some of our algorithms require
us to compute the ‘Z-points’ HZ := H ∩GL(n,Z) of input H ≤ GL(n,Q). This
is possible by the next result.

Lemma 2.2 ([5, Lemma 5.1]). For a finitely generated subgroup H of GL(n,Q),
the following are equivalent:

• H is integral, i.e., H is conjugate to a subgroup of GL(n,Z),
• |H : HZ| is finite,
• there exists a positive integer d such that dH consists of Z-matrices.

In [5, Section 5] we explain how to find d if |H : HZ| is finite. The procedure
IntegralIntercept(S, d) from [4] then computes a generating set of HZ.
However, its practicality is limited. In our experiments, we calculated a transversal
of HZ in H using an orbit algorithm for the multiplication action by H , start-
ing with 1n. Suppose that g is an image so obtained. We test whether gh−1 ∈
GL(n,Z) for each known orbit element h. If this happens for some h then g lies
in the same coset of HZ (and will yield a Schreier generator of HZ). If no such h
exists then g is a representative of a new coset.

We avail of the following reduction when |H : HZ| is large. Let σ ∈ Z be
divisible by a set of primes dividing the denominators of entries in elements of H;
so 1

σZ ⊆ R. Then HZ ≤ K ≤ H for K = H ∩ Sp(n, 1σZ). Membership in K is
tested by inspection of matrix denominators. We thus divide the transversal length
into two factors, first calculating a transversal of K in H , and then a transversal of
HZ in K.

A potential complication is too many Schreier generators for HZ. Rather than
keeping them all, we randomly select about 300 subproducts of Schreier generators
for each transversal step (cf. [1]). Conceivably we may not then compute all ofHZ,
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but merely a proper subgroup. At the end we therefore verify, by a calculation in
the congruence image modulo the level of HZ (see Section 2.3), that all Schreier
generators indeed lie in the subgroup generated by the chosen set.

2.3. The congruence subgroup property and computing. Suppose that H ≤
Sp(n,Q) is arithmetic, i.e., commensurable with Sp(n,Z). Since the congruence
subgroup property holds for Sp(n,Z), it follows that HZ contains a principal con-
gruence subgroup, i.e., the kernel of ϕr on Sp(n,Z) for some integer r > 1. The
level of H , denoted M(H), is the modulus m of the unique maximal principal
congruence subgroup kerϕm ∩ Sp(n,Z) in HZ.

Now suppose that H ≤ Sp(n,Z) is dense. The arithmetic closure cl(H) of H
in Sp(n,Z) is the intersection of all arithmetic subgroups of Sp(n,Z) containing
H (see [6, Section 3.3]). If H ≤ Sp(n,Q) is not necessarily arithmetic, but HZ is
dense, then we set M(H) = M(cl(HZ)).

The level of a dense subgroup H of Sp(n,Z) is a key component of various
algorithms for computing with the group [6]. If |Sp(n,Z) : cl(H)| is not too large,
then we may test arithmeticity by coset enumeration [11, Chapter 5].

The algorithm LevelMaxPCS from [6] returns M(H) for an input dense sub-
group H of Sp(n,Z) and Π(H). Here we will use LevelMaxPCS(HZ,Π(HZ)),
which by definition returns M(H). Note that while Π(H) ⊆ Π(HZ), these sets
need not coincide. For example, it could be that p divides µ and hence p 6∈ Π(H),
whereas p ∈ Π(HZ), i.e., p |M(H).

3. HYPERGEOMETRIC GROUPS

3.1. Background. We adhere mainly to the notation and definitions in [2]. Let
a = (a1, . . . , an) and b = (b1, . . . , bn), where aj , bk ∈ C× and aj 6= bk for
1 ≤ j, k ≤ n. A subgroup of GL(n,C) generated by elements h∞, h0 such that
det(t1n − h∞) =

∏n
j=1(t − aj) and det(t1n − h−10 ) =

∏n
j=1(t − bj) is called

a hypergeometric group, and denoted H(a, b). It is absolutely irreducible by [2,
Proposition 3.3]. The element h1 := (h0h∞)−1 of H(a, b) is a reflection, i.e.,
h1 − 1n has rank 1.

If aj = exp(2πiαj) and bj = exp(2πiβj) for αj , βj ∈ C then H(a, b) is the
monodromy group of a hypergeometric differential equation [2, Proposition 3.2].

Theorem 3.1 ([2, Theorem 3.5]). For aj , bk as above, let

f(t) =
∏n
j=1(t− aj) = tn +A1t

n−1 + · · ·+An

and

g(t) =
∏n
j=1(t− bj) = tn +B1t

n−1 + · · ·+Bn.
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Further, let

A =


0 · · · 0 −An
1 · · · 0 −An−1
...

. . .
...

...
0 · · · 1 −A1

 , B =


0 · · · 0 −Bn
1 · · · 0 −Bn−1
...

. . .
...

...
0 · · · 1 −B1

 .

Then h∞ = A, h0 = B−1 generate a hypergeometric group H(a, b) for a =

(a1, . . . , an) and b = (b1, . . . , bn). Any hypergeometric group with the same a, b
is GL(n,C)-conjugate to this one.

We are concerned with H(a, b) that are

(i) symplectic,
(ii) dense in Spn,

(iii) integral.

There are only finitely many GL(n,Q)-conjugacy classes of such H(a, b). By
[2, Proposition 6.1], H(a, b) is symplectic if and only if {a1, . . . , an} = {a−11 ,

. . . , a−1n }, {b1, . . . , bn} = {b−11 , . . . , b−1n }, and δ := det(h1) = 1 (whence h1 is
a transvection). We remark that H(a, b) need not be dense in Spn (by, e.g., [2,
Theorem 6.5]). Additionally, H(a, b) is integral if and only if the aj and bk are
roots of unity. Hence the characteristic polynomials f(t), g(t) of A, B should be
products of coprime cyclotomic polynomials. Under these conditions, H(a, b) ≤
Sp(Φ,Z) for some Φ. Since H(a, b) is absolutely irreducible, Φ is unique up to a
scalar multiple.

3.2. Experiments. Assuming that H(a, b) ≤ GL(n,Q) satisfy the requirements
(i), (ii), (iii) of Section 3.1, we proceed as follows.

(I) We list all pairs f(t), g(t) of polynomials of degree n where each is the
product of coprime cyclotomic polynomials, and such that δ = 1 (for
h∞, h0 as in Theorem 3.1). Non-dense H(a, b) are excluded by running
IsDense(H(a, b), h1).

(II) The matrix Φ of a symplectic form fixed by H(a, b) may be interpreted
as a homomorphism between the natural module of H(a, b) and its dual.
We use MeatAxe methods [11, Section 7.5.2] to compute Φ. Next, g ∈
GL(n,Q) such that gJng> = Φ is found by simple linear algebra. Then
L = L(a, b) := g−1H(a, b)g ≤ Sp(n,Q). (We seek a copy ofH(a, b) that
preserves the standard form because it is more convenient for computing;
e.g., we have a presentation of Sp(n,Z) but not of Sp(Φ,Z).)

Since Φ is not strictly unique, and g can vary by factors stabilizing the
form, L depends on the choices made. These might also impact |L : LZ|,
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which we want to keep small for reasons of efficiency and to reduce the
number of Schreier generators arising (remember that |L : LZ| < ∞ by
Lemma 2.2). Our code therefore uses heuristics to determine candidates
for Φ and g. It then calculates L and the least common multiple k of
{k | lk ∈ LZ for all generators l ∈ L} (as a stand-in for |L : LZ|), and
chooses g such that k is minimal.

(III) We compute LZ (see Section 2.2). The group L contains the transvection
h = g−1h1g. Although perhaps h 6∈ LZ, we can always find a transvection
λ = hk ∈ LZ for some k.

(IV) We compute

Π(LZ) = PrimesForDense(LZ, λ),

LevelMaxPCS(LZ,Π(LZ)),

|Sp(n,Z) : cl(LZ)|.
(V) When |Sp(n,Z) : cl(LZ)| is sufficiently small, we express the generators

of LZ as words in generators of Sp(n,Z) [12], and try to find |Sp(n,Z) :

LZ| by coset enumeration. If this succeeds, i.e., confirms that the index of
LZ is equal to that of cl(LZ), then we have proved arithmeticity of LZ and
thereby also of H(a, b) (cf. [15, Theorem 4.1, p. 204]).

As its cost is bounded below by the index, we restricted our attempts
at coset enumeration to groups with (presumed) indices less than 107. If
the index was expected to be in the range 107, . . . , 1014, then we tried to
find an intermediate subgroup LZ < U < Sp(n,Z) such that |U : LZ| ≤
107. Enumeration was then undertaken with a presentation for U found by
Reidemeister-Schreier rewriting [11, Chapter 5]. Suitable U are generated
by LZ together with congruence subgroups in Sp(n,Z) of level dividing
the level of cl(LZ).

By [18, Theorem 1.1], if the leading coefficient of f(t)−g(t) has absolute value
at most 2 then H(a, b) is arithmetic in Sp(Φ,Z). At least in degree 4, we proved
arithmeticity (and computed the level and index) whenever the criterion from [18]
applies, and occasionally when it does not. Unfortunately, we lack a method for
proving non-arithmeticity if coset enumeration fails.
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APPENDIX

Our algorithms have been implemented in GAP [10]. In this appendix we
present the complete experimental results for n = 4 (Table 1), and a sample for n =

6 (Table 2). The experimental results for all 916 groups of degree 6 are available at
https://www.math.colostate.edu/˜hulpke/paper/hypergeom6.pdf.

A group with entry ≤ 60 in column ‘Nr’ of Table 1 has the same number in [18,
Table 1], and Nr = m ≥ 100 here matches number m− 100 in [18, Table 2]. The
column ‘Polynomials’ lists f(t), g(t) satisfying (I) in Section 3.2 (the Nr entries in
Table 2 stem from the listing of these polynomials). All primes divisors of µ are
given in column ‘Mu’. ‘Int’ is |L : LZ|. ‘iLevel’ and ‘iIndex’ are level and index of
cl(LZ) in Sp(n,Z). ‘Coeff’ is the absolute value of the leading coefficient of f(t)−
g(t). The column ‘Enum’ records whether coset enumeration was able to calculate
|Sp(n,Z) : LZ|. We reiterate that if an enumeration succeeds (indicated by X),
then the input group is arithmetic. A dash means that coset enumeration did not
terminate (of course, this does not prove that the group is not arithmetic). In some
cases, indicated by ×, large |Sp(n,Z) : cl(LZ)| implies that coset enumeration is
unlikely to succeed.

Indices in degree 4 were small enough to attempt coset enumeration, bar one
example (Nr = 101). The size of indices for many groups of degree 6 dissuades
any attempt at coset enumeration.

We comment on some test groups of interest.
Table 1 shows that the groups Nr = 104, 109 are arithmetic; the question is open

in [18, Table 3]. We could not decide arithmeticity for the groups Nr = 102 and
106, just as in [18, Table 3].

Let Hn, Gn be H(a, b) with f(t) = (t − 1)n and g(t) = (tn+1 − 1)/(t − 1),
(tn+1 + 1)/(t + 1), respectively. The arithmeticity problem for Hn and Gn was
posed at the ‘Workshop on Thin Groups and Super Approximation’, Institute for
Advanced Study, Princeton, March 2016. If n = 4 then Hn is thin [3]; see row
107 in Table 1, or row 8 in [6, Table 3] for cl(H4). The group G4 is arithmetic [18,
Corollary 1.4] (row 1 in [6, Table 3] and row 112 in Table 1). Note that indices
stated here might differ from those in [6], due to different conjugating matrices
(see (II), Section 3.2).

In degree 6, when [18, Theorem 1.1] does not apply we proved arithmeticity for
(much) fewer groups; two notable exceptions are rows 468 and 534 of Table 2. We
have not yet solved the arithmeticity problem for G6 or H6; however, the level and
index of their arithmetic closures are given in rows 774 and 838 of Table 2.

https://www.math.colostate.edu/~hulpke/paper/hypergeom6.pdf
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Nr Polynomials Mu Int iLevel iIndex Coeff Enum

1
t4−4t3+6t2−4t+1

t4−2t3+3t2−2t+1
1 1 2 2·5 2 X

2
(t−1)2(t+1)2

t4+2t3+3t2+2t+1
3 22 2·32 273452 2 X

3
(t−1)2(t+1)2

(t2+1)(t2+t+1)
2, 3 32 2432 2103352 1 X

4
(t−1)2(t+1)2

t4+t3+t2+t+1
5 5 2·52 25325·13 1 X

5
t4−2t3+3t2−2t+1

(t−1)2(t+1)2
3 22 2·32 273452 2 X

6
(t2−t+1)(t2+1)

(t−1)2(t+1)2
2, 3 32 2432 2103352 1 X

7
t4−t3+t2−t+1

(t−1)2(t+1)2
5 5 2·52 24325·13 1 X

8
t4+2t3+3t2+2t+1

t4+4t3+6t2+4t+1
1 1 2 2·5 2 X

9
(t−1)2(t2+t+1)

t4+2t2+1
2 2·3 24 26325 1 X

10
(t−1)2(t2+t+1)

t4+t3+t2+t+1
2, 5 233·52 2352 28335213 2 X

11
t4−2t3+3t2−2t+1

(t−1)2(t2+t+1)
2 32 24 28325 1 X

12
(t−1)2(t2+t+1)

(t+1)2(t2−t+1)
2 2 24 2113·5 2 X

13
(t−1)2(t2+t+1)

(t2−t+1)(t2+1)
1 1 22 263·5 2 X

14
(t−1)2(t2+t+1)

t4+1
2 2 23 223·5 1 X

15
(t−1)2(t2+t+1)

t4−t3+t2−t+1
1 1 2 2·3 1 X

16
(t−1)2(t2+t+1)

t4−t2+1
2 3 23 233·5 1 X

17
t4+2t2+1

t4+2t3+3t2+2t+1
1 1 2 2·5 2 X

18
(t+1)2(t2+1)

t4+2t3+3t2+2t+1
1 1 2 2·5 1 X

19
t4+t3+t2+t+1

t4+2t3+3t2+2t+1
1 1 1 1 1 X
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Nr Polynomials Mu Int iLevel iIndex Coeff Enum

20
(t+1)2(t2−t+1)

t4+2t3+3t2+2t+1
2 32 24 27325 1 X

21
t4+1

t4+2t3+3t2+2t+1
1 1 2 2·5 2 X

22
t4−t2+1

t4+2t3+3t2+2t+1
1 1 22 263·5 2 X

23
t4+t3+t2+t+1

(t+1)2(t2+t+1)
1 1 2 2·3 2 X

24
(t−1)2(t2+1)

t4−2t3+3t2−2t+1
1 1 2 2·5 1 X

25
(t−1)2(t2+1)

(t2−t+1)(t2+t+1)
3 3 2·32 253·52 2 X

26
(t−1)2(t2+1)

t4+1
1 1 22 27325 2 X

27
(t−1)2(t2+1)

t4−t3+t2−t+1
1 1 2 2·3 1 X

28
(t−1)2(t2+1)

t4−t2+1
3 2 2·32 253·52 2 X

29
t4+2t2+1

t4+t3+t2+t+1
1 1 2 2·3 1 X

30
t4−2t3+3t2−2t+1

t4+2t2+1
1 1 2 2·5 2 X

31
t4+2t2+1

(t+1)2(t2−t+1)
2 2·3 24 26325 1 X

32
t4−t3+t2−t+1

t4+2t2+1
1 1 2 2·3 1 X

33
t4+t3+t2+t+1

(t+1)2(t2+1)
1 1 2 2·3 1 X

34
(t2−t+1)(t2+t+1)

(t+1)2(t2+1)
3 3 2·32 253·52 2 X

35
t4+1

(t+1)2(t2+1)
1 1 22 27325 2 X

36
t4−t2+1

(t+1)2(t2+1)
3 2 2·32 253·52 2 X

37
t4+t3+t2+t+1

(t2+1)(t2+t+1)
1 1 2 2·3 1 X

38
(t+1)2(t2−t+1)

(t2+1)(t2+t+1)
1 1 22 263·5 2 X
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Nr Polynomials Mu Int iLevel iIndex Coeff Enum

39
t4+1

(t2+1)(t2+t+1)
1 1 23 223·5 1 X

40
t4−t3+t2−t+1

(t2+1)(t2+t+1)
1 1 2 2·3 2 X

41
t4−t2+1

(t2+1)(t2+t+1)
2, 3 2·3 2332 263252 1 X

42
(t+1)2(t2−t+1)

t4+t3+t2+t+1
1 1 2 2·3 1 X

43
(t2−t+1)(t2+t+1)

t4+t3+t2+t+1
1 1 1 1 1 X

44
(t2−t+1)(t2+1)

t4+t3+t2+t+1
1 1 2 2·3 2 X

45
t4+1

t4+t3+t2+t+1
1 1 2 2·3 1 X

46
t4−t3+t2−t+1

t4+t3+t2+t+1
1 1 22 2932 2 X

47
t4−t2+1

t4+t3+t2+t+1
1 1 1 1 1 X

48
(t−1)2(t2−t+1)

t4−t3+t2−t+1
1 1 2 2·3 2 X

49
t4−2t3+3t2−2t+1

t4+1
1 1 2 2·5 2 X

50
t4−2t3+3t2−2t+1

t4−t3+t2−t+1
1 1 1 1 1 X

51
t4−2t3+3t2−2t+1

t4−t2+1
1 1 22 263·5 2 X

52
t4+1

(t+1)2(t2−t+1)
2 2 23 223·5 1 X

53
t4−t3+t2−t+1

(t+1)2(t2−t+1)
5 5 2·52 24325·13 2 X

54
t4−t2+1

(t+1)2(t2−t+1)
2 3 23 233·5 1 X

55
t4−t3+t2−t+1

(t2−t+1)(t2+t+1)
1 1 1 1 1 X

56
(t2−t+1)(t2+1)

t4+1
1 1 23 223·5 1 X

57
t4−t3+t2−t+1

(t2−t+1)(t2+1)
1 1 2 2·3 1 X
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Nr Polynomials Mu Int iLevel iIndex Coeff Enum

58
(t2−t+1)(t2+1)

t4−t2+1
2, 3 2·3 2332 263252 1 X

59
t4−t3+t2−t+1

t4+1
1 1 2 2·3 1 X

60
t4−t3+t2−t+1

t4−t2+1
1 1 1 1 1 X

101
t4−4t3+6t2−4t+1

t4+4t3+6t2+4t+1
2 2 28 241325 8 ×

102
t4−4t3+6t2−4t+1

t4+2t3+3t2+2t+1
1 1 2·34 2831452 6 —

103
t4−4t3+6t2−4t+1

(t+1)2(t2+t+1)
3 223 2433 2193752 7 —

104
t4−4t3+6t2−4t+1

t4+2t2+1
1 1 24 220325 4 X

105
t4−4t3+6t2−4t+1

(t+1)2(t2+1)
2 23 28 227325 6 —

106
t4−4t3+6t2−4t+1

(t2+1)(t2+t+1)
2, 3 2332 2433 2133852 5 —

107
t4−4t3+6t2−4t+1

t4+t3+t2+t+1
1 1 2·52 28335813 5 —

108
t4−4t3+6t2−4t+1

(t+1)2(t2−t+1)
2 233 27 216325 5 —

109
t4−4t3+6t2−4t+1

(t2−t+1)(t2+t+1)
3 223 2233 2113652 4 X

110
t4−4t3+6t2−4t+1

(t2−t+1)(t2+1)
2 2·3 24 27325 3 X

111
t4−4t3+6t2−4t+1

t4+1
1 1 23 211325 4 —

112
t4−4t3+6t2−4t+1

t4−t3+t2−t+1
1 1 2 2·3 3 X

113
t4−4t3+6t2−4t+1

t4−t2+1
1 1 22 255 4 —

114
(t−1)2(t2+t+1)

t4+4t3+6t2+4t+1
1 1 25 2133·5 5 —

115
(t−1)2(t2+1)

t4+4t3+6t2+4t+1
2 23 28 227325 6 —

116
t4+2t2+1

t4+4t3+6t2+4t+1
1 1 24 220325 4 X
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Nr Polynomials Mu Int iLevel iIndex Coeff Enum

117
(t2+1)(t2+t+1)

t4+4t3+6t2+4t+1
2 2·3 24 27325 3 X

118
t4+t3+t2+t+1

t4+4t3+6t2+4t+1
1 1 2 2·3 3 X

119
(t−1)2(t2−t+1)

t4+4t3+6t2+4t+1
3 22 2533 2193652 7 —

120
t4−2t3+3t2−2t+1

t4+4t3+6t2+4t+1
1 1 2·34 2831452 6 —

121
(t2−t+1)(t2+t+1)

t4+4t3+6t2+4t+1
3 223 2233 2113652 4 X

122
(t2−t+1)(t2+1)

t4+4t3+6t2+4t+1
2, 3 233 2433 2133752 5 —

123
t4+1

t4+4t3+6t2+4t+1
1 1 23 211325 4 —

124
t4−t3+t2−t+1

t4+4t3+6t2+4t+1
1 1 2·52 27335813 5 —

125
t4−t2+1

t4+4t3+6t2+4t+1
1 1 22 255 4 —

126
(t−1)2(t2+t+1)

(t+1)2(t2+1)
2 223 26 211325 3 X

127
(t−1)2(t2+1)

t4+2t3+3t2+2t+1
3 22 2·32 273452 4 X

128
(t−1)2(t2−t+1)

t4+2t3+3t2+2t+1
2, 3 2232 2433 2133752 5 —

129
t4−2t3+3t2−2t+1

t4+2t3+3t2+2t+1
1 1 24 2163·5 4 X

130
(t2−t+1)(t2+1)

t4+2t3+3t2+2t+1
2 32 24 27325 3 X

131
t4−t3+t2−t+1

t4+2t3+3t2+2t+1
1 1 1 1 3 X

132
(t−1)2(t2+1)

(t+1)2(t2+t+1)
2, 3 2·3 2532 2143252 5 —

133
t4+2t2+1

(t+1)2(t2+t+1)
2 2·3 243 273452 3 X

134
(t−1)2(t2−t+1)

(t+1)2(t2+t+1)
2 2 2432 2183852 6 —

135
t4−2t3+3t2−2t+1

(t+1)2(t2+t+1)
2, 3 2232 2432 2133752 5 —
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Nr Polynomials Mu Int iLevel iIndex Coeff Enum

136
(t2−t+1)(t2+1)

(t+1)2(t2+t+1)
3 3 2232 2103352 4 X

137
t4+1

(t+1)2(t2+t+1)
1 1 223 223352 3 —

138
t4−t3+t2−t+1

(t+1)2(t2+t+1)
5 5 2·52 24325·13 4 —

139
t4−t2+1

(t+1)2(t2+t+1)
2 3 223 233352 3 X

140
(t−1)2(t2+1)

t4+t3+t2+t+1
2, 5 233·52 2352 28335213 3 —

141
(t−1)2(t2+1)

(t+1)2(t2−t+1)
2 3 23 29325 3 X

142
(t−1)2(t2−t+1)

t4+2t2+1
2 2·3 243 273452 3 X

143
(t−1)2(t2−t+1)

(t+1)2(t2+1)
3 3 2332 2133252 5 —

144
t4−2t3+3t2−2t+1

(t+1)2(t2+1)
3 22 2·32 273452 4 X

145
t4−t3+t2−t+1

(t+1)2(t2+1)
2, 5 233·5 225 27335·13 3 —

146
(t−1)2(t2−t+1)

(t2+1)(t2+t+1)
3 3 2232 2103352 4 X

147
t4−2t3+3t2−2t+1

(t2+1)(t2+t+1)
2 32 24 28325 3 X

148
(t−1)2(t2−t+1)

t4+t3+t2+t+1
5 5 2·52 25325·13 4 —

149
t4−2t3+3t2−2t+1

t4+t3+t2+t+1
1 1 1 1 3 X

150
(t−1)2(t2−t+1)

t4+1
2 2 233 233352 3 —

151
(t−1)2(t2−t+1)

t4−t2+1
2 3 233 233352 3 X

Table 1: Degree 4
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158
(t2−t+1)(t2+1)2

(t2+t+1)(t4−t3+t2−t+1)
2 3 23 24337 1 X

162
(t−1)2(t+1)2(t2+1)

t6−t3+1
3 3 2·32 243·7213 1 —

167
(t−1)2(t+1)2(t2+1)

(t2+t+1)(t4−t2+1)
3 22 2·3 29335·7213 1 ×

390
t6−t5+t4−t3+t2−t+1

(t+1)2(t4−t3+t2−t+1)
2, 7 263·5·72 2372 214355·7219·43 2 ×

394
(t−1)2(t2−t+1)(t2+1)

t6−t5+t4−t3+t2−t+1
2 233·5·7 23 28335·7 2 X

437
t6+t5+t4+t3+t2+t+1

(t+1)2(t2+t+1)2
1 1 2 2532 3 —

468
t6−t5+t4−t3+t2−t+1

(t2+t+1)(t4+t3+t2+t+1)
1 1 1 1 3 X

534
(t2−t+1)(t4−t3+t2−t+1)

t6+t5+t4+t3+t2+t+1
1 1 1 1 3 X

774
t6−6t5+15t4−20t3+15t2−6t+1

t6−t5+t4−t3+t2−t+1
1 1 2 2232 5 —

819
t6−6t5+15t4−20t3+15t2−6t+1

t6−t3+1
1 1 2·3 23355·7213 6 —

838
t6−6t5+15t4−20t3+15t2−6t+1

t6+t5+t4+t3+t2+t+1
1 1 2·72 215365272219·43 7 ×

Table 2: Degree 6
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