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AN EXPLICIT FORMULA FOR THE DIRAC MULTIPLICITIES ON LENS
SPACES

SEBASTIAN BOLDT, EMILIO A. LAURET

Abstract. We present a new description of the spectrum of the (spin-) Dirac operator D on
lens spaces. Viewing a spin lens space L as a locally symmetric space Γ\ Spin(2m)/ Spin(2m−1)
and exploiting the representation theory of the Spin groups, we obtain explicit formulas for
the multiplicities of the eigenvalues of D in terms of finitely many integer operations. As a
consequence, we present conditions for lens spaces to be Dirac isospectral. Tackling classic
questions of spectral geometry, we prove with the tools developed that neither spin structures
nor isometry classes of lens spaces are spectrally determined by giving infinite families of Dirac
isospectral lens spaces. These results are complemented by examples found with the help of a
computer.
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1. Introduction

Let M be a compact spin Riemannian manifold and fix spin structure on it. The then canon-
ically given (spin-) Dirac operator is an elliptic, essentially self adjoint first order differential
operator. Its spectrum is therefore real, consists only of eigenvalues with finite multiplicities
and has ±∞ as the only accumulation points.

The determination of Dirac spectra of compact spin Riemannian manifolds is usually only
possible in the presence of enough symmetries. As such there are only few explicit computations
of Dirac spectra (cf. [Bä06, §1.1.2], [Gi, §2]). The aim of this paper is to contribute to this
problem in the class of lens spaces, which are spherical space forms with cyclic fundamental
group.
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On the sphere, Hitchin [Hi74] was the first to determine the Dirac spectrum in dimension 3,
S. Sulanke computed it in her Ph.D. thesis [Su79] in all dimensions, C. Bär gave an alternative
proof in his Ph.D. thesis [Bä91] (see also [Bä96]). The Dirac spectrum on Sn consists of the
eigenvalues ±

(
k + n

2

)
with corresponding multiplicities 2b

n
2
c(k+n−1

n−1

)
, k ≥ 0.

We now consider a spherical space form, that is, MΓ := Γ\Sn with Γ ⊂ SO(n + 1) acting
freely on Sn. We restrict our attention to the case n = 2m−1 since the only manifold properly
covered by an even dimensional sphere is the real projective space. Spin structures on MΓ are
in 1–1 correspondence with homomorphisms τ : Γ → Spin(2m) satisfying Θ ◦ τ = IdΓ, where
Θ : Spin(2m)→ SO(2m) is the universal covering homomorphism. The Dirac spectrum of MΓ

endowed with τ is contained in the Dirac spectrum of the sphere, though its multiplicities are
in general smaller than the corresponding ones of the sphere. More precisely, the multiplicity
mult(MΓ,τ)(±λk) of the eigenvalue ±λk (λk := k + n

2
= k +m− 1

2
) satisfies

0 ≤ mult(MΓ,τ)(±λk) ≤ 2m−1
(
k+2m−2

2m−2

)
.

Bär [Bä96], inspired by Ikeda’s extensive work on the Laplace spectrum of spherical space
forms, approached the spectrum of MΓ endowed with τ by giving closed formulas for the
generating functions F±(MΓ,τ)(z) :=

∑
k≥0 mult(MΓ,τ)(±λk) zk which read

(1.1) F±(MΓ,τ)(z) =
1

|Γ|
∑
γ∈Γ

χ∓(τ(γ))− z · χ±(τ(γ))

det(12m − zγ)
,

where χ± denote the half spin characters. Formula (1.1) can be used to compute the Dirac
spectrum in particular cases (see for instance [MPT11, §7] and [Teh13, §9–10]). In general,
however, it does not suit the task.

Our goal is to give an alternative and explicit description of the Dirac spectrum on lens spaces.
The approach is representation theoretic in nature, essentially using Frobenius reciprocity. In
fact it is the same as the one used in [LMR13], where R. Miatello, J.P. Rossetti and the
second named author treated the Laplace operator case, obtaining an explicit description of
the spectrum in terms of one-norm lengths of certain associated congruence lattices and also a
geometric characterization of isospectrality.

To each (2m−1)-dimensional lens space L := L(q; s1, . . . , sm) (see Subsection 2.2 for notation)
admitting a spin structure τ , we associate an affine congruence lattice L (see Lemma 4.1) inside
the affine lattice Em := (1

2
, . . . , 1

2
) + Zm. For example, when the order q of the fundamental

group is odd, L admits only one spin structure τ and its associated affine congruence lattice is

(1.2) L =
{

1
2
(a1, . . . , am) ∈ Em : a1s1 + · · ·+ amsm ≡ 0 (mod q)

}
.

The main result, Theorem 4.3, states that

mult(L,τ)(−λk) =
k∑
r=0

(
r+m−2
m−2

)
NL(r, k − r),(1.3)

mult(L,τ)(+λk) =
k∑
r=0

(
r+m−2
m−2

)
NL(r + 1, k − r),

where NL(r, k) denotes the number of tuples µ = 1
2
(a1, . . . , am) ∈ L whose one-norm equals

k + m
2

(i.e. ‖µ‖1 := 1
2

∑
|aj| = k + m

2
) and whose number of negative entries is congruent to r

modulo 2.
As a consequence of this formula, we obtain a characterization of Dirac isospectrality in the

class of lens spaces (Corollary 4.5). Namely, two lens spaces with fixed spin structures have
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the same Dirac spectra if and only if their associated affine congruence lattices L and L′ are
oriented ‖·‖1-isospectral, that is, NL(ε, k) = NL′(ε, k) for every k ≥ 0 and every ε = 0, 1.

This characterization allows us to find families of Dirac isospectral lens spaces. We present
in Theorem 5.2 an infinite sequence of growing families of lens spaces which are pairwise non-
isometric and Dirac isospectral. Theorem 5.6 gives an infinite sequence of pairs of 7-dimensional
non-isometric lens spaces which are Dirac isospectral. When q and m are even, lens spaces have
two inequivalent spin structures and Theorem 5.4 gives an infinite sequence of 7-dimensional
lens spaces such that their two spin structures produce the same Dirac spectra.

We also prove a finiteness result (Proposition 6.1) that allows for the previous characteri-
zations to be implemented in a computer program. We associate to each lens space endowed
with a spin structure finitely many numbers in such a way they determine its Dirac spec-
trum. In particular, one has to check only finitely many equations to decide whether two lens
spaces are Dirac isospectral. As a consequence, Corollary 6.2 ensures that two spin lens spaces
(L, τ) and (L′, τ ′) are Dirac isospectral if and only if their multiplicities mult(L,τ)(±λk) and
mult(L′,τ ′)(±λk) coincide for all k < mq, where q is the order of the fundamental groups and
2m− 1 is the dimension of L and L′.

Note that, for a given dimension and a given order of the fundamental group, both obstruc-
tions for isospectrality, there are only finitely many isometry classes of (oriented) lens spaces
(with a fixed spin structure). Together with the finiteness result mentioned above, one can
therefore systematically search for Dirac isospectral lens spaces with the help of a computer,
as we have done. The corresponding results (see Table 6) can be found in Section 6 together
with a discussion of some phenomena that occur. The most important one is that we have not
found any pair of non-isometric Dirac isospectral lens spaces in dimensions n ≡ 1 (mod 4). The
authors believe that this is always the case (see Conjecture 6.3). Furthermore, in dimension 7,
most of the Dirac isospectral pairs are also p-isospectral for all p, though there are exceptions,
which Remark 6.4 points out.

There are examples of Dirac isospectral spin Riemannian manifolds in the literature, but
not in the class of lens spaces. Actually, to our best knowledge, the following list contains all
of the non-trivial examples: [Bä96], [AB98], [MP06] (cf. [Gi, §6.1] and [P06]). Bär pointed
out in [Bä96, Cor. 2] that the usual construction of Laplace isospectral manifolds by using
almost conjugate subgroups (known as “generalized Sunada method”) also works for Dirac
operators on spherical space forms admitting spin structures. This method cannot be applied
for non-isometric lens spaces since cyclic almost conjugate subgroups are necessarily conjugate,
thus the associated manifolds are isometric (cf. [Bä96, p. 79]). Moreover, our examples are
fundamentally different from the ones produced by this method since its resulting manifolds
are always strongly isospectral (isospectral for every natural differential operator on natural
bundles) while it is well known that strongly isospectral lens spaces are necessarily isometric
(see for instance [LMR13, Prop. 7.2]).

The paper is organized as follows. In Section 2 we recall two well known facts on spin
geometry, namely, the Dirac spectrum of spherical space forms and the spin structures admitted
by lens spaces. We then introduce the notion of an affine congruence lattice associated to a
lens space in Section 3, showing that there is an isometry between lens spaces that relates their
spin structures if and only if there is an one-norm preserving isometry between the associated
affine congruence lattices. In Section 4 we describe the Dirac spectrum of a spin lens space
and give a characterization of Dirac isospectrality in terms of one-norm isospectrality of affine
congruence lattices. By using the previous characterization, we give in Section 5 two infinite
sequences of pairs of Dirac isospectral lens spaces. We end in Section 6 with a computational
approach to isospectral Dirac lens spaces and some remarks about the results obtained.
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2. Preliminaries

In this section we review well known facts about the Dirac operator on spherical space forms.
We give a description of the Dirac spectrum of an arbitrary spin spherical space. We use
the same representation theoretic technique already used by Sulanke [Su79]. Note that this
approach is different from the one in [Bä96] which uses Killing spinors. We end the section
introducing lens spaces and the classification of their spin structures.

The Dirac operator is different from the usual natural differential operators. It depends on a
spin structure which need not exist, nor need it be unique. This dependence is non-trivial, i.e.
in general the spectrum changes with a change of the spin structure, see for example [Bä00].
If, however, a manifold carries an orientation preserving isometry that takes one spin structure
to another, the spectra of the associated Dirac operators are the same. Therefore, if one is
looking for a manifold which is Dirac isospectral to itself when equipped with two inequivalent
spin structures, one has to check the non-existence of such an isometry for the isospectrality to
be non-trivial. We therefore present a “spin version” of the well-known isometry classification
of lens spaces (see Proposition 2.2) in Proposition 2.5.

In addition to the dependence on a spin structure, the Dirac operator also depends on an
orientation. A change of orientation results in the Dirac operator becoming its own negative
and hence flipping its spectrum around zero. When in search of Dirac isospectral manifolds,
one therefore has to compare spectra modulo orientations, i.e. modulo reflection. We thus also
state conditions for an isometry between lens spaces to be orientation preserving (respectively
reversing) in Proposition 2.5.

2.1. Dirac spectrum of spherical spaces forms. We denote by Sn the n-dimensional sphere
of constant curvature one. A spherical space form is a manifold of the form Γ\Sn where Γ is
a finite group of isometries that acts freely. For the convenience of the reader we briefly
recall the computation of the Dirac spectrum on spherical space forms (see Sulanke [Su79] and
Bär [Bä96]). We will restrict to the odd dimensional case n = 2m− 1 since the only manifold
properly covered by S2m is PR2m, which is not orientable and so in particular not spin.

The sphere S2m−1 has a symmetric space structure as G/K with G = Spin(2m) and K =
{g ∈ G : g · e2m = e2m} ' Spin(2m − 1). The SO(2m − 1)–bundle of oriented orthonormal
frames of S2m−1 is given by SO(2m) with projection onto the last column and multiplication by
the structure group from the right on the remaining 2m− 1 columns. A spin structure is thus
given by Θ : Spin(2m) → SO(2m), the universal covering homomorphism, and since S2m−1 is
simply connected, it is also the unique spin structure of the sphere up to equivalence.

Let ρ : K → GL(Σ2m−1) be the spinor representation. Here Σ2m−1 is a 2m−1-dimensional com-
plex vector space. The group Spin(2m) acts from the left on the Hilbert space L2(S2m−1,Σ2m−1)
of L2-sections of the spinor bundle over S2m−1 by (g ·f)(x) = f(g−1x). By Frobenius reciprocity,
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this representation decomposes into the direct sum

(2.1) L2(S2m−1,Σ2m−1) =
∑
π∈Ĝ

Vπ ⊗ HomK(Vπ,Σ2m−1),

where Ĝ denotes the class of irreducible representations of G = Spin(2m), g ∈ G acts on each
Vπ⊗HomK(Vπ,Σ2m−1) by g · (v⊗A) = π(g)v⊗A, and v⊗A ∈ Vπ⊗HomK(Vπ,Σ2m−1) induces
the section gK 7→ A ◦ π(g−1)(v) (see for instance [Bä92, Thm. 2]).

We now turn to spherical space forms, quotients Γ\S2m−1 of the sphere by a finite group
of isometries acting freely. Consider the induced action of Γ on SO(S2m−1) ' SO(2m). If
this action lifts to the spin structure Spin(2m) of S2m−1, then the quotient by this action is a
spin structure of Γ\S2m−1 (see [Gi, Prop. 1.4.2]). Furthermore, every spin structure is of this
form by [Fr, Ch. 2.2]. Since the bundle of positively oriented orthonormal frames as well as
the spin structure of S2m−1 are groups themselves, group actions of Γ on Spin(2m) are in 1-1
correspondence with group homomorphisms τ : Γ→ Spin(2m) such that Θ ◦ τ = IdΓ.

The L2-spinor bundle on Γ\S2m−1 corresponds to τ(Γ)-invariant elements in L2(S2m−1,Σ2m−1),
thus

(2.2) L2(Γ\S2m−1,Σ2m−1) =
∑
π∈Ĝ

V τ(Γ)
π ⊗ HomK(Vπ,Σ2m−1),

where V
τ(Γ)
π = {v ∈ Vπ : (π ◦ τ)(γ)v = v ∀γ ∈ Γ}.

Odd dimensional spherical space forms are always orientable since any discrete subgroup Γ
of the isometry group O(2m) of S2m−1 acting without fixed points is already a subgroup of
SO(2m). On Γ\S2m−1, we will always consider the inherited orientation from the previously
chosen orientation on S2m−1.

Let g = spin(2m) and k ' spin(2m − 1), the Lie algebras of G and K respectively. It is
well known that g =

∑
1≤i<j≤2mReiej and k =

∑
1≤i<j≤2m−1 Reiej as subspaces of the Clifford

algebra Cl(R2m), where {e1, . . . , e2m} denotes the canonical basis of R2m. We consider the
Cartan decomposition g = k ⊕ p and the inner product 〈·, ·〉 on g given by a multiple of the
Killing form in such a way that its restriction to p induces the round metric on S2m−1 with
constant curvature one. It turns out that {Xk := 1

2
eke2m : 1 ≤ k ≤ 2m− 1} is an orthonormal

basis of p.
We fix the standard maximal torus in G,

(2.3) T =
{
g =

∑m
j=1

(
cos θj + sin θj e2j−1e2j

)
∈ G : θ1, . . . , θm ∈ R

}
.

Its Lie algebra is

(2.4) t =
{
X =

∑m
j=1 θje2j−1e2j ∈ spin(2m) : θ1, . . . , θm ∈ R

}
.

Note that g = exp(X) and

(2.5) Θ(g) = diag
([

cos(2θ1) − sin(2θ1)
sin(2θ1) cos(2θ1)

]
, . . . ,

[
cos(2θm) − sin(2θm)
sin(2θm) cos(2θm)

])
∈ SO(2m)

if g ∈ T and X ∈ t are as above.
The Cartan subalgebra h := t ⊗R C of gC := g ⊗R C ' so(2m,C) is given as in (2.4) with

θ1, . . . , θm ∈ C and, in this case, we let εj ∈ h∗ be given by εj(X) = 2iθj for 1 ≤ j ≤ m. The
weight lattice of G is

(2.6) P (G) =
{∑m

j=1 ajεj : aj ∈ Z ∀j or aj ∈ 1
2

+ Z ∀j
}
.

We fix the standard system of positive roots, thus a weight
∑m

j=1 ajεj ∈ P (G) is dominant if

and only if a1 ≥ · · · ≥ am−1 ≥ |am|. We consider in K the maximal torus T ∩ K, thus the
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associated Cartan subalgebra is included in h. Under this convention, the weight lattice of K
is

(2.7) P (K) =
{∑m−1

j=1 ajεj : aj ∈ Z ∀j or aj ∈ 1
2

+ Z ∀j
}

and
∑m−1

j=1 ajεj ∈ P (K) is dominant if and only if a1 ≥ · · · ≥ am−1 ≥ 0. By the highest weight

theorem, since G = Spin(2m) and K ' Spin(2m−1) are simply connected compact Lie groups,
the irreducible unitary representations of G and K are in correspondence with the dominant
elements in P (G) and P (K) respectively. For example, the spinor representation ρ of K has
highest weight 1

2
(ε1 + · · · + εm−1). For Λ ∈ P (G) dominant, we denote by πΛ the associated

representations in Ĝ.

Proposition 2.1. Let MΓ := Γ\S2m−1 be a spherical space form with spin structure induced
by τ : Γ→ Spin(2m). For each non-negative integer k, let π±k be the irreducible representations
of Spin(2m) with highest weights

Λ±k := 1
2

(
(2k + 1)ε1 + ε2 + · · ·+ εm−1 ± εm

)
.

Then, the eigenvalues of the Dirac operator D on the spinor bundle of MΓ are ±λk with λk :=
k + 2m−1

2
, with multiplicity

mult(MΓ,τ)(±λk) := dimV
τ(Γ)

π∓k
.

Proof. Let Λ =
∑m

j=1 ajεj ∈ P (G) dominant. By the classical branching law from Spin(2m)

to Spin(2m − 1) (see for instance [GW, Thm. 8.1.4]), HomK(VπΛ
,Σ2m−1) 6= 0 if and only if

aj ∈ 1
2

+ Z for all j and

a1 ≥ 1
2
≥ a2 ≥ · · · ≥ am−1 ≥ 1

2
≥ |am|.

Moreover HomK(Vπ,Σ2m−1) has dimension one. Hence, the sum in (2.2) can be restricted to
{π±k : k ≥ 0}.

The Dirac operator D commutes with the action of G, thus D leaves invariant V
τ(Γ)
π ⊗

HomK(Vπ,Σ2m−1) in (2.2) for each π. Moreover, from [Bä92, Prop. 1], D restricted to V
τ(Γ)
π ⊗

HomK(Vπ,Σ2m−1) is equal to Id⊗Dπ where

(2.8) Dπ(A) = −
2m−1∑
j=1

ej · A ◦ dπ(Xj).

Since HomK(Vπ,Σ2m−1) is one-dimensional for π ∈ {π±k : k ≥ 0}, Dπ±k
acts by a scalar λ±k

whose multiplicity is dim
(
V
τ(Γ)

π±k
⊗ HomK(Vπ±k

,Σ2m−1)
)

= dimV
τ(Γ)

π±k
. It remains to show that

λ±k = ∓(k + 2m−1
2

).

Denote by A ∈ HomK

(
Vπ±k

,Σ2m−1)
)

the projection onto Σ2m−1 along the other isotypical

summands of Vπ±k
. By the above, HomK(Vπ±k

,Σ2m−1)
)

= CA. It is thus enough to show that

(2.9)
2m−1∑
j=1

ej · A ◦ dπ±k (Xj)(u) = ±(k + 2m−1
2

)A(u)

for a vector u that is not in the kernel of A.
The representation π±k has highest weight Λ±k = kε1 + Λ±0 , thus it is contained in the tensor

product πkε1 ⊗ π±0 . Here, πkε1 is the representation of traceless symmetric degree k tensors in
e1, . . . , e2m and π±0 are the positive and negative half-spinor representations of Spin(2m).

Define
u = (e2m−1 ∓ ie2m)k ⊗ v ∈ Vπkε1 ⊗ Vπ±0
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where v is a highest weight vector for π±0 . The element u lies in the weight space with weight
±kεm+Λ±0 and spans this weight space since it is conjugate under the Weyl group to the weight
space with highest weight Λ±k .

The element X2m−1 is in the Cartan subalgebra h of spin(2m) and A(u) is a highest weight
vector of Σ2m−1, so dπ±k (X2m−1)(u) = (±kεm + Λ±0 )(X2m−1)u = ±(k + 1

2
)i u. Hence,

(e2m−1 · A ◦ dπ±k (X2m−1))(u) = ±i(k + 1
2
)e2m−1 · A(u) = ±(k + 1

2
)A(u)

since multiplication by e2m−1 is −i by the usual choice of Clifford multiplication.
For the remaining terms (1 ≤ j ≤ 2m− 2) one can check that ej · A(dπ(Xj)(u)) = ±1

2
A(u)

by writing Xj as a suitable linear combination of root vectors of so(2m − 1) ' spin(2m − 1)
and so(2m) ' spin(2m).

Combining the terms we obtain

2m−1∑
j=1

ej · A · dπ(Xj)(u) = (±(2m− 2)1
2
± (k + 1

2
))A(u)

= ±(k +m− 1
2
)A(u),

which establishes (2.9) and concludes the proof. �

2.2. Spin structures on lens spaces. The manifolds covered by S2m−1 with cyclic funda-
mental group are called lens spaces. They can be described as follows. We associate to q ∈ N
and s1, . . . , sm ∈ Z such that sj is coprime to q for all 1 ≤ j ≤ m, the lens space

(2.10) L(q; s1, . . . , sm) := 〈γ〉\S2m−1

where

(2.11) γ = diag
([

cos(2πs1/q) − sin(2πs1/q)
sin(2πs1/q) cos(2πs1/q)

]
, . . . ,

[
cos(2πsm/q) − sin(2πsm/q)
sin(2πsm/q) cos(2πsm/q)

])
∈ SO(2m).

The element γ generates a cyclic group of order q in SO(2m) that acts freely on S2m−1. The
next result is well known (see for instance [Co, Ch. V]).

Proposition 2.2. Let L = L(q; s1, . . . , sm) and L′ = L(q; s′1, . . . , s
′
m) be lens spaces. Then the

following assertions are equivalent.

(1) L is isometric to L′.
(2) L is diffeomorphic to L′.
(3) L is homeomorphic to L′.
(4) There exist ` ∈ Z coprime to q, ε1, . . . , εm ∈ {±1} and σ a permutation of {1, . . . ,m}

such that `εjsj ≡ s′σ(j) (mod q).

We next describe the spin structures admitted by the lens space L = L(q; s1, . . . , sm) =
Γ\S2m−1. If q is odd, let τ : Γ→ Spin(2m) be given by

(2.12) τ(γk) =
m∏
j=1

(
cos
(

(q+1)ksjπ

q

)
+ sin

(
(q+1)ksjπ

q

)
e2j−1e2j

)
.

One can check that Θ ◦ τ = IdΓ, thus τ defines a spin structure on L. We next assume q and
m even. Sometimes we will abbreviate s = (s1, . . . , sm). Let hq;s =

∑
jb
sj
q
c. For h ∈ Z, we let

τh : Γ→ Spin(2m) be given by

(2.13) τh(γ
k) = (−1)k(h+hq;s)

m∏
j=1

(
cos(

ksjπ

q
) + sin(

ksjπ

q
) e2j−1e2j

)
.
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Again we have that Θ ◦ τh = IdΓ, thus τh defines a spin structure on L. Clearly τh depends
only on the parity of h.

Remark 2.3. We include the term (−1)hq;s in (2.13) since we want to associate the spin
structure to a lens space independently of its parameters. To be more precise, suppose that
we define the spin structure as in (2.13) without the term (−1)hq;s . Then, the lens spaces
L = L(q; s1, . . . , sm) and L′ = L(q; s1 + q, s2, . . . , sm) coincide by definition, but the spin
structures are switched, that is, τ0 = τ ′1 and τ1 = τ ′0.

The following result due to Franc [Fra87] classifies the spin structures on lens spaces.

Theorem 2.4. Let L = L(q; s1, . . . , sm). If q is odd, L admits (up to equivalence) only one
spin structure which is induced by (2.12). If q is even, L does not admit a spin structure when
m is odd, and admits two inequivalent spin structures when m is even, which are induced by τ0

and τ1 as in (2.13).

From now on, unless otherwise stated, we assume that the spin structures on L(q; s1, . . . , sm)
are induced by τ as in (2.12) or (2.13) depending on the parity of q. Moreover, for simplicity,
we shall simply indicate the spin structure by τ , in place of writing “the spin structure induced
by τ”.

For the convenience of the next sections, we will give a more explicit version of Proposi-
tion 2.2, giving a particular isometry and what it does to the spin structures. We will use the
identification

S2m−1 = {(z1, . . . , zm) ∈ Cm : |z1|2 + · · ·+ |zm|2 = 1},

thus an element g = diag
([

cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]
, . . . ,

[
cos(θm) − sin(θm)
sin(θm) cos(θm)

])
in the maximal torus T of

SO(2m) acts by
g · (z1, . . . , zm) = (eiθ1z1, . . . , e

iθmzm).

Hence, the lens space L = L(q; s1, . . . , sm) is defined by S2m−1 under the relation

(z1, . . . , zm) ∼ (e2πis1/qz1, . . . , e
2πism/qzm).

We usually write π : S2m−1 → L for the projection.
For σ a permutation of {1, . . . ,m} and ε1, . . . , εm ∈ {±1}, we associate the function

(2.14)
Ψ : S2m−1 −→ S2m−1

(z1, . . . , zm) 7−→ (w1, . . . , wm),
where wσ(j) =

{
zj if εj = 1,

zj if εj = −1.

Clearly Ψ is an isometry of S2m−1. Furthermore, we can see that each conjugate coordinate in
wσ(j) changes the orientation, thus Ψ will preserve or reverse one fixed orientation on S2m−1

depending on ε = 1 or ε = −1 respectively, where ε := ε1 . . . εm.

Proposition 2.5. Let L = L(q; s1, . . . , sm) and L′ = L(q; s′1, . . . , s
′
m) be lens spaces and π :

S2m−1 → L and π′ : S2m−1 → L′ their projections. Let σ be a permutation of {1, . . . ,m}, let
ε1, . . . , εm ∈ {±1} and let Ψ be the associated isometry of S2m−1 as above. Then, there is an
isometry ψ : L→ L′ such that π′ ◦Ψ = ψ ◦ π if and only if there exists ` ∈ Z such that

(2.15) `εjsj ≡ s′σ(j) (mod q) for all j.

In this case the isometry ψ preserves or reverses the orientation according to ε = 1 or ε = −1,
where ε = ε1 . . . εm.

Moreover, when this happens and q is even, we have that ψ : L → L′ takes τh to τ ′h′, where
ρj := (`εjsj − s′σ(j))/q and

h′ = h+ hq;s + hq;s′ +
∑

j ρj.
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Proof. Set ξ = e2πi/q. We first suppose that such ψ exists, thus π′ ◦ Ψ(ξs1z1, . . . , ξ
smzm) =

ψ ◦ π(ξs1z1, . . . , ξ
smzm) = ψ ◦ π(z1, . . . , zm) = π′ ◦ Ψ(z1, . . . , zm) for every (z1, . . . , zm) ∈

S2m−1. We write Ψ(z1, . . . , zm) = (w1, . . . , wm), thus one can check that Ψ(ξs1z1, . . . , ξ
smzm) =

(ξεσ−1(1)sσ−1(1)w1, . . . , ξ
εσ−1(m)sσ−1(m)wm). Hence, there exists ` ∈ Z such that

(ξ`s
′
1w1, . . . , ξ

`s′mwm) = (ξεσ−1(1)sσ−1(1)w1, . . . , ξ
εσ−1(m)sσ−1(m)wm),

then εjsj ≡ `s′σ(j) (mod q) for all j.

We next prove the converse. Condition (2.15) above is equivalent to

γ` = Ψ−1 ◦ γ′ ◦Ψ.(2.16)

This implies that the function ψ : L→ L′ given by ψ([p]L) = [Ψ(p)]L′ is a well defined isometric
bijection.

Each conjugate coordinate in (2.14) changes the orientation, thus ψ will preserve or reverse
the orientation according to the parity of the number of conjugate coordinates.

Finally, relation (2.16) lifts to the spin level as

τ ′
h
(γ`) = Ψ̃−1 · τh(γ′) · Ψ̃

where ψ̃ ∈ Pin(2m) is one of the lifts of ψ ∈ O(2m) which proves the claim on the behavior of
the spin structures under ψ. �

3. Affine Congruence Lattices

In this section we will associate to each lens space with a fixed spin structure an affine
congruence lattice. We will prove a close relation between isometries of lens spaces and linear
bijections of affine congruence lattices that preserve the one-norm.

We first fix some notation. Write

(3.1) Em = (1
2

+ Z)m = {(a1, . . . , am) ∈ Qm : 2aj ∈ 2Z + 1 ∀ 1 ≤ j ≤ m},

the translation of Zm by (1
2
, . . . , 1

2
). We will usually write the elements in Em as 1

2
(a1, . . . , am)

with a1, . . . , am odd integer numbers. For q ∈ N and s = (s1, . . . , sm) ∈ Zm such that sj is
coprime to q for every j, we set

(3.2) L(q; s) = {1
2
(a1, . . . , am) ∈ Em :

∑
j ajsj ≡ 0 (mod q)}.

Furthermore, if q is even, we set

(3.3) L(q; s;h) = {1
2
(a1, . . . , am) ∈ Em :

∑
j ajsj ≡ hq (mod 2q)}

for h ∈ Z. Note that L(q; s;h) depends only on the parity of h and L(q; s) = L(q; s; 0)∪L(q; s; 1)
as a disjoint union.

Let us denote by ‖µ‖1 the one-norm of µ = 1
2
(a1, . . . , am), that is, ‖µ‖1 = 1

2

∑m
j=1 |aj|. We

recall that ϕ : Em → Em is an isometry that preserves the one-norm (i.e. a ‖·‖1-isometry) if
and only if it is a composition of a permutation and multiplication by ±1 in each coordinate
(see for instance [LMR13, Prop. 3.3]). More precisely,

(3.4) ϕ(1
2
(a1, . . . , am)) = 1

2
(εσ−1(1)aσ−1(1), . . . , εσ−1(m)aσ−1(m)),

where σ is a permutation of {1, . . . ,m} and ε1, . . . , εm ∈ {±1}. We will say that ϕ preserves
orientation if ε :=

∏m
j=1 εj = 1, or reverses orientation if ε = −1.

Define R(µ) = #{1 ≤ j ≤ m : aj < 0} for µ = 1
2
(a1, . . . , am) ∈ Em. For any subset L of Em

and ε ∈ Z, we denote Lε = {µ ∈ L : R(µ) ≡ ε (mod 2)}, thus L = L0 ∪ L1 as a disjoint union.
Note that

R(ϕ(µ))−R(µ) ≡ ε−1
2

(mod 2),
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that is, R(ϕ(µ)) and R(µ) have the same parity if and only if ε = 1. Hence, a ‖·‖1-isometry ϕ
preserves orientation if and only if ϕ(Em0 ) = Em0 and ϕ(Em1 ) = Em1 .

The next two propositions will illuminate the relation between isometries of lens spaces with
given spin structures and ‖·‖1-isometries of affine congruence lattices. This relation is explained
in Corollary 3.3.

Proposition 3.1. Let q be a positive odd integer and let s and s′ be in Zm with all coordinates
coprime to q. Let σ be a permutation of {1, . . . ,m}, ε1, . . . , εm ∈ {±1} and let ϕ be as in (3.4).
Then, ϕ(L(q; s)) = L(q; s′) if and only if there exists ` ∈ Z coprime to q such that

`εjsj ≡ s′σ(j) (mod q) for every j.

Proof. Let us first prove the converse. We assume that there exists such ` ∈ Z. Let µ =
1
2
(a1, . . . , am) ∈ L(q; s), thus

∑
j ajsj ≡ 0 (mod q). We have that ϕ(µ) ∈ L(q; s′) since∑

j

aσ−1(j)εσ−1(j)s
′
j =

∑
j

ajεjs
′
σ(j) ≡

∑
j

aj`ε
2
jsj (mod q)

≡ `
∑
j

ajsj ≡ 0 (mod q).

This proves that ϕ(L(q; s)) ⊂ L(q; s′). The other inclusion is very similar.
We now suppose that ϕ(L(q; s)) = L(q; s′). We can assume that sj is odd for every j, since

if not, we replace it by sj + q. Let µi = 1
2
(si, q, . . . , q,−s1, q, . . . , q) for 2 ≤ i ≤ m, where the

coordinate −s1 is in the ith entry. One can easily check that µi ∈ L(q; s). Hence ϕ(µi) ∈ L(q; s′)
and

0 ≡ siε1s
′
σ(1) − s1εis

′
σ(i) + q

∑
j 6=1,i

εjs
′
σ(j) ≡ siε1s

′
σ(1) − s1εis

′
σ(i) (mod q).

We let ` ∈ Z such that s1` ≡ ε1s
′
σ(1) (mod q), thus `εisi ≡ s′σ(i) (mod q) for all 1 ≤ i ≤ m. �

Proposition 3.2. Let q be a positive even integer and let s and s′ be in Zm with all coordinates
coprime to q. Let σ be a permutation of {1, . . . ,m}, ε1, . . . , εm ∈ {±1}, ρ ∈ {0, 1} and let ϕ
be as in (3.4). Then ϕ(L(q; s;h)) = L(q; s′;h + ρ) for all h ∈ {0, 1} if and only if there exists
` ∈ Z coprime to q such that

`εjsj ≡ s′σ(j) (mod q) for all j and ρ ≡
m∑
j=1

`εjsj − s′σ(j)

q
(mod 2).

Proof. Suppose that such an ` exists. Note that ` is odd since it is coprime to q. Let ρj =
(`εjsj − s′σ(j))/q, thus s′σ(j) = `εjsj−ρjq. Let µ = 1

2
(a1, . . . , am) ∈ L(q; s;h), thus

∑
j ajsj ≡ hq

(mod 2q). Then ∑
j

ajεjs
′
σ(j) ≡

∑
j

ajεj(`εjsj − ρjq) (mod 2q)

≡ `
∑
j

ajsj − q
∑
j

ajεjρj (mod 2q)

≡ (h+ ρ)q (mod 2q).

In the last step we used that `, aj and εj are odd integers. We have proved that ϕ(µ) ∈
L(q; s′;h+ ρ), while the reversed inclusion is very similar.

We now assume that ϕ(L(q; s;h)) = L(q; s′;h+ ρ) for h = 0, 1. Define

η = 1
2
(−s2, s1,−s4, s3, . . . ,−sm, sm−1),

µi = η + (−si, 0, . . . , 0, s1, 0, . . . , 0) for all 1 < i ≤ m.



DIRAC MULTIPLICITIES ON LENS SPACES 11

Clearly, η ∈ L(q; s; 0) and µi ∈ L(q; s; 0), then

s1εis
′
σ(i) − siε1s′σ(1) ≡ 0 (mod q).

Let ` ∈ Z be such that `s1 ≡ ε1s
′
σ(1) (mod q). By the above, `si ≡ εis

′
σ(i) (mod q) for all

1 ≤ i ≤ m. It remains to show that this ` fulfills the condition on ρ. For this, let ρi =
`si−εis′σ(i)

q
.

Since ϕ(η) ∈ L(q; s′; ρ), we have

−s2ε1s
′
σ(1) + s1ε2s

′
σ(2) + . . .− smεm−1s

′
σ(m−1) + sm−1εms

′
σ(m) ≡ ρq (mod q).

Multiplying both sides by ` and substituting `si by qρi + εis
′
σ(i) gives ρ ≡

∑
i ρi (mod 2q). �

In the next result, ε-oriented means that it preserves orientation if ε = 1 and it reverses
orientation if ε = −1.

Corollary 3.3. Let q be a positive integer and let s and s′ be in Zm with all coordinates
coprime to q. Then, if q is odd, there is an ε-oriented isometry ψ between L(q; s) and L(q; s′)
if and only if there is an ε-oriented ‖·‖1-isometry ϕ between L(q; s) and L(q; s′). If q is even
and ρ ∈ {0, 1}, there is an ε-oriented isometry ψ between L(q; s) and L(q; s′) taking the spin
structures τh to τ ′h+ρ for h = 0, 1 if and only if there is an ε-oriented ‖·‖1-isometry ϕ with
ϕ(L(q; s;h)) = L(q; s;h+ ρ) for h = 0, 1.

Proof. Let q be an odd integer. The claim follows from Proposition 2.5 and Proposition 3.1 since
both conditions are equivalent to the existence of a permutation σ of {1, . . . ,m}, ε1, . . . , εm ∈
{±1} and ` ∈ Z such that `εjsj ≡ s′σ(j) (mod q) for all j. If q is even, the claim follows similarly
from Proposition 2.5 and Proposition 3.2. �

4. Dirac spectra of lens spaces

In this section we will give a geometric characterization of lens spaces that are Dirac isospec-
tral in terms of the ‖·‖1-lengths of their associated affine congruence lattices.

We will identify an element
∑m

j=1 ajεj ∈ h∗ (see (2.4)) with (a1, . . . , am) ∈ Cm. Hence, the

weight lattice P (G) for G = Spin(2m) is the disjoint union of Zm and Em = (1
2
, . . . , 1

2
) + Zm

(see (3.1)). We recall that π±k denotes the irreducible representation of G with highest weight
Λ±k = 1

2
((2k + 1)ε1 + ε2 + · · · + εm−1 ± εm). As usual, mπ(µ) := dimVπ(µ), the multiplicity of

µ in π.

Lemma 4.1. Let L(q; s1, . . . , sm) = Γ\S2m−1 be lens space with spin structure τ . Then

dimV
τ(Γ)

π±k
=
∑
µ∈LΓ;τ

mπ±k
(µ)

where

LΓ;τ =

{
L(q; s) if q is odd,

L(q; s;h+ hq;s) if q is even and τ = τh.

We call LΓ,τ the affine congruence lattice associated to L and τ .

Proof. For any representation π of G one has the decomposition Vπ = ⊕µ∈P (G)Vπ(µ) in weight

spaces, that is, an element g ∈ T acts on each Vπ(µ) by gµ := eµ(X), where X ∈ h satisfies
exp(X) = g. Since τ(Γ) ⊂ T , we have that

V τ(Γ)
π =

⊕
µ∈P (G)

Vπ(µ)τ(Γ).
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Moreover, Γ is cyclically generated by γ as in (2.11), thus a nonzero element v ∈ Vπ(µ) is
Γ-invariant if and only if τ(γ)µ = 1. Hence

dimV τ(Γ)
π =

∑
µ

dimVπ(µ)τ(Γ) =
∑
µ

mπ(µ)

where µ runs through P (G) satisfying τ(γ)µ = 1.
In the case at hand, π = π±k for some integer k ≥ 0, we have that mπ±k

(µ) = 0 for every

µ ∈ Zm (see Lemma 4.2). It remains to show that {µ ∈ Em : τ(γ)µ = 1} is equal to L(q; s) if q
is odd or equal to L(q; s;h) if q is even and τ = τh.

We first assume q odd. Recall that τ is as in (2.12) We let Xτ(γ) =
∑m

j=1
(q+1)sjπ

q
e2j−1e2j,

thus exp(Xτ(γ)) = τ(γ). Then τ(γ)µ = eµ(Xτ(γ)) with

µ(Xτ(γ)) = 2πi
(q + 1)

2q

m∑
j=1

ajsj

for µ = 1
2

∑m
j=1 ajεj ∈ Em. Hence, τ(γ)µ = 1 if and only if q+1

2

∑m
j=1 ajsj ∈ qZ. Since q+1

2
is an

integer coprime to q and
∑m

j=1 ajsj ∈ Z, the assertion in this case follows.

We next assume q even, thus m is even and τ = τh for some h ∈ {0, 1} as in (2.13). Then

τh(γ) =
m−1∏
j=1

(
cos(

sjπ

q
) + sin(

sjπ

q
) e2j−1e2j

)
·
(

cos( sm+(h+hq;s)q

q
π) + sin( sm+(h+hq;s)q

q
π) e2m−1e2m

)
.

Similarly as above, we letXτh(γ) =
∑m−1

j=1
sjπ

q
e2j−1e2j+

sm+(h+hq;s)q

q
πe2m−1e2m, thus exp(Xτh(γ)) =

τh(γ), τh(γ)µ = eµ(Xτh(γ)) and

µ(Xτh(γ)) = 2πi

(
1

2q

m∑
j=1

ajsj +
h+ hq;s

2
am

)
for µ = 1

2

∑m
j=1 ajεj ∈ Em. Hence, τh(γ)µ = 1 if and only if

∑m
j=1 ajsj + am(h + hq;s)q ∈ 2qZ.

Since am is an odd integer and
∑m

j=1 ajsj ∈ Z, the assertion follows. �

We next compute the multiplicitiesmπ±k
(µ) to obtain a closed formula for dimV

τ(Γ)

π±k
. We recall

from Section 3 that ‖µ‖1 = 1
2

∑m
j=1 |aj| and R(µ) = #{1 ≤ j ≤ m : aj < 0} if µ = 1

2
(a1, . . . , am).

Lemma 4.2. Let k be a non-negative integer, µ ∈ P (G) and r := ‖Λ±k ‖1 − ‖µ‖1. If µ ∈ Zm
then mπ±k

(µ) = 0 and, if µ ∈ Em then

mπ+
k

(µ) =

{(
r+m−2
m−2

)
if r ≥ 0 and R(µ) ≡ r (mod 2),

0 otherwise,

mπ−k
(µ) =

{(
r+m−2
m−2

)
if r ≥ 0 and R(µ) ≡ r + 1 (mod 2),

0 otherwise.

Proof. We have that mπ±k
(µ) = 0 for every µ ∈ Zm since a weight µ of πΛ±k

satisfies that Λ±k −µ
is a sum of positive roots. We now let µ ∈ Em. We shall prove this case by induction on k.
Note that the assertion is clear for k = 0 since the set of weights of π±0 is

(4.1) P±0 := {ν = 1
2

∑
j bjεj : |bj| = 1 ∀j and R(ν) ≡ −1±1

2
(mod 2)}

and mπ±0
(ν) = 1 for those weights.
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We assume now that k ∈ N. By Steinberg’s formula, one can prove that πkε1⊗π±0 decomposes
into irreducible components as π±k ⊕ π

∓
k−1. Then

mπ±k
(µ) = mπkε1⊗π

±
0

(µ)−mπ∓k−1
(µ)(4.2)

=
∑

µ1+µ2=µ

mπkε1
(µ1)mπ±0

(µ2)−mπ∓k−1
(µ)

=
∑
ν∈P±0

mπkε1
(µ− ν)−mπ∓k−1

(µ).

Furthermore, one has that

(4.3) mπkε1
(η) =

{(
l+m−2
m−2

)
if ‖η‖1 = k − 2l with l ∈ N0,

0 otherwise,

for every η ∈ Zm (see for instance [LMR13, Lem. 3.5]).
We write µ = 1

2

∑
i aiεi ∈ Em as µ = η0 + ν0 where ν0 = 1

2

∑
i sgn(ai)εi ∈ P+

0 ∪ P−0
(sgn(ai) := ai

|ai|) and η0 = µ − ν0 = 1
2

∑
i(ai − sgn(ai))εi ∈ Zm. Note that all the coordinates

of µ and ν0 have the same sign, ‖µ‖1 = ‖ν0‖1 + ‖η0‖1 = m
2

+ ‖η0‖1 and, ν0 is in P+
0 or P−0

according to the parity of R(µ) = R(ν0).
Let r = ‖Λ±k ‖1 − ‖µ‖1 ∈ Z, thus r = k − ‖η0‖1. For ν ∈ P+

0 ∪ P−0 , we have that

(4.4) ‖µ− ν‖1 = ‖η0‖1 + ‖ν0 − ν‖1 = k − r + ‖ν0 − ν‖1.

If r < 0 then ‖µ− ν‖1 > k, which implies that mπkε1
(µ − ν) = 0 for every ν ∈ P+

0 ∪ P−0 by
(4.3). Furthermore, mπ∓k−1

(µ) = 0 by hypothesis. Hence, mπ±k
(µ) = 0 by (4.2) if r < 0.

Suppose r ≥ 0. By (4.4) and (4.3), the sum at the right hand side of (4.2) is reduced to the
elements ν ∈ P±0 such that

(4.5) r − ‖ν0 − ν‖1 is nonnegative and even.

We next prove the assertion in the case when r and R(µ) are both even. The other cases are
very similar. Note that ‖ν0 − ν‖1 is the number of coordinates in which ν0 and ν differ. Then
‖ν0 − ν‖1 and r−‖ν0 − ν‖1 are odd for any ν ∈ P−0 since R(ν) and R(ν0) have different parity.
Furthermore, mπ+

k−1
(µ) = 0 by hypothesis. Hence mπ−k

(µ) = 0.

For 0 ≤ l ≤ r/2, there are
(
m
2l

)
elements in P+

0 coinciding in 2l coordinates with ν0. For such

ν we have that mπkε1
(µ − ν) =

(
r/2−l+m−2

m−2

)
by (4.3). Furthermore, mπ−k−1

(µ) =
(
r−1+m−2
m−2

)
by

hypothesis. Hence, by (4.2), we obtain that

(4.6) mπ+
k

(µ) =

r/2∑
l=0

(
m

2l

)(
r/2− l +m− 2

m− 2

)
−
(
r − 1 +m− 2

m− 2

)
.

To prove mπ+
k

(µ) =
(
r+m−2
m−2

)
, from (4.7), it is sufficient to show the identity

(4.7)

(
r +m− 2

m− 2

)
+

(
r − 1 +m− 2

m− 2

)
=

r/2∑
l=0

(
m

2l

)(
r/2− l +m− 2

m− 2

)
.

One can check that the left hand side is the r-th term of the series F0(x) := (1 +x)/(1−x)m−1.
Moreover, since we are assuming that r is even, it is also the r-th term of the even part of
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F0(x), namely, F1(x) := 1
2
(F0(x) + F0(−x)). We have that

F1(x) =
1

2

(
1 + x

(1− x)m−1
+

1− x
(1 + x)m−1

)
=

(1 + x)m + (1− x)m

2

1

(1− x2)m−1

=

bm/2c∑
l=0

(
m

2l

)
x2l

(∑
h≥0

(
h+m− 2

m− 2

)
x2h

)

=
∑
h≥0
h even

bm/2c∑
l=0

(
m

2l

)(
h/2− l +m− 2

m− 2

)xh.

This implies (4.7), which completes the proof. �

We are now in a condition to state the main theorem in this paper, namely, the description
of the Dirac spectrum of a lens space endowed with a spin structure.

We recall from Section 3 that, for any ε ∈ Z, Lε denotes the subset of L given by elements µ
satisfying R(µ) ≡ ε (mod 2). To facilitate the reading, we introduce more notation. For r ≥ 0
and ε ∈ Z, we let

Lε,r = {µ ∈ Lε : ‖µ‖1 = r + m
2
},(4.8)

NL(ε, r) = #Lε,r.

Theorem 4.3. Let L = Γ\S2m−1 be a lens space with spin structure τ and let L = LΓ,τ be its
associated affine congruence lattice. For k ≥ 0, let λk = k+ 2m−1

2
. Then, the eigenvalues of the

Dirac operator on L are ±λk with multiplicity

mult(L,τ)(−λk) =
k∑
r=0

(
r+m−2
m−2

)
NL(r, k − r),

mult(L,τ)(+λk) =
k∑
r=0

(
r+m−2
m−2

)
NL(r + 1, k − r).

Proof. From Proposition 2.1 and Lemma 4.1 we have that

mult(L,τ)(∓λk) = dimV
τ(Γ)

π±k
=
∑
µ∈L

mπ±k
(µ).

By Lemma 4.2, every weight µ of π±k (i.e. mπ±k
(µ) > 0) is in Em and satisfies ‖µ‖1 = ‖Λ±k ‖1−r =

(k − r) + m
2

for some non-negative integer r ≤ k. Hence,

mult(L,τ)(−λk) =
k∑
r=0

1∑
ε=0

∑
µ∈Lr+ε,k−r

mπ+
k

(µ) =
k∑
r=0

∑
µ∈Lr,k−r

(
r+m−2
m−2

)
,

which establishes the formulas. The case mult(L,τ)(+λk) is very similar. �

Definition 4.4. Two subsets L and L′ of Em are oriented ‖·‖1-isospectral if NL(ε, k) = NL′(ε, k)
for every non-negative integer k and every ε = 0, 1. Similarly, we say they are ‖·‖1-isospectral
if NL(0, k) +NL(1, k) = NL′(0, k) +NL′(1, k) for every k ≥ 0.
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Corollary 4.5. Let L and L′ be lens spaces with spin structures τ, τ ′ and associated affine
congruence lattices L and L′ respectively. Then, L and L′ are Dirac isospectral if and only if
L and L′ are oriented ‖·‖1-isospectral.

Proof. Proposition 2.1 and Theorem 4.3 imply immediately that L and L′ are Dirac isospectral
if L and L′ are oriented ‖·‖1-isospectral. We now assume that L and L′ are Dirac isospectral,

thus dimV
τ(Γ)

π±k
= dimV

τ(Γ′)

π±k
for every non-negative integer k. Write ε+ = 0 and ε− = 1. We

shall prove by induction on k that

(4.9) NL(ε±, k) = NL′(ε
±, k)

for every k ≥ 0. Theorem 4.3 implies that NL(ε±, 0) = dimV
τ(Γ)

π±0
= dimV

τ(Γ′)

π±0
= NL′(ε

±, 0),

thus the case k = 0 is proved. Suppose that (4.9) holds for every k < k0. By Theorem 4.3 we
have that

k0∑
r=0

(
r+m−2
m−2

)
NL(r + ε±, k − r) =

k0∑
r=0

(
r+m−2
m−2

)
NL′(r + ε±, k − r).

All the terms with r > 0 on both sides are equal by assumption, hence this equality implies
that NL(ε±, k) = NL′(ε

±, k), which completes the proof. �

Corollary 4.6. Under the same assumptions as in Corollary 4.5, when m is odd (thus q is
odd), L and L′ are Dirac isospectral if and only if L and L′ are ‖·‖1-isospectral.

Proof. Since m is odd, we have that R(µ) ≡ R(−µ) + 1 (mod 2) for every µ ∈ Em. Hence
mπ+

k
(−µ) = mπ−k

(µ) by Lemma 4.2. This implies that NL(0, r) = NL(1, r) since µ ∈ Lε,r if and

only if −µ ∈ Lε+1,r. Hence, oriented ‖·‖1-isospectrality coincides with ‖·‖1-isospectrality. �

Remark 4.7. It is also reasonable to define reversed ‖·‖1-isospectrality as NL(ε, k) = NL′(ε +
1, k) for every ε = 0, 1. Then, under the same hypotheses as in Corollary 4.5, L and L′ are
reversed oriented ‖·‖1-isospectral if and only if L and L′ are inverse Dirac isospectral, that is,
F±(L,τ)(z) = F∓(L′,τ ′)(z) (see [Bo11, Prop. 2.15]). However, we can change the (fixed) orientation

in one of the lens spaces to obtain the usual Dirac isospectrality.
Here is another option which works with the already fixed orientation on a lens space. We

multiply exactly one parameter of L′ by −1, obtaining an isometric new lens space L′′ (note
that the isometry between L′ and L′′ reverses orientations). Then, we have that F±(L,τ)(z) =

F±(L′′,τ ′′)(z). Hence, L and L′′ are Dirac isospectral.

5. Infinite families of Dirac isospectral lens spaces

The goal of this section is to construct examples of Dirac isospectral lens spaces by using
Corollary 4.5. More precisely, we present three infinite families of Dirac isospectral lens spaces
and thereby show that neither spin structures nor isometry classes of lens spaces are spectrally
determined.

Remark 5.1. There are some “trivial” occurrences of Dirac isospectrality given by lens spaces
with two different spin structures related by an isometry. Let us have a look at an example. Let
L := L(16; 1, 3, 5, 7), which admits two different spin structures τ0 and τ1 by Proposition 2.4.
The function Ψ : S7 → S7, (z1, z2, z3, z4) 7→ (z3, z1, z4, z2) induces an isometry on L that takes τ0

to τ1. Indeed, this follows from Proposition 2.5 by choosing the permutation σ = (13)(34)(42),
signs ε2 = ε3 = −ε1 = −ε4 = 1 and ` = 11.

We start by giving a sequence of families of Dirac isospectral lens spaces with increasing
cardinality and dimension and a fixed order of the fundamental group.
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Theorem 5.2. Let q = 40. For each r ≥ 1 we set m = 4r + 2 and, for each 0 ≤ p ≤ m−2
4

= r
we let

s(p) = (1, 11, . . . , 1, 11︸ ︷︷ ︸
m−2p

, 21, 31, . . . , 21, 31︸ ︷︷ ︸
2p

).

Then, the lens spaces in the family {L(q, s(p)) : 0 ≤ p ≤ r} are pairwise non-isometric and, when

each is endowed with the spin structure τ
(p)
0 (see (2.13)), they are pairwise Dirac isospectral.

The dimension of the lens spaces is 8r + 3 and the cardinality of the family is r + 1.

Proof. Throughout the proof, we fix the positive integer r. We will show that (L(q, s(0)), τ
(0)
0 )

and (L(q, s(p)), τ
(p)
0 ) are Dirac isospectral for each 1 ≤ p ≤ r. From Corollary 4.5, this is

equivalent to proving that the associated affine congruence lattices L0 := L(q; s(0); 0) and
Lp := L(q; s(p); 0) are oriented ‖·‖1-isospectral.

Let µ = 1
2
(a1, b1, . . . , am

2
, bm

2
) ∈ Em. Then

µ ∈ L0 ⇐⇒
m/2∑
j=1

(aj + 11bj) ≡ 0 (mod 80),

µ ∈ Lp ⇐⇒ 20

p∑
j=

m
2
−p+1

(aj + bj) +

m/2∑
j=1

(aj + 11bj) ≡ 0 (mod 80).

We consider the map

1
2
(a1, b1, . . . , am

2
, bm

2
) 7−→



1
2
(a1, b1, . . . , am

2
, bm

2
) if

p∑
j=

m
2
−p+1

(aj + bj) ≡ 0 (mod 4),

1
2
(b1, a1, . . . , bm

2
, am

2
) if

p∑
j=

m
2
−p+1

(aj + bj) ≡ 2 (mod 4).

It follows that this map gives a bijection between L0 and Lp. The second row in the map works

as follows. If 1
2
(a1, b1, . . . , am

2
, bm

2
) ∈ L0, then 0 ≡ 11

∑m/2
j=1 (aj + 11bj) ≡

∑m/2
j=1 (bj + 11aj) +

40(
∑m/2

j=1 bj) ≡
∑m/2

j=1 (bj + 11aj) + 40 (mod 80) since m/2 is odd, hence 1
2
(b1, a1, . . . , bm

2
, am

2
) ∈

Lp since 20
∑p

j=
m
2
−p+1

(bj + aj) +
∑m/2

j=1 (bj + 11aj) ≡ 40 + 40 ≡ 0 (mod 80). This proves that

L0 and Lp are oriented ‖·‖1-isospectral since the bijection preserves ‖·‖1 and R(·).
The non-isometry between the lens spaces follows from Proposition 2.2. �

Remark 5.3. It is curious that for every 0 ≤ p ≤ m−2
4

, one can check that L(40; s(0)) =

L(40; s(p)) (see (3.2)) though the lens spaces L(40; s(0)) and L(40; s(p)) are not isometric. Fur-
thermore, L(40; s(p); 0) and L(40; s(p); 1) are ‖·‖1-isometric thus there is an isometry of the lens

space L(40; s(p)) that switches the spin structures τ
(p)
0 and τ

(p)
1 .

We continue with a family of pairs of Dirac isospectral lens spaces that have the same
underlying manifold but different spin structures (see Subsection 2.2).

Theorem 5.4. For any r ≥ 1, we consider the lens space

L = L(32r; 1, 1 + 4r, 1 + 16r, 1 + 28r).
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Then, L does not carry an isometry which takes the spin structure τ0 to τ1, but is Dirac isospec-
tral to itself when equipped with the two different spin structures.

Proof. By Proposition 2.5, to check that there is no isometry relating the two spin structures,
it is sufficient to show that multiplying the parameter tuple s := (1, 1 + 4r, 1 + 16r, 1 + 28r)
by the inverses modulo q := 32r of its entries does not produce, up to sign in each entry, a
permutation of the parameter tuple s. This is easily seen to be the case since the inverses of
1, 1 + 4r, 1 + 16r, 1 + 28r are 1, 1 + 4r(2α4− 1), 1 + 16r, 1 + 4r(2α4 + 1) respectively, where
r = 2αr1 with r1 odd.

We now prove Dirac isospectrality by showing that the affine congruence lattices L(0) :=
L(q; s; 0) and L(1) := L(q; s; 1) are oriented ‖·‖1-isospectral, which is sufficient by Corollary 4.5.
By definition (see (3.3)), µ = 1

2
(a, b, c, d) ∈ L(h) if and only if a, b, c, d are odd integer numbers

such that
a+ b(1 + 4r) + c(1 + 16r) + d(1 + 28r) ≡ 32rh (mod 64r),

or equivalently,

(a+ b+ c+ d) + 8r

(
b+ 7d

2
+ 2c

)
≡ 32rh (mod 64r).

Note that if µ = 1
2
(a, b, c, d) ∈ L := L(0) ∪ L(1), then a+ b+ c+ d ≡ 0 (mod 8r). For µ ∈ E4

we let γµ = (a+ b+ c+ d)/8r. Now, µ ∈ E4 is in L(h) if and only if γµ ∈ Z and

(5.1) γµ +
b− d

2
+ 2c+ 4 ≡ 4h (mod 8)

We will prove that

(5.2) #{µ ∈ L(0)
ε,k : γµ = γ} = #{µ ∈ L(1)

ε,k : γµ = γ}
for every γ ∈ Z, k ≥ 0 and ε = 0, 1. The next lemma is elementary and will be used many
times in the sequel.

Lemma 5.5. Let µ = 1
2
(a, b, c, d) ∈ L. Then, b − d ≡ 2 (mod 4) ⇐⇒ b + d ≡ 0 (mod 4)

⇐⇒ a+ c ≡ 0 (mod 4) ⇐⇒ a− c ≡ 2 (mod 4), and also b− d ≡ 0 (mod 4) ⇐⇒ b+ d ≡ 2
(mod 4) ⇐⇒ a+ c ≡ 2 (mod 4) ⇐⇒ a− c ≡ 0 (mod 4).

Proof. We have that a + b + c + d ≡ 0 (mod 4) since µ ∈ L. The claim follows immediately
since a, b, c, d are odd integers. �

We proceed with the proof of (5.2) and split it into three cases. First assume γ ≡ 0 (mod 4).
Define

Ψ1 : E4 −→ E4, 1
2
(a, b, c, d) 7−→ 1

2
(c, d, a, b).

We will show that Ψ1 induces a bijection between the sets in (5.2). Clearly, Ψ1 preserves the
functions ‖·‖1, R(·) and γ(·), thus it is sufficient to show that µ ∈ L(0) if and only if Ψ1(µ) ∈ L(1)

for any µ ∈ E4 satisfying γµ = γ.
Let µ′ = 1

2
(a′, b′, c′, d′) = Ψ1(µ), where µ ∈ L(0) with γµ = γ divisible by 4. We check that

µ′ ∈ L(1) by using the condition (5.1). We have that

γµ′ +
b′−d′

2
+ 2c′ + 4 ≡ γµ + d−b

2
+ 2a+ 4 (mod 8),

≡ γµ + b−d
2

+ 2c+ 4 + (d− b) + 2(a− c) (mod 8),

≡ (d− b) + 2(a− c) (mod 8).

On the other hand, since µ ∈ L(0), (5.1) implies that b−d
2
≡ 2 (mod 4) because γµ is divisible

by 4, thus d− b ≡ 4 (mod 8). In particular b− d is divisible by 4, then a− c ≡ 0 (mod 4) by
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Lemma 5.5. Hence γµ′ + b′−d′
2

+ 2c′ + 4 ≡ 4 (mod 8), that is, Ψ1(µ) ∈ L(1). The converse is
very similar.

We now consider the case γ ≡ 1 (mod 2). We define

Ψ2 : E4 −→ E4, 1
2
(a, b, c, d) 7−→ 1

2
(c, b, a, d).

Again, Ψ2 preserves ‖·‖1, R(·) and γ(·). Let µ = 1
2
(a, b, c, d) ∈ L(0) such that γµ = γ, and write

µ′ = 1
2
(a′, b′, c′, d′) = Ψ2(µ). One can check that

γµ′ +
b′−d′

2
+ 2c′ + 4 ≡ 2(a− c) (mod 8).

By (5.1), (b − d)/2 ≡ −γµ ≡ 1 (mod 2), then b − d ≡ 2 (mod 4), thus a − c ≡ 2 (mod 4) by
Lemma 5.5. Hence µ′ ∈ L(1).

We now assume γ ≡ 2 (mod 4). This case is the most involved since there is no ‖·‖1-
preserving bijection between the sets in (5.2). We will check (5.2) in each of the 16 orthants of
E4. Actually, since µ ∈ L(h) if and only if −µ ∈ L(h), it is sufficient to check half of the orthants.
We will refer to orthants by the signs of the coordinates of their elements. For example, +−+−
refers to the orthant of E4 given by elements 1

2
(a, b, c, d) ∈ E4 satisfying a, c > 0 and b, d < 0.

We start with the orthant ++++ of E4, that is, the orthant where all the coordinates are
positive. Every element in this orthant with one-norm k can be written as

(5.3) µ = 1
2
(a, b, c, d) = 1

2

(
2(k − 2− x) + 1, 2(x− y) + 1, 2(y − z) + 1, 2z + 1

)
,

with 0 ≤ z ≤ y ≤ x ≤ k − 2 integer numbers. Note that γµ = 2‖µ‖1/8r, thus we will assume
k = 4rγ. By (5.1), µ ∈ L(h) if and only if

γ + 6 + x+ 3y − 5z ≡ 4h (mod 8).

We assume that γ ≡ 2 (mod 8), while the case γ ≡ 6 (mod 8) is analogous. Set ξ = e2πi/8,
a primitive 8-th root of unity. In the following we often use the fact that

∑n
j=1w

j is equal to
wn+1−1
w−1

if w 6= 1 and equal to n if w = 1. In particular 1
8

∑7
l=0 ξ

jl is equal to 0 if j 6≡ 0 (mod 8)
and equal to 1 if j ≡ 0 (mod 8).

Clearly, the number N++++
L(h),γ

(k) of elements µ ∈ L(h) in the orthant ++++ with γµ = γ and

‖µ‖1 = k is equal to

N++++
L(h),γ

(k) =
k−2∑
x=0

x∑
y=0

y∑
z=0

1

8

7∑
l=0

ξl(x+3y−5z−4h) =
1

8

7∑
l=0

(−1)hl
k−2∑
x=0

ξlx
x∑
y=0

ξ3ly

y∑
z=0

ξ3lz.(5.4)

Our goal is to prove that N++++
L(0),γ

(k) = N++++
L(1),γ

(k), or equivalently, that N++++
L(h),γ

(k) does not

depend on h. It is clear that for every even ` the terms in (5.4) for h = 0 and for h = 1 coincide.
It is thus sufficient to show that any term with l odd vanishes. We suppose l ∈ {1, 3, 5, 7}, then

Al :=
(−1)lh

8

k−2∑
x=0

ξlx
x∑
y=0

ξ3ly

y∑
z=0

ξ3lz =
(−1)h

8

k−2∑
x=0

ξlx
x∑
y=0

ξ3ly (ξ3l)y+1 − 1

ξ3l − 1
.

Note that we have used that ξ3l 6= 1 in the last step. By straightforward computations we
obtain that

Al =
(−1)h ξ3l

(ξ3l − 1)(ξ6l − 1)

k−2∑
x=0

(
ξ6lξ7lx − ξlx

)
− (−1)h

(ξ3l − 1)2

k−2∑
x=0

(
ξ3l(−1)x − ξlx

)
.

Since k = 4rγ is divisible by 8, it follows that
∑k−2

x=0

(
ξ6lξ7lx − ξlx

)
= −ξ6lξ−7l + ξ−l = 0 and∑k−2

x=0

(
ξ3l(−1)x − ξlx

)
= ξ3l + ξ−l = 0. Hence Al = 0. This concludes the proof for the case

++++.



DIRAC MULTIPLICITIES ON LENS SPACES 19

The same method we used for the orthant ++++ can be applied in the remaining cases.
These are even simpler than in ++++ since one obtains two free parameters instead of three
free parameters. As an example, we consider the orthant ++−−.

Any element in the orthant ++−− whose one-norm equals k is of the form

(5.5) µ = 1
2
(a, b, c, d) = 1

2

(
2(k − 2− x) + 1, 2(x− y) + 1, −2(y − z)− 1, −2z − 1

)
,

with 0 ≤ z ≤ y ≤ x ≤ k−2. Since a+b+c+d = 2(k−2)−4y, we have that 8rγ = 2(k−2−2y)
if γµ = γ, thus k is even and y = k/2 − 1 − 2rγ. This fact explains that this case has one
parameter less than the previous one. We will assume that 0 ≤ y ≤ k − 2, otherwise there are
no elements µ in the orthant ++−− such that ‖µ‖1 = k and γµ = γ.

By (5.1), we obtain that µ ∈ L(h) if and only if

γ + 3 + x− 5y + 5z ≡ 4h (mod 8).

Hence

N++−−
L(h),γ

(k) =
k−2∑
x=0

y∑
z=0

1

8

7∑
l=0

ξl(γ+3+x−5y+5z−4h) =
1

8

7∑
l=0

(−1)hlξl(γ+3−5y)

k−2∑
x=y

ξlx
y∑
z=0

ξ5lz.

Similarly to the previous case, we want to show that N++−−
L(h),γ

(k) does not depend on h, thus it

suffices to prove that the sum over l = 1, 3, 5, 7 vanishes. Namely

B :=
1

8

7∑
l=0
l odd

(−1)hlξl(γ+3−5y)

2y+4rγ∑
x=y

ξlx
y∑
z=0

ξ5lz

=
(−1)h

8

7∑
l=0
l odd

ξl(γ+3)

ξ2l − 1

(
ξ6l(y+1) + 1− ξl(y+1) − ξ5l(y+1)

)
.

Now, if y is odd then B = 0 since the terms for l and l+ 4 have opposite signs. One can check
that B = 0 for any even y by considering the cases y ≡ 1, 3, 5, 7 (mod 8) separately. This
finishes the proof for the case ++−−. The remaining cases are very similar. �

We next present an infinite family of pairs of non-isometric lens spaces that are Dirac isospec-
tral. In this case, the order q of the fundamental group is odd and thus the lens spaces admit
exactly one spin structure. The next proof was inspired by that one in [LMR13, Thm. 6.3]. It
gives formulas for NL(ε, k) and NL′(ε, k) showing that they coincide.

Theorem 5.6. For any odd positive integer r ≥ 7, we consider the lens spaces

L = L(r2; 1, 1 + r, 1 + 2r, 1 + 4r),

L′ = L(r2; 1, 1− r, 1− 2r, 1− 4r),

endowed with their unique spin structure (q := r2 is odd). Then, L and L′ are non-isometric
and Dirac isospectral.

Proof. One can check by using Proposition 2.2 that L and L′ are not isometric. We will prove
Dirac isospectrality by showing that the congruence sets L := L(r2; 1, 1 + r, 1 + 2r, 1 + 4r) and
L′ := L(r2; 1, 1− r, 1− 2r, 1− 4r) are oriented ‖·‖1-isospectral by Corollary 4.5. To do this, we
will check for fixed k that there are the same number of elements in L and in L′ with one-norm
equal to k in each orthant. By definition, for µ = 1

2
(a, b, c, d) ∈ E4 we have that

µ ∈ L ⇐⇒ a+ (1 + r)b+ (1 + 2r)c+ (1 + 4r)d ≡ 0 (mod r2),(5.6)

µ ∈ L′ ⇐⇒ a+ (1− r)b+ (1− 2r)c+ (1− 4r)d ≡ 0 (mod r2),
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or equivalently,

µ ∈ L ⇐⇒ (a+ b+ c+ d) + r(b+ 2c+ 4d) ≡ 0 (mod r2),(5.7)

µ ∈ L′ ⇐⇒ (a+ b+ c+ d)− r(b+ 2c+ 4d) ≡ 0 (mod r2),

thus a+ b+ c+ d ≡ 0 (mod r) in both cases.
Let us first examine the orthant ++++. Any element of E4 in this orthant with one-norm

equal to k can be written as

(5.8) µ = 1
2
(a, b, c, d) = 1

2

(
2(k − 2− x) + 1, 2(x− y) + 1, 2(y − z) + 1, 2z + 1

)
,

with 0 ≤ z ≤ y ≤ x ≤ k − 2. From (5.7), if µ is in L or in L′, then a + b + c + d = 2k ≡ 0
(mod r), thus k is divisible by r since r is odd. From now on we assume k = ωr with ω ≥ 0.
Now, (5.7) implies that µ as in (5.8) is in L (resp. L′) if and only if

2x+ 2y + 4z + 7 + 2ω ≡ 0 (mod r)(5.9)

(resp. 2x+ 2y + 4z + 7− 2ω ≡ 0 (mod r)).

Set ξ = e2πi/r. The number N++++
L (k) of elements µ ∈ L contained in ++++ satisfying

‖µ‖1 = k is equal to

N++++
L (k) =

k−2∑
x=0

x∑
y=0

y∑
z=0

1

r

r−1∑
l=0

ξl(7+2ω+2x+2y+4z)(5.10)

=
1

r

k−2∑
x=0

x∑
y=0

y∑
z=0

1 +
1

r

r−1∑
l=1

ξl(7+2ω)

k−2∑
x=0

ξ2lx

x∑
y=0

ξ2ly

y∑
z=0

ξ4lz.

Since ξ4l 6= 1 for any 1 ≤ l ≤ r − 1, we obtain that

N++++
L (k) =

1

r

(
k + 1

3

)
+

1

r

r−1∑
l=1

ξl(7+2ω)

k−2∑
x=0

ξ2lx

x∑
y=0

ξ2ly ξ
4l(y+1) − 1

ξ4l − 1
(5.11)

=
1

r

(
k + 1

3

)
+

1

r

r−1∑
l=1

ξl(7+2ω)

ξ4l − 1

k−2∑
x=0

ξ2lx

x∑
y=0

(
ξ4lξ6ly − ξ2ly

)
.

Since k = rω is divisible by r, it follows that

k−2∑
x=0

ξ2lx

x∑
y=0

ξ2ly =
k−2∑
x=0

ξ2lx ξ
2l(x+1) − 1

ξ2l − 1
=
−ξ2lξ−4l + ξ−2l

ξ2l − 1
= 0

for every 1 ≤ l ≤ r − 1. Therefore

N++++
L (k) =

1

r

(
k + 1

3

)
+

1

r

r−1∑
l=1

ξl(7+2ω)ξ4l

ξ4l − 1

k−2∑
x=0

ξ2lx

x∑
y=0

ξ6ly.(5.12)

From (5.9), the same formula holds for N++++
L′ (k) by replacing ω by −ω.

Clearly
x∑
y=0

ξ6ly =


ξ6l(x+1) − 1

ξ6l − 1
if 3l 6≡ 0 (mod r),

x+ 1 if 3l ≡ 0 (mod r).

Then, one can check that
∑k−2

x=0 ξ
2lx
∑x

y=0 ξ
6ly = 0 for any l with 3l 6≡ 0 (mod r). Hence

(5.13) N++++
L (k) = N++++

L′ (k) =
1

r

(
k + 1

3

)
=

1

r

(
rω + 1

3

)
if r 6≡ 0 (mod 3).
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We now assume r ≡ 0 (mod 3). Set ν = ξr/3, which is a primitive root of unity of order 3.
From the second to last equation and (5.12) we see that

N++++
L (k) =

1

r

(
k + 1

3

)
+

1

r

∑
l∈{ r

3
, 2r

3
}

ξl(7+2ω)

1− ξ−4l

k−2∑
x=0

ξ2lx(x+ 1)(5.14)

=
1

r

(
k + 1

3

)
+

1

r

2∑
j=1

νj(1−ω)

1− ν−j

ω r
3
−1∑

α=0

2∑
x0=0

ν−jx0(3α + 1 + x0)− kν2j(k−1)


=

1

r

(
k + 1

3

)
+

1

r

2∑
j=1

ν−j(1+ω)

νj − 1

(ωr
3

(ν−j + 2νj)− ωrνj
)

=
1

r

(
k + 1

3

)
+
ω

3

(
ν−(1+ω) + ν1+ω

)
− ω ν

−ω − ν1+ω

ν − 1

Similarly,

N++++
L′ (k) =

1

r

(
k + 1

3

)
+
ω

3

(
ν−(1−ω) + ν1−ω)− ω νω − ν1−ω

ν − 1
.(5.15)

By a straightforward computation we obtain that

(5.16) N++++
L (rω) = N++++

L′ (rω) =


1

r

(
rω + 1

3

)
+

2ω

3
if ω ≡ 0 (mod 3),

1

r

(
rω + 1

3

)
− ω

3
if ω 6≡ 0 (mod 3).

We next proceed with the orthants with an odd number of negative signs, namely +++−,
++−+, +−++ and −+++. Note that µ ∈ L if and only if −µ ∈ L, thus it is not necessary
to check the opposite orthants. We will often use the notation bxc = max{a ∈ Z : a ≤ x} and
dxe = min{a ∈ Z : a ≥ x} for x ∈ R.

Lemma 5.7. Let r be an odd positive integer and let k = ωr + k0 such that 0 ≤ k0 < r and
ω ≥ 0. Then, the number of element µ in L in the orthant +++−, ++−+, +−++ or −+++
with ‖µ‖1 = k + 2 is equal to

(5.17)

ω+bk0−z0
r
c∑

γ=0

r−1∑
y0=0

ω+bk0−y0

r
c∑

β=γ+d z0−y0

r
e

(
ω − β + 1 + bk0−xy0,γ

r
c+ bxy0,γ−y0

r
c
)
,

where z0 is the only integer that satisfies 0 ≤ z0 < r and 2z0 ≡ k + 1 (mod r) and xy0,γ is the
only integer such that 0 ≤ xy0,γ < r and

(5.18)


2xy0,γ ≡ 1− 2y0 + 12z0 − 2

(
ω − 2γ + k0+1−2z0

r

)
(mod r) for +++−,

2xy0,γ ≡ −3− 6y0 + 12z0 − 2
(
ω − 2γ + k0+1−2z0

r

)
(mod r) for ++−+,

4xy0,γ ≡ −5− 4y0 + 10z0 − 2
(
ω − 2γ + k0+1−2z0

r

)
(mod r) for +−++,

2xy0,γ ≡ −7− 4y0 + 8z0 − 2k0 − 2
(
ω − 2γ + k0+1−2z0

r

)
(mod r) for −+++.
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Formula (5.17) also holds for L′ replacing xy0,γ by x′y0,γ
, where x′y0,γ

is the only integer such
that 0 ≤ x′y0,γ

< r and

(5.19)


2xy0,γ ≡ 1− 2y0 + 12z0 + 2

(
ω − 2γ + k0+1−2z0

r

)
(mod r) for +++−,

2xy0,γ ≡ −3− 6y0 + 12z0 + 2
(
ω − 2γ + k0+1−2z0

r

)
(mod r) for ++−+,

4xy0,γ ≡ −5− 4y0 + 10z0 + 2
(
ω − 2γ + k0+1−2z0

r

)
(mod r) for +−++,

2xy0,γ ≡ −7− 4y0 + 8z0 − 2k0 + 2
(
ω − 2γ + k0+1−2z0

r

)
(mod r) for −+++.

Proof. Any element in E4 in the orthant +++− with one-norm equal to k + 2 can be written
as

µ = 1
2
(a, b, c, d) = 1

2

(
2(k − x) + 1, 2(x− y) + 1, 2(y − z) + 1,−2z − 1

)
,

with 0 ≤ z ≤ y ≤ x ≤ k integer numbers. From (5.7), if µ is in L or in L′, then a+ b+ c+ d =
2k + 2− 4z ≡ 0 (mod r), thus 2z ≡ k0 + 1 (mod r) since r is odd. We write z = γr + z0 with
0 ≤ z0 < r. The condition 0 ≤ z ≤ k is equivalent to

(5.20)

0 ≤ γr + z0 ≤ ωr + k0,

− z0
r
≤ γ ≤ ω + k0−z0

r

0 = d− z0
r
e ≤ γ ≤ ω + bk0−z0

r
c.

Note that in (5.17), γ runs in the same interval.
From (5.7), we have that µ ∈ L if and only if

b+ 2c+ 4d ≡ −2k+2−4z
r

(mod r)

2x+ 2y − 12z0 − 1 ≡ −2
(
ω − 2γ + k0+1−2z0

r

)
(mod r).(5.21)

Similarly, µ ∈ L′ if and only if

2x+ 2y − 12z0 − 1 ≡ 2
(
ω − 2γ + k0+1−2z0

r

)
(mod r).(5.22)

Let y = βr + y0 with 0 ≤ y0 < r such that z ≤ y ≤ k, that is, γ + d z0−y0

r
e ≤ β ≤ ω + bk0−y0

r
c,

which is the same interval as in (5.17). From (5.21) and (5.22), we have that y0 determines x
modulo r if µ is in L or in L′.

Suppose γ and y0 as above are fixed. Let xy0,γ (resp. x′y0,γ
) be the only integer such that

0 ≤ xy0,γ < r (resp. 0 ≤ x′y0,γ
< r) and satisfies (5.21) (resp. (5.22)). Hence, any other solution

of (5.21) (resp. (5.22)) is x = αr + xy0,γ (resp. x′ = α′r + x′y0,γ
). One can check that the

condition y ≤ x ≤ k (resp. y ≤ x′ ≤ k) is equivalent to

β + dy0−xy0,γ
r
e ≤ α ≤ ω + bk0−xy0,γ

r
c

(
resp. β + dy0−x′y0,γ

r
e ≤ α′ ≤ ω + bk0−x′y0,γ

r
c
)
,

thus we have ω+1−β+bk0−xy0,γ
r
c−dy0−xy0,γ

r
e (resp. ω+1−β+bk0−x′y0,γ

r
c−dy0−x′y0,γ

r
e) choices.

By adding over γ, y0, β the number of choices for α and α′ respectively, we obtain the asserted
formulas.

The other cases follow in the same manner. One has to write the elements in the correspond-
ing orthants as follows:

1
2

(
2(k − x) + 1 , 2(x− y) + 1 , −2z − 1 , 2(y − z) + 1

)
for ++−+,

1
2

(
2(k − x) + 1 , −2z − 1 , 2(x− y) + 1 , 2(y − z) + 1

)
for +−++,

1
2

(
−2z − 1 , 2(k − x) + 1 , 2(x− y) + 1 , 2(y − z) + 1

)
for −+++,

for 0 ≤ z ≤ y ≤ x ≤ k. �
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We next prove that the formulas for L and L′ in the previous lemma coincide in each orthant.
We restrict our attention to the case +++− since the other cases are very similar to this one.
From Lemma 5.7, the difference of (5.17) for L and L′ is equal to

D(k) =

ω+bk0−z0
r
c∑

γ=0

r−1∑
y0=0

ω+bk0−y0

r
c∑

β=γ+d z0−y0

r
e

(
bk0−xy0,γ

r
c+ bxy0,γ−y0

r
c − bk0−x′y0,γ

r
c − bx

′
y0,γ
−y0

r
c
)

(5.23)

=

ω+bk0−z0
r
c∑

γ=0

r−1∑
y0=0

(
ω − γ + 1 + bk0−y0

r
c − d z0−y0

r
e
) (
bk0−xy0,γ

r
c+ bxy0,γ−y0

r
c
)

−
ω+bk0−z0

r
c∑

γ=0

r−1∑
y0=0

(
ω − γ + 1 + bk0−y0

r
c − d z0−y0

r
e
) (
bk0−x′y0,γ

r
c+ bx

′
y0,γ
−y0

r
c
)
.

We now divide the problem into three cases, namely, k0 odd, k0 6= r − 1 even, and k0 = r − 1.
We first assume that k0 is odd, thus z0 = k0+1

2
. From (5.18) and (5.19) we have that xy0,γ

and x′y0,γ
are the smallest non-negative integer numbers such that

2xy0,γ ≡ 1− 2y0 + 12z0 − 2
(
ω − 2γ

)
(mod r),(5.24)

2x′y0,γ
≡ 1− 2y0 + 12z0 + 2

(
ω − 2γ

)
(mod r).

This implies that x′y0,ω−γ = xy0,γ for every 0 ≤ γ ≤ ω and every y0. By (5.23), we have that

D(k) =
ω∑
γ=0

r−1∑
y0=0

(
ω − γ + 1 + bk0−y0

r
c − d z0−y0

r
e
) (
bk0−xy0,γ

r
c+ bxy0,γ−y0

r
c
)

−
ω∑
γ=0

r−1∑
y0=0

(
γ + 1 + bk0−y0

r
c − d z0−y0

r
e
) (
bk0−xy0,γ

r
c+ bxy0,γ−y0

r
c
)

=
ω∑
γ=0

(ω − 2γ)
r−1∑
y0=0

(
bk0−xy0,γ

r
c+ bxy0,γ−y0

r
c
)
.

Now, since y0 7→ xy0,γ is a bijection of {x ∈ Z : 0 ≤ x < r} by (5.24), we have that∑r−1
y0=0b

k0−xy0,γ
r
c =

∑r−1
y0=0b

k0−y0

r
c = k0 + 1− r. Moreover, y0 7→ xy0,γ − y0 is also a bijection of

{x ∈ Z : 0 ≤ x < r} by (5.24), so
∑r−1

y0=0b
xy0,γ−y0

r
c = 1−r

2
. Hence

D(k) =
ω∑
γ=0

(ω − 2γ) (k0 + 1− r + 1−r
2

) = 0.

We next assume k0 is even and different from r − 1, thus z0 = k0+1+r
2
≥ 1. Similar to the

previous case, by (5.18) and (5.19) we have that x′y0,ω−1−γ = xy0,γ for every 0 ≤ γ ≤ ω − 1 and
every y0, and by (5.23) one obtains that

D(k) =
ω−1∑
γ=0

(ω − 1− 2γ)
r−1∑
y0=0

(
bk0−xy0,γ

r
c+ bxy0,γ−y0

r
c
)
.

Analysis similar to the case k0 odd shows that the second sum does not depend on γ, thus
D(k) = 0.

Finally, we assume k0 = r − 1, thus z0 = 0. In this case we obtain x′y0,ω+1−γ = xy0,γ for all
0 ≤ γ ≤ ω + 1, but the sum over γ in (5.23) runs over [[0, ω]]. By a similar argument as the
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one used in the two previous cases, all the terms in (5.23) cancel in the sum over γ except for
γ = 0. Hence

D(k) =
r−1∑
y0=0

(
ω + 1 + bk0−y0

r
c − d z0−y0

r
e
) (
bk0−xy0,0

r
c+ bxy0,0−y0

r
c − bk0−x′y0,0

r
c − bx

′
y0,0
−y0

r
c
)

= (ω + 1)
r−1∑
y0=0

(
bxy0,0−y0

r
c − bx

′
y0,0
−y0

r
c
)
.

In the last step we computed many floors by using the fact that k0 = r − 1 and z0 = 0. We

already know that
∑r−1

y0=0b
xy0,0−y0

r
c =

∑r−1
y0=0b

x′y0,0
−y0

r
c = 1−r

2
, thus D(k) = 0. This completes

the proof in the orthant +++−. Very similar arguments work in the orthants ++−+, +−++
and −+++.

We now consider the orthants with an even number of negative entries. We leave the case
++++ to the end.

Lemma 5.8. Let r be an odd positive integer and let k = ωr + k0 such that 0 ≤ k0 < r and
ω ≥ 0. Then, the number of element µ in L in the orthant ++−−, +−+− or +−−+ with
‖µ‖1 = k + 2 is equal to

(5.25)

ω+bk0−y0

r
c∑

β=0

r−1∑
z0=0

β+by0−z0
r
c∑

γ=0

(
ω − β + 1 + bk0−xz0,β

r
c+ bxz0,β−y0

r
c
)
,

where y0 is the only integer that satisfies 0 ≤ y0 < r and 2y0 ≡ k (mod r) and xz0,β is the only
integer such that 0 ≤ xz0,β < r and

(5.26)


2xz0,β ≡ 5 + 6y0 + 4z0 − 2

(
ω − 2β + k0+1−2y0

r

)
(mod r) for ++−−,

4xz0,β ≡ 3 + 6y0 + 6z0 − 2
(
ω − 2β + k0+1−2y0

r

)
(mod r) for +−+−,

8xz0,β ≡ −1 + 10y0 + 2z0 − 2
(
ω − 2β + k0+1−2y0

r

)
(mod r) for +−−+.

Formula (5.25) also holds for L′ when replacing xz0,β by x′z0,β, where x′z0,β is the only integer
such that 0 ≤ x′z0,β < r and

(5.27)


2xz0,β ≡ 5 + 6y0 + 4z0 + 2

(
ω − 2β + k0+1−2y0

r

)
(mod r) for ++−−,

4xz0,β ≡ 3 + 6y0 + 6z0 + 2
(
ω − 2β + k0+1−2y0

r

)
(mod r) for +−+−,

8xz0,β ≡ −1 + 10y0 + 2z0 + 2
(
ω − 2β + k0+1−2y0

r

)
(mod r) for +−−+.

Proof. The proof of this lemma is very similar to that one of Lemma 5.7. One has to write the
elements with one-norm equal to k + 2 in the orthants follows:

1
2

(
2(k − x) + 1 , 2(x− y) + 1 , −2(y − z)− 1 , −2z − 1

)
for ++−−,

1
2

(
2(k − x) + 1 , −2(y − z)− 1 , 2(x− y) + 1 , −2z − 1

)
for +−+−,

1
2

(
2(k − x) + 1 , −2(y − z)− 1 , −2z − 1 , 2(x− y) + 1

)
for +−−+

for 0 ≤ z ≤ y ≤ x ≤ k. �

Moreover, the equality between the number of elements in L and in L′ with one-norm k + 2
in the orthants ++−−, +−+− and +−−+ follows as before. This concludes the proof. �

Remark 5.9. The proof of Theorem 5.6 is quite involved since it gives formulas for NL(r, k)
for every k and r. This allows us to compute the Dirac spectrum explicitly by Theorem 4.3.
The skeptical reader can, by using a computer, check that the formulas are right for low values
of r and k.
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Remark 5.10. The computations included in the next section hint at Theorem 5.6 being
generalizable to the pairs L = L(r2t; 1, 1 + rt, 1 + 2rt, 1 + 4rt) and L′ = L(r2t; 1, 1 − rt, 1 −
2rt, 1 − 4rt) where r is again an odd positive integer and t is an arbitrary positive integer.
When t is even, the order of the fundamental group q = r2t is even, thus L and L′ have two
different spin structures, namely, τ0, τ1 and τ ′0, τ ′1 respectively. Then, L with τ0 and L′ with τ ′0
are Dirac isospectral and so are L with τ1 and L′ with τ ′1.

6. Computational examples

Besides the infinite families in Theorems 5.2, 5.4 and 5.6, there are many more examples of
Dirac isospectrality in the class of lens spaces. To make a characterization of Dirac isospectrality
presented herein accessible by computer computations, we first present a finiteness result.

Let q be a positive integer. We let

C(q) := {1
2
(a1, . . . , am) ∈ Em : |aj

2
| < q ∀ j}.

We call q-reduced to the elements in C(q) and for any subset L of Em we let

N red
L (ε, k) = #{µ ∈ L ∩ C(q) : ‖µ‖1 = k + m

2
, R(µ) ≡ ε (mod 2)}.

Note that N red
L (ε, k) = 0 for every k ≥ mq − m

2
, so there are only finitely many non-zero of

these numbers.

Proposition 6.1. Let L be an affine congruence lattice of a spin lens space of dimension 2m−1
with fundamental group of order q. Then

(6.1) NL(ε, k) =

bk/qc∑
β=0

(
β+m−1
m−1

)
N red
L (ε, k − βq).

Proof. We recall that NL(ε, k) = #{µ ∈ L : ‖µ‖1 = k + m
2
, R(µ) ≡ ε (mod 2)}. Write

k = αq+k0 with 0 ≤ k0 < q, thus bk/qc = α. If α = 0, (6.1) reduces to NL(ε, k0) = N red
L (ε, k0),

which is true since every µ ∈ Em with ‖µ‖1 = k0 + m
2
< q + m

2
is q-reduced. We now assume

α > 0. Note that µ+ qZm ⊂ L for every µ ∈ L by (3.2) and (3.3). On the one hand, for every
µ ∈ Em there is exactly one element µ0 ∈ C(q) in the same orthant such that µ ∈ µ0 + qZm.
Clearly, ‖µ0‖1 = (α− β)r + k0 + m

2
for some 0 ≤ β ≤ α if ‖µ‖1 = αq + k0 + m

2
.

On the other hand, each q-reduced element µ0 = 1
2
(a1, . . . , am) ∈ L with ‖µ0‖1 = (α− β)q+

k0 + m
2

is related to exactly
(
β+m−1
m−1

)
elements µ with ‖µ‖1 = αq + k0 + m

2
in the same orthant

of Em as µ0. Indeed, µ = µ0 + η for each

η = ( a1

|a1| h1q, . . . ,
am
|am| hmq)

with hj ≥ 0 and β = h1 + · · ·+hm. The number of choices for η is the number of ways to write

β as the ordered sum of m non-negative integers (ordered partitions), namely
(
β+m−1
m−1

)
. This

establishes (6.1). �

Corollary 6.2. Two 2m − 1-dimensional spin lens spaces (L, τ) and (L′, τ ′) with fundamen-
tal group of order q are Dirac isospectral if and only if the multiplicities mult(L,τ)(±λk) and
mult(L′,τ ′)(±λk) of the Dirac eigenvalues ±λk = ±(k+ 2m−1

2
) for (L, τ) and (L′, τ ′) respectively

coincide for all 0 ≤ k < mq.

Proof. By Proposition 6.1, the numbers N red
L (ε, k) for every k < qm determine NL(ε, k) for every

k. One can check that the converse also holds. Then, the assertion follows by Corollary 4.5. �
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Now Corollary 4.5 together with Proposition 6.1 allows us to find all Dirac isospectral lens
spaces for small values of m and q with the help of a computer. The algorithm that we used to
find Dirac isospectral lens spaces is straightforward. For given m ≥ 2, q ∈ N, generate a com-
plete list of representations of isometry classes of lens spaces with a chosen orientation and spin
structure of dimension 2m− 1 whose fundamental group is of order q by using Proposition 2.2.
Next, calculate for all 0 ≤ k < mq and ε ∈ {0, 1} the numbers N red

L (ε, k) for all previously iden-
tified lens spaces. The last step is to partition the set of lens spaces into isospectral families by
comparing all the numbers N red

L (ε, k) for every pair of lens spaces.
We have found examples of Dirac isospectral lens spaces using the above procedure. In

Table 6 we show all of the examples for n = 7, q ≤ 100, for n = 11, q ≤ 50, for n = 15, q ≤ 60
and for n = 19, q ≤ 40.

Surprisingly, we have found no example of Dirac isospectral lens spaces in dimensions n ≡ 1
(mod 4). Note that the order q of the fundamental group of a lens space which is spin and of
dimension n ≡ 1 (mod 4) is necessarily odd. We have checked the non-existence for q ≤ 1001
in dimension n = 5, for q ≤ 501 in dimension n = 9, for q ≤ 251 in dimension n = 13, and
for q ≤ 125 in dimension n = 17. It is thus reasonable to conjecture the non-existence of such
examples in general.

Conjecture 6.3. Two Dirac isospectral spin lens spaces of dimension n ≡ 1 (mod 4) are
necessarily isometric.

The non-existence of such examples contrasts with the large number of known examples in
the case of flat manifolds. Miatello and Podestá showed in [MP06, §4] a rich number of examples
in any dimension n ≥ 4. In particular, they show a family of pairwise non-homeomorphic even
dimensional Dirac isospectral compact flat manifolds with cardinality depending exponentially
on the dimension.

We end this paper with a couple of remarks on the computational examples in dimensions
congruent to 3 modulo 4.

Remark 6.4. There seems to be a relation between Dirac isospectrality and p-isospectrality for
all p among 7-dimensional lens spaces. Most of the examples of Dirac isospectral lens spaces
in dimension 7 are also p-isospectral for all p. For example, the pairs of lens spaces in the
family given in Theorem 5.6 are p-isospectral for all p. Indeed, one can check that (0, 1, 2, 4) is
hereditarily good mod any odd r in the sense of [DD14, Def. 1], thus by [DD14, Thm. 1], the
lens spaces L(r2t; 1, 1 + rt, 1 + 2rt, 1 + 4rt) and L(r2t; 1, 1− rt, 1− 2rt, 1− 4rt) are p-isospectral
for all p, for every odd r and every t ≥ 1.

However, we have found the following exceptions:

L(75; 1, 4, 14, 16) L(150; 1, 11, 29, 31) L(300; 1, 19, 41, 79)
L(75; 1, 4, 11, 19) L(150; 1, 11, 19, 41) L(300; 1, 19, 59, 61)

L(75; 1, 4, 11, 34) L(150; 1, 11, 31, 59) L(300; 1, 19, 41, 139)
L(75; 1, 4, 14, 31) L(150; 1, 11, 19, 71) L(300; 1, 19, 59, 121).

These are pairs of Dirac isospectral lens spaces which are not p-isospectral for any p. Here,
when q is even, the lens spaces in each pair are Dirac isospectral if they are both equipped with
τ0 or τ1 respectively.

In the inverse direction there are exceptions as well. The lens spaces L(100; 1, 9, 11, 29)
and L(100; 1, 9, 11, 31) are p-isospectral for all p, but not Dirac isospectral for any choice of
combination of spin structures. The same applies to the lens spaces L(100; 1, 9, 21, 39) and
L(100; 1, 9, 29, 31).
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Table 1. Examples of Dirac isospectral spin lens spaces in dimensions n =
7, 11, 15, 19 for low values of q.

Dimension n = 7
L(32; 1, 3, 5,15)τ0 L(49; 1, 6, 8,22) L(64; 1, 7, 9,31)τ0
L(32; 1, 3, 5,15)τ1 L(49; 1, 6, 8,20) L(64; 1, 7, 9,31)τ1
L(75; 1, 4, 14,16) L(75; 1, 4, 11,34) L(80; 1, 3, 9,27)τ0
L(75; 1, 4, 11,19) L(75; 1, 4, 14,31) L(80; 1, 9, 13,37)τ0
L(81; 1, 8, 19,37) L(81; 1, 8, 10,28) L(81; 1, 8, 10,37)
L(81; 1, 8, 26,37) L(81; 1, 8, 10,26) L(81; 1, 8, 10,35)
L(96; 1,11, 13,47)τ0 L(98; 1,13, 15,43)τ0 L(98; 1,13, 15,41)τ0
L(96; 1,11, 13,47)τ1 L(98; 1,13, 15,41)τ1 L(98; 1,13, 15,43)τ1

Dimension n = 11
L(40; 1,1, 1,11,11,11)τ0 L(40; 1,1, 11,11,13,17)τ0 L(44; 1,3,5,7, 9,19)τ0
L(40; 1,1, 9,11,11,19)τ0 L(40; 1,1, 3, 7,11,11)τ0 L(44; 1,3,5,7, 13,15)τ0

L(40; 1,3, 7, 9,11,19)τ0
L(44; 1,3, 5, 7, 9,19)τ1 L(48; 1,1, 5, 7, 7,13)τ0 L(48; 1,1,7,7, 17,23)τ0
L(44; 1,3, 5, 7,13,15)τ1 L(48; 1,5, 7,11,13,19)τ0 L(48; 1,1,1,7, 7, 7)τ0

L(48; 1,1, 7, 7,11,19)τ0

Dimension n = 15
L(39; 1,2, 4,5, 7,10,14,16) L(52; 1,3, 5,7, 9,11,17,25)τ0
L(39; 1,2, 4,7, 8,10,16,17) L(52; 1,3, 5,7, 9,15,23,25)τ1
L(52; 1,3, 5,7, 9,11,19,21)τ1 L(52; 1,3, 5,7, 9,11,19,21)τ0
L(52; 1,3, 5,7, 9,11,17,23)τ1 L(52; 1,3, 5,7, 9,11,17,23)τ0
L(52; 1,3, 5,7, 9,15,23,25)τ0 L(56; 1,3, 5,9,11,13,19,23)τ0
L(52; 1,3, 5,7, 9,11,17,25)τ1 L(56; 1,3, 5,9,11,13,15,27)τ0
L(56; 1,3, 5,9,11,13,15,27)τ1
L(56; 1,3, 5,9,11,13,19,23)τ1

Dimension n = 19
L(24; 1,1, 1,1, 1, 5, 5, 5, 5, 5)τ0 L(40; 1,1, 1, 9, 9,11,11,11,19,19)τ0
L(24; 1,1, 1,5, 5, 5, 7, 7,11,11)τ0 L(40; 1,1, 1, 1, 1,11,11,11,11,11)τ0
L(24; 1,1, 1,1, 5, 5, 5, 5, 7,11)τ0 L(40; 1,1, 1, 1, 9,11,11,11,11,19)τ0
L(40; 1,1, 1,3, 7, 9,11,11,11,19)τ0 L(40; 1,1, 3, 3, 7, 7, 9,11,11,19)τ0
L(40; 1,1, 1,1, 3, 7,11,11,11,11)τ0 L(40; 1,1, 3, 7, 9,11,11,13,17,19)τ0
L(40; 1,1, 3,7, 9, 9,11,11,19,19)τ0 L(40; 1,1, 3, 3, 7, 7,11,11,13,17)τ0
L(40; 1,1, 1,9,11,11,11,13,17,19)τ0 L(40; 1,1, 1, 3, 3, 7, 7,11,11,11)τ0
L(40; 1,1, 1,1,11,11,11,11,13,17)τ0 L(40; 1,1, 1, 3, 7,11,11,11,13,17)τ0

L(40; 1,1, 1,11,11,11,13,13,17,17)τ0

Remark 6.5. In [LMR13] there are the first examples of non-isometric compact Riemannian
manifolds which are isospectral with respect to the Hodge-Laplace operator acting on p-forms
for every p, but are not strongly isospectral (isospectral for every natural differential operator
on a natural bundle). These examples show that all p-spectra together do not determine the
spectra of all natural operators.

The pairs of non-isometric Dirac isospectral lens spaces in Theorem 5.6 are also p-isospectral
for every p. Hence, this example shows that the Laplace spectra over all fundamental vector
bundles do not determine the spectra of all natural operators. In other words and in the notation
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of [LMR13, §2,§8], these lens spaces are τ -isospectral for every fundamental representation τ
of K ' Spin(2m − 1) but are not strongly isospectral. The fundamental representations of
Spin(2m− 1) are τ1, . . . , τm−1. If 1 ≤ p ≤ m− 2, then τp has highest weight ε1 + · · · + εp and
induces the vector bundle of p-forms and τm−1 has highest weight 1

2
(ε1 + · · ·+εm−1) and induces

the spinor bundle.

Remark 6.6. In [DD14] the examples of [LMR13] were extended and simplified. In particular,
the authors gave a sufficient condition on the parameters of two lens spaces in order for them
to be p-isospectral for all p. During the work on this paper the authors wondered whether
something similar as in [DD14] can be done in the Dirac case.

Remark 6.7. All the examples of Dirac isospectral lens spaces we have found are homotopy-
equivalent. Note that this is very different from the Laplace-Beltrami case, where Ikeda [Ik80]
found isospectral non-homotopy equivalent lens spaces in dimension seven with q = 13. How-
ever, the reasons for this phenomenon remain still obscure to the authors.
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