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CONGRUENCES ASSOCIATED WITH FAMILIES OF NILPOTENT
SUBGROUPS AND A THEOREM OF HIRSCH

STEFANOS AIVAZIDIS† AND THOMAS MÜLLER∗

Abstract. Our main result associates a family of congruences with each suitable
system of nilpotent subgroups of a finite group. Using this result, we complete and correct
the proof of a theorem of Hirsch concerning the class number of a finite group of odd
order.

1. Introduction

A celebrated result of Burnside [Bur55, p. 295], established using the then still recent
(ordinary) character theory of finite groups, states that if G is a group of odd order then
the class number k(G) of G satisfies the congruence k(G) ≡ |G| (mod 16). The starting
point of the work reported here was our desire to correct and complete the proof of
an apparently little known theorem of Hirsch [Hir50] providing a beautiful non-trivial
refinement of Burnside’s result.

Theorem 1.1. Let N = pα1
1 p

α2
2 · · · p

αk
k be the order of a group G, where p1, p2, . . . , pk are

odd primes, and α1, α2, . . . , αk are positive integers. Let d be the greatest common divisor
of the numbers p2i − 1 with 1 6 i 6 k. Then N ≡ k(G) (mod 2d).

Burnside’s result follows from Theorem 1.1, since p2 ≡ 1 (mod 8) for p odd, so that 8 | d.
To quickly finish our description of this line of development, we mention that, using some
of the easier ideas of Hirsch [Hir50], Poland [Pol68] subsequently obtains an alternative
congruence for k(G) which, when combined with Theorem 1.1, yields the following further
strengthening of Burnside’s theorem.

Theorem 1.2 ([Pol68], Cor. 3.10). In the notation of Theorem 1.1, we have, for N = |G|
odd,

k(G) ≡ N (mod lcm{2d, τ}),
where τ = gcdi6i6k(pi − 1)2.

Hirsch’s proof of Theorem 1.1, though ingenious and mostly correct, exhibits several gaps,
and one non-trivial error. The most serious gap we found is the lack of any justification
offered for the following claim, which Hirsch [Hir50] makes in passing, and then bases the
more subtle final part of his argument on:

Claim 1.3. The number of Sylow p-subgroups of a group G of odd order, containing a
given p-element, is odd.
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It is not too hard (though not completely trivial) to supply a proof of Claim 1.3, if one
is willing to invoke the Odd Order Theorem, and to exploit the solubility of G; however,
the paper [FT63] establishing Burnside’s Odd Order Conjecture only appeared in 1963,
hence was not available to Hirsch in the late 1940’s. This raises the question whether
an elementary proof of Claim 1.3 can be given, which does not presuppose solubility of
the group involved. This is indeed the case but, as often happens, starting out with a
rather specialised problem has led us to the discovery of a more general result, relating
congruences to certain systems of nilpotent subgroups in an arbitrary finite group, which
appears to be of interest in itself; cf. Section 2, in particular Theorem 2.4.

2. Set-up and main result

Let G be a finite group, and let FG be a collection of nilpotent subgroups of G satisfying:

(1) 1 ∈ FG and G 6∈ FG;

(2) S ∈ FG and g ∈ G implies Sg ∈ FG;

(3) S ∈ FG and R 6 S implies R ∈ FG;

(4) for each subgroup K 6 G (in particular for G itself), the maximal elements of the
subposet

FK := {S ∈ FG : S 6 K} ⊆ FG

(with inclusion as partial order) form a single K-conjugacy class MK ;

(5) for any two subgroups K,L of G with K 6 L, we have (K : S)
∣∣(L : T ), where

S ∈MK and T ∈ML.

For clarification, we note that the concept of a maximal element used here refers to the
context of poset theory : if (P,6) is a poset, an element a ∈ P is termed maximal, if a 6 p
for some p ∈ P implies a = p (i.e., a is not strictly covered). In particular, if P has a
greatest element a0, then a0 is the only maximal element of P .

The following is now easily checked.

Lemma 2.1. Let G be a finite group, and let FG be a system of nilpotent subgroups of
G satisfying Conditions (1)–(5). Let K 6 G, and suppose that K 6∈ FG. Then the pair
(K,FK) again satisfies Conditions (1)–(5), where FK is defined as above.

Examples 2.2. (1) Suppose that |π(G)| > 1. For a prime p ∈ π(G), let FG be the
collection of all p-subgroups of G. For K 6 G, the collection MK of maximal
elements of the poset (FK ,⊆) consists precisely of the Sylow p-subgroups of K.
Conditions 1–3 are clear, while Conditions 4–5 hold by Sylow’s theorem.

(2) Let π be a set of primes, and let G be a soluble group whose order is not a π-number.
Suppose that G contains a nilpotent Hall π-subgroup H. Then each π-subgroup
of G is nilpotent, and is contained in some conjugate of H; in particular, the
Hall π-subgroups of G form a single conjugacy class (by Wielandt’s corresponding
theorem in [Wie54]). Let FG be the collection of all π-subgroups of G. For K 6 G,
the maximal elements of the poset (FK ,⊆) are the Hall π-subgroups of K. Again,
Conditions 1–3 are clear, while Conditions 4 and 5 hold thanks to P. Hall’s
characterisation of soluble groups; cf. in particular [Hal28].
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Let P denote the set of all positive rational primes. Given a finite group G and a system
FG of nilpotent subgroups of G, we set

mG := gcd
{
p− 1 : p ∈ P, p

∣∣ (G : M) for some M ∈MG

}
.

If
{p ∈ P : p | (G : S) for some S ∈MG} = ∅,

then |S| = |G| for S ∈MG, so G = S ∈ FG, contradicting the second part of Condition (1).
Hence, assuming G 6∈ FG, the constant mG is well defined.

We note the following.

Lemma 2.3. Let G be a finite group and let FG be a system of nilpotent subgroups of G
satisfying Conditions (1) and (5). If K 6 G and K 6∈ FG, then mG | mK.

Proof. Since K 6∈ FG, we have K 6∈ FK , so that mK is defined. Suppose that p ∈ P is such
that p | (K : S) for some S ∈ MK . Then p | (G : T ) for T ∈ MG by Condition (5), so
that mG | p− 1. Hence, mG | mK , as claimed. �

Our main result is now as follows.

Theorem 2.4. Let G be a finite group, and let FG be a system of nilpotent subgroups of
G satisfying Conditions (1)–(5). For S ∈ FG, set

FG(S) := {T ∈MG : S 6 T} .
Then |FG(S)| ≡ 1 (mod mG) for all S ∈ FG.

Combining Theorem 2.4 with Example 1, we derive an arithmetic property of the collection
of Sylow p-subgroups of a finite group G containing a fixed p-subgroup.

Corollary 2.5. Let G be a finite group such that |π(G)| > 1, let p be a prime number
dividing the order of G, and let H be a fixed p-subgroup of G. Then the number np(G,H)
of Sylow p-subgroups of G containing H satisfies the congruence

np(G,H) ≡ 1 (mod mG),

where
mG = gcd {p− 1 : p ∈ π(G) \ {p}} .

Remark 2.6. Hirsch’s original Claim 1.3 follows from the special case of Corollary 2.5,
where G has odd order, and H is cyclic.

Similarly, by combining Theorem 2.4 with Example 2, we find the following.

Corollary 2.7. Let G be a finite soluble group, let π be a non-empty set of prime numbers
such that |G| is not a π-number, and let H be a fixed π-subgroup of G. If G contains a
nilpotent Hall π-subgroup, then the number nπ(G,H) of Hall π-subgroups of G containing
H satisfies the congruence

nπ(G,H) ≡ 1 (mod mG),

where
mG = gcd {p− 1 : p ∈ π(G)− π} .
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Remark 2.8. The condition in Corollary 2.7 that the group G should contain a nilpotent
Hall π-subgroup can in fact be disposed of, leading to the following general result for finite
π-separable groups.

Theorem 2.9. Let π be a non-empty set of primes, let G be a finite π-separable group
such that |G| is not a π-number, and let H be a fixed π-subgroup of G. Then the number
nπ(G,H) of Hall π-subgroups of G containing H satisfies the congruence

nπ(G,H) ≡ 1 (mod mG),

where

mG = gcd {p− 1 : p ∈ π(G)− π} .

The proof of Theorem 2.9, whose proper setting is the theory of projectors relative to
Schunck classes, will be discussed in a separate publication, together with certain related
results.

3. Proof of Theorem 2.4

We begin with two easy reductions.

First, suppose that S ∈ FG is such that S �G. Then FG(S) =MG by (4) with G = K,
and so

|FG(S)| = |MG| = (G : NG(T )),

where T ∈MG. Consequently, if p is a prime dividing the cardinality of the set FG(S), then
p | (G : T ), hence p ≡ 1 (mod mG) by definition of mG, implying |FG(S)| ≡ 1 (mod mG).
Therefore, we may suppose that NG(S) < G.

Second, if S ∈ MG, then FG(S) = {S}, so |FG(S)| = 1 ≡ 1 (mod mG). Thus, we may
assume that S 6∈ MG.

Suppose for a contradiction that Theorem 2.4 is false, and let G be a counterexample
of least possible order. Fix a system FG of nilpotent subgroups satisfying Conditions
(1)–(5) for which G fails, and, among the elements S ∈ FG with |FG(S)| 6≡ 1 ( mod mG), let
S0 be one of largest possible order. By the observations above, we have K := NG(S0) < G
and S0 6∈ MG.

Let K1, K2, . . . , Kt be the pairwise distinct elements of FK occurring as intersections S∩K
for S ∈ FG(S0), and set

Fj(S0) := {S ∈ FG(S0) : NS(S0) = Kj} , 1 6 j 6 t,

so that

FG(S0) =
t⊔

j=1

Fj(S0)

for some t > 0, where t denotes disjoint union. We note that, for j ∈ [t] and S ∈ Fj(S0),

S0 < Kj = NS(S0) 6 S

since S0 < S by our second reduction, so that its normaliser in the nilpotent group S
grows.
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Each of these elements Kj may or may not lie in MK , i.e., be a maximal element of FK .
After permuting indices if necessary, we may suppose that

Kj ∈MK ⇐⇒ j ∈ [s]

for some s with 0 6 s 6 t. We claim that

MK = {K1, K2, . . . , Ks} .
To see this, we first note that MK = FK(S0) by Condition (4), since S0 �K. Hence, a
given element S ∈MK is contained in some T ∈ FG(S0), and we have S 6 T ∩K ∈ FK
by Condition (3), so that

T ∩K = S = Kj

for some j ∈ [s]. It follows that MK ⊆ {K1, . . . , Ks}, and the reverse inclusion holds by
definition of s.

It follows now that s ≡ 1 (mod mG). Indeed, by Condition (4), we have

s = |MK | = (K : NK(S))
∣∣ (K : S)

for some S ∈ MK . If K ∈ FG, then MK = {K}, so s = 1 ≡ 1 (mod mG). Suppose, on
the other hand, that K 6∈ FG (so that K 6∈ FK and mK is defined), and let p ∈ P be
such that p | s. Then p | (K : S), so p ≡ 1 (mod mK) by definition of mK , implying
s ≡ 1 ( mod mK). Furthermore, by Lemma 2.3, mG | mK in this case, and we again deduce
that s ≡ 1 (mod mG).

For j ∈ [s], we have Fj(S0) = FG(Kj), thus |Fj(S0)| ≡ 1 (mod mG) by choice of S0, since
Kj > S0. Hence, ∣∣∣∣∣

s⊔
j=1

Fj(S0)

∣∣∣∣∣ =
s∑
j=1

|Fj(S0)| ≡ s ≡ 1 (mod mG). (3.1)

In order to obtain the desired contradiction (to the existence of a counterexample G), it
remains to show that ∣∣∣∣∣

t⊔
j=s+1

Fj(S0)

∣∣∣∣∣ ≡ 0 (mod mG). (3.2)

In fact, we shall establish the stronger property that

|Fj(S0)| ≡ 0 (mod mG), s < j 6 t. (3.3)

Suppose for a contradiction that (3.3) is false. Then, among the indices j with s < j 6 t
and |Fj(S0)| 6≡ 0 (mod mG), we may choose one, j0 say, such that NS(S0) = Kj0 is of
largest order among the subgroups Kj of K corresponding to these indices j. Consider
the complex FG(Kj0). Since Kj0 > S0, we have |FG(Kj0)| ≡ 1 (mod mG) by our choice of
S0. We now split the set FG(Kj0) according to the intersections of its elements with the
normaliser K = NG(S0). Let Kj0 , L1, L2, . . . , Lr be the distinct elements of FK arising in
this way, so that

FG(Kj0) = Fj0(S0) t
r⊔

ρ=1

{S ∈MG : NS(S0) = Lρ} , (3.4)

where Lρ > Kj0 for all ρ ∈ [r], with some r such that 0 6 r < t. Since FG(Kj0) ⊆ FG(S0),
the groups Lρ we encounter in this way are among the subgroups K1, . . . , Kt of K which
occurred earlier on in the proof, so that Lρ = Kψ(ρ) for a suitable injective map ψ : [r]→ [t].
We thus have

{S ∈MG : NS(S0) = Lρ} = Fψ(ρ)(S0), 1 6 ρ 6 r,
5



and (3.4) may be written more briefly in the form

FG(Kj0) = Fj0(S0) t
r⊔

ρ=1

Fψ(ρ)(S0).

Now, as before, a given Lρ may or may not be a maximal element of FK , while Kj0 6∈ MK

since j0 > s. After permuting indices if necessary, we may suppose that

Lρ ∈MK ⇐⇒ ρ ∈ [q]

for some integer q with 0 6 q 6 r. We have

Fψ(ρ)(S0) = {S ∈MG : NS(S0) = Lρ} = FG(Lρ), 1 6 ρ 6 q,

so
∣∣Fψ(ρ)(S0)

∣∣ ≡ 1 (mod mG) for 1 6 ρ 6 q by our choice of S0, since Lρ > Kj0 > S0.
Hence, ∣∣∣∣∣

q⊔
ρ=1

Fψ(ρ)(S0)

∣∣∣∣∣ =

q∑
ρ=1

∣∣Fψ(ρ)(S0)
∣∣ ≡ q (mod mG). (3.5)

Next, we claim that
FK(Kj0) = {L1, L2, . . . , Lq} . (3.6)

Indeed, let S ∈ FK(Kj0). Then there exists some S ′ ∈ MG such that S ′ > S, a fortiori
S ′ ∈ FG(Kj0), and

S ′ ∩K = S = Lρ

for some ρ ∈ [q]. This proves the forward inclusion of (3.6), while the reverse inclusion
holds by definition of q.

It now follows that q ≡ 1 (mod mG). Indeed, if K ∈ FG, then MK = {K}, and

q = |FK(Kj0)| = 1 ≡ 1 (mod mG).

If, on the other hand, K 6∈ FG, then K 6∈ FK , so that mK is defined, and the pair (K,FK)
satisfies Conditions (1)–(5) by Lemma 2.1. Consequently, we have

q = |FK(Kj0)| ≡ 1 (mod mK)

by choice of G, since K < G. Furthermore, mG | mK by Lemma 2.3, so that q ≡
1 (mod mG) follows again.

Combining (3.5) with our last observation, we now conclude that∣∣∣∣∣
q⊔

ρ=1

Fψ(ρ)(S0)

∣∣∣∣∣ ≡ 1 (mod mG).

Moreover, for ρ in the range q < ρ 6 r, we have ψ(ρ) > s and Kψ(ρ) > Kj0 . Hence, by our
choice of the index j0, it follows that∣∣Fψ(ρ)(S0)

∣∣ ≡ 0 (mod mG), q < ρ 6 r.

We deduce that
1 ≡ |FG(Kj0)| ≡ |Fj0(S0)|+ 1 6≡ 1 (mod mG),

since |Fj0(S0)| 6≡ 0 (mod mG) by our choice of j0. This contradiction shows that (3.3)
holds; thus also (3.2) holds true. Combining (3.1) with (3.2), we now deduce that

|FG(S0)| ≡ 1 (mod mG),

contradicting our choice of the data G, FG, and S0. This final contradiction shows that no
counterexample to our theorem exists, and the result is proven. �
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4. Some remarks concerning the proof of Theorem 1.1

Let G be a group of odd order N . If x ∈ G lies in a conjugacy class of size h, then the
number of elements y ∈ G commuting with x is N/h. Thus, the total number of solutions
(x, y) ∈ G2 of the equation

x−1y−1xy = 1 (4.1)

is
k(G)∑
ρ=1

hρN/hρ = Nk(G).

Hirsch’s principal idea is to recount the non-trivial solutions (x, y) of (4.1) in batches
according to the subgroup 〈x, y〉 they generate. Hence, we need to compute ϕ2(〈x, y〉).
Here, for a finite group G and a positive integer n, ϕn(G), the nth Eulerian number of
G, is the number of n-tuples (x1, x2, . . . , xn) ∈ Gn such that G = 〈x1, x2, . . . , xn〉. These
numbers were introduced by Philip Hall [Hal36], who shows among other things that

ϕn(G) =
∑
H6G

µG(H,G)|H|n, (4.2)

where µG is the Möbius function for the lattice of subgroups of G; cf. [Hal36, Eqn. (3.12)].
Let x = x1x2 · · ·xk and y = y1y2 · · · yk, where xi and yi are pi-elements. Then

ϕ2(〈x, y〉) = ϕ2(〈x1, y1〉)ϕ2(〈x2, y2〉) · · ·ϕ2(〈xk, yk〉).
Now 〈xi, yi〉, if non-trivial, is either cyclic of order pmi , say, or an abelian group of the form
Cpmi × Cpni , where m > n. For a prime p and a positive integer m, we have

ϕ2(Cpm) = p2m − p2m−2 = p2m−2(p2 − 1), (4.3)

since we only need to rule out those pairs in which the orders of both components are less
than pm. In dealing with the case of an abelian p-group of rank 2, Hirsch offers, essentially
without proof, the formulae

ϕ2(Cpm × Cpm) = (p2m − p2m−2)[(p2m − p2m−2)− (pm − pm−1)], (4.4)

ϕ2(Cpm × Cpn) = ϕ(pm)pnϕ(pn)(pm + pm−1), m > n, (4.5)

where ϕ is Euler’s totient function. Of these, (4.4) is false (the right-hand side overcounts
whenever m > 1), while (4.5) turns out to be correct. The fact that Hirsch distinguishes
the cases m = n and m > n suggests that what he had in mind here is a direct enumeration
of pairs of generators in these groups. Viewed in this way, the proof of (4.5) is considerably
harder than that of (4.4), so that the correctness of (4.5), against the backdrop of (4.4)
being erroneous, comes as somewhat of a surprise. In any case, Hall’s formula (4.2) suggests
a more elegant and uniform approach to the computation of the Eulerian numbers of a
finite abelian p-group, which we explain next.

If G is a finite abelian p-group, then, by duality,

µG(H,G) = µG(1, G/H), H 6 G.

Moreover, Delsarte [Del48] shows in this case that, for H 6 G,

µG(1, H) =

{
(−1)sp(

s
2), H ∼= Cs

p ,

0, otherwise.

Hence, for
G = Cpλ1 × Cpλ2 × · · · × Cpλ`
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of type λ = (λ1, λ2, . . . , λ`) with λ1 > λ2 > · · · > λ` > 1, we have

ϕn(G) =
∑̀
s=0

∑
H6G

G/H∼=Csp

µG(1, G/H)|H|n

=
∑̀
s=0

∑
H6G

G/H∼=Csp

(−1)sp(
s
2)pn(λ1+···+λ`−s).

Again by duality, the number of subgroups H 6 G with G/H ∼= Cs
p equals the number of

subgroups K 6 G with K ∼= Cs
p . By a well-known result, the number of subgroups of type

ν = (ν1, . . . , ν`) in an abelian p-group of type λ = (λ1, . . . , λ`) is given by the formula∏
i>1

pν
′
i+1(λ

′
i−ν′i)

[
λ′i − ν ′i+1

ν ′i − ν ′i+1

]
p

, (4.6)

where λ′, ν ′ are the conjugates of the partitions λ and ν, respectively, and[
n

k

]
p

=
k−1∏
i=0

1− pn−i

1− pi+1

is the number of k-dimensional subspaces of an n-dimensional vector space over the field
Z/pZ; see, for instance, [But87, Eqn. (1)]. If H 6 G is such that H ∼= Cs

p , then its type ν
takes the form

ν = (1, 1, . . . , 1︸ ︷︷ ︸
s

, 0, 0, . . . , 0︸ ︷︷ ︸
`−s

),

and, consequently,

ν ′ = (s, 0, 0, . . . , 0︸ ︷︷ ︸
`−1

).

It thus follows from (4.6) that the number of subgroups H in a group G of type λ with
H ∼= Cs

p is simply given by the Gauß coefficient
[
`
s

]
p
. We thus obtain

ϕn(G) =
∑̀
s=0

(−1)sp(
s
2)
[
`

s

]
p

pn(λ1+···+λ`−s).

Applying the q-binomial theorem

(1 + z)(1 + qz) · · · (1 + q`−1z) =
∑̀
s=0

[
`

s

]
q

q(
s
2)zs

with q = p and z = −p−n, we find the following.

Proposition 4.1. Let

G = Cpλ1 × Cpλ2 × · · · × Cpλ`
be a finite abelian p-group of type λ = (λ1, . . . , λ`), where ` > 1 and λ1 > λ2 > · · · > λ` > 1,
and let n be a positive integer. Then the nth Eulerian number ϕn(G) of G is given by the
formula

ϕn(G) = pn(λ1+···+λ`)−(n+1
2 )+(n−`+1

2 )
`−1∏
i=0

(pn−i − 1). (4.7)
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In particular, for ` = n = 2, Equation (4.7) yields

ϕ2(Cpm × Cpr) = p2m+2r−3(p2 − 1)(p− 1), m > r, (4.8)

which is what Hirsch needs at this point.

Since 〈x, y〉 is non-trivial by assumption, at least one of its Sylow subgroups 〈xi, yi〉
must be non-trivial, thus d | ϕ2(〈x, y〉) by (4.3) and (4.8), so Nk(G) ≡ 1 (mod d). Since
N2 ≡ 1 (mod d) by definition of d, we find that k(G) ≡ N (mod d). The second (and
more subtle) part of Hirsch’s argument then deals with the task of strengthening the
modulus d by a factor 2, and is correct, apart from relying on the unsubstantiated Claim 1.3.
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