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Abstract

We present a novel, quantitative view on the human athletic performance of individuals. We obtain
a predictor for athletic running performances, a parsimonious model, and a training state summary
consisting of three numbers, by application of modern validation techniques and recent advances in
machine learning to the thepowerof10 database of British athletes’ performances (164,746 individuals,
1,417,432 performances).

Our predictor achieves a low average prediction error (out-of-sample), e.g., 3.6 min on elite Marathon
performances, and a lower error than the state-of-the-art in performance prediction (30% improvement,
RMSE). We are also the first to report on a systematic comparison of predictors for athletic running
performance.

Our model has three parameters per athlete, and three components which are the same for all athletes.
The first component of the model corresponds to a power law with exponent dependent on the athlete
which achieves a better goodness-of-fit than known power laws in athletics. Many documented phenomena
in quantitative sports science, such as the form of scoring tables, the success of existing prediction methods
including Riegel’s formula, the Purdy points scheme, the power law for world records performances and
the broken power law for world record speeds may be explained on the basis of our findings in a unified
way.

We provide strong evidence that the three parameters per athlete are related to physiological and/or
behavioural parameters, such as training state, event specialization and age, which allows us to derive
novel physiological hypotheses relating to athletic performance. We conjecture on this basis that our
findings will be vital in exercise physiology, race planning, the study of aging and training regime design.

Note. This manuscript is work in progress and has not yet been reviewed by an independent panel of
experts. Once the manuscript has been reviewed and accepted by such a panel, this note will be removed.
Until then, we would advise the reader to treat the presented results as preliminary and not to understand or
present our findings as scientific fact but merely as a basis for scientific discussion.

An overview on athletic performance prediction and our contribu-
tions
Performance prediction and modeling are cornerstones of sports medicine, essential in training and assessment
of athletes with implications beyond sport, for example in the understanding of aging, muscle physiology,
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and the study of the cardiovascular system. Existing research on athletic performance focuses either on
(A) explaining world records [28, 19, 36, 22, 39, 17], (B) equivalent scoring [33, 34], or (C) modelling of
individual physiology [20, 2, 43, 29, 1, 23, 30, 41]. Currently, however, there is no parsimonious model which
simultaneously explains individual physiology (C) and collective performance (A,B).

We present such a model, a non-linear low-rank model derived from a database of UK athletes. It levers
an individual power law which explains the power laws known to apply to world records, and which allows
us to derive athlete-individual training parameters from prior performances data. Performance predictions
obtained using our approach are the most accurate to date, with an average prediction error of under
4 minutes (2% rel.MAE and 3% rel.RMSE out-of-sample, see Tables 5, 6 and appendix S.I.b) for elite
performances. We anticipate that our framework will allow us to leverage existing insights in the study of
world record performances and sports medicine for an improved understanding of human physiology.

Our work builds on the three major research strands in prediction and modeling of running performance,
which we briefly summarize:

(A) Power law models of performance posit a power law dependence t = c ·sα between the duration
of the distance run t and the distance s, for constants c and α. This is equivalent to assuming a linear
dependence log t = α log s+log c of log-time on log-distance. Power law models have been known to describe
world record performances across sports for over a century [24], and have been applied extensively to running
performance [28, 19, 36, 22, 39, 17]. These power laws have been applied by practitioners for prediction: the
Riegel formula [35] predicts performance by fitting c to each athlete and fixing α = 1.06 (derived from world-
record performances). The power law approach has the benefit of modelling performances in a scientifically
parsimonious way.

(B) Scoring tables, such as those of the international association of athletics federations (IAAF),
render performances over disparate distances comparable by presenting them on a single scale. These tables
have been published by sports associations for almost a century [32] and catalogue, rather than model,
performances of equivalent standard. Performance predictions may be obtained from scoring tables by
forecasting a time with the same score as an existing attempt, as implemented in the popular Purdy Points
scheme [33, 34]. The scoring table approach has the benefit of describing performances in an empirically
accurate way.

(C) Explicit modeling of performance related physiology is an active subfield of sports science.
Several physiological parameters are known to be related to athletic performance; these include maximal
oxygen uptake (V̇O2-max) and critical speed (speed at V̇O2-max) [20, 2], blood lactate concentration, and
the anaerobic threshold [43, 6]. Physiological parameters may be used (C.i) to make direct predictions when
clinical measurements are available [29, 1, 9], or (C.ii) to obtain theoretical models describing physiological
processes [23, 30, 41, 13]. These approaches have the benefit of explaining performances physiologically.

All three approaches (A),(B),(C) have appealing properties, as explained above, but none provides a
complete treatment of athletic performance prediction: (A) individual performances do not follow the parsi-
monious power law perfectly; (B) the empirically accurate scoring tables do not provide a simple interpretable
relationship. Neither (A) nor (B) can deal with the fact that athletes may differ from one another in multiple
ways. The clinical measurements in (C.i) are informative but usually available only for a few select athletes,
typically at most a few dozen (as opposed to the 164,746 considered in our study). The interpretable models
in (C.ii) are usually designed not with the aim of predicting performance but to explain physiology or to
estimate physiological parameters from performances; thus these methods are not directly applicable without
additional work.

The approach we present unifies the desirable properties of (A),(B) and (C), while avoiding the afore-
mentioned shortcomings. We obtain (A) a parsimonious model for individual athletic performance that is
(B) empirically derived from a large database of UK athletes. It yields the best performance predictions to
date (2% average error for elite athletes on all events, average error 3-4 min for Marathon, see Table 6) and
(C) unveils hidden descriptors for individuals which we find to be related to physiological characteristics.

Our approach bases predictions on Local Matrix Completion (LMC), a machine learning technique which
posits the existence of a small number of explanatory variables which describe the performance of individual
athletes. Application of LMC to a database of athletes allows us, in a second step, to derive a parsimo-
nious physiological model describing athletic performance of individual athletes. We discover that a three
number-summary for each individual explains performance over the full range of distances from 100m to the
Marathon. The three-number-summary relates to: (1) the endurance of an athlete, (2) the relative balance
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Wednesday, May 13, 15Figure 1: Non-linear deviation from the power law in individuals as central phenomenon. Top left: performances of world record
holders and a selection of random athletes. Curves labelled by athletes are their known best performances (y-axis) at that event
(x-axis). Black crosses are world record performances. Individual performances deviate non-linearly from the world record power
law. Top right: a good model should take into account specialization, illustration by example. Hypothetical performance curves of
three athletes, green, red and blue are shown, the task is to predict green on 1500m from all other performances. Dotted green lines
are predictions. State-of-art methods such as Riegel or Purdy predict green performance on 1500m close to blue and red; a realistic
predictor for 1500m performance of green - such as LMC - will predict that green is outperformed by red and blue on 1500m; since
blue and red being worse on 400m indicates that out of the three athletes, green specializes most on shorter distances. Bottom:
using local matrix completion as a mathematical prediction principle by filling in an entry in a (3 × 3) sub-pattern. Schematic
illustration of the algorithm.

between speed and endurance, and (3) specialization over middle distances. The first number explains most
of the individual differences over distances greater than 800m, and may be interpreted as the exponent of
an individual power law for each athlete, which holds with remarkably high precision, on average. The other
two numbers describe individual, non-linear corrections to this individual power law. Vitally, we show that
the individual power law with its non-linear corrections reflects the data more accurately than the power
law for world records. We anticipate that the individual power law and three-number summary will allow
for exact quantitative assessment in the science of running and related sports.

Local Matrix Completion and the Low-Rank Model
It is well known that world records over distinct distances are held by distinct athletes—no one single athlete
holds all running world records. Since world record data obey an approximate power law (see above), this
implies that the individual performance of each athlete deviates from this power law. The left top panel of
Figure 1 displays world records and the corresponding individual performances of world record holders in
logarithmic coordinates—an exact power law would follow a straight line. The world records align closely
to a straight line, while individuals deviate non-linearly. Notable is also the kink in the world records which
makes them deviate from an exact straight line, yielding a “broken power law” for world records [39].

Any model for individual performances must model this individual, non-linear variation, and will, opti-
mally, explain the broken power law observed for world records as an epiphenomenon of such variation over



individuals. In the following paragraphs we explain how the LMC scheme captures individual variation in a
typical scenario.

Consider three athletes (taken from the database) as shown in the right top panel of Figure 1. The 1500m
performance of the green athlete is not known and is to be predicted. All three athletes, green, blue and red,
achieve similar performance on 800m. Any classical method for performance prediction which only takes this
information into account will predict that green performs similarly on 1500m to the blue and the red, e.g.,
somewhere in-between. However, this is unrealistic, since it does not take into account event specialization:
looking at the 400m performance, one can see that the red athlete is slowest over short distances, followed
by the blue and then by the green athlete. Thus the red athlete is more an endurance type athlete than the
blue, and blue is to a greater extent a speed type athlete than red; green specializes even more on speed than
both red and blue. Using this additional information leads to the more realistic prediction that the green
athlete will be out-performed by red and blue on 1500m. Supplementary analysis (S.IV) validates that the
phenomenon presented in the example is prevalent throughout the data set.

LMC is a quantitative method for taking into account this event specialization. A schematic overview of
the simplest variant is displayed in the bottom panel of Figure 1: to predict an event for an athlete (figure:
1500m for green) we find a 3-by-3-pattern of performances, denoted by A, with exactly one missing entry
- this means the two other athletes (figure: red and blue) have attempted similar events and have data
available. Explanation of the green athlete’s curve by the red and the blue is mathematically modelled by
demanding that the data of the green athlete is given as a weighted sum of the data of the red and the blue;
i.e., more mathematically, the green row is a linear combination of the blue and the red row. By a classical
result in matrix algebra, the green row is a linear combination of red and blue whenever the determinant of
A, a polynomial function in the entries of A, vanishes; i.e., det(A) = 0.

A prediction is made by solving the equation det(A) = 0 for “?”. To increase accuracy, candidate solutions
from multiple 3-by-3-patterns (obtained from many triples of athletes) are averaged in a way that minimizes
the expected error in approximation. We will consider variants of the algorithm which use n-by-n-patterns,
n corresponding to the complexity of the model (we later show n = 4 to be optimal). See the methods
appendix for an exact description of the algorithm used.

The LMC prediction scheme is an instance of the more general local low-rank matrix completion frame-
work introduced in [26], here applied to performances in the form of a numerical table (or matrix) with
columns corresponding to events and rows to athletes. The cited framework is the first matrix completion
algorithm which allows prediction of single missing entries as opposed to all entries. While matrix com-
pletion has proved vital in predicting consumer behaviour and recommender systems, we find that existing
approaches which predict all entries at once cannot cope with the non-uniform missingness and the noise
associated with performance prediction in the same way as LMC can (see findings and supplement S.II.a).
See the methods appendix for more details of the method and an exact description.

In a second step, we use the LMC scheme to fill in all missing performances (over all events considered—
100m, 200m etc.) and obtain a parsimonious low-rank model - we remark that first filling in the entries with
LMC and only then fitting the model is crucial due to data which is non-uniformly missing (see supplement
S.II.a). The low-rank model explains individual running times t in terms of distance s and has the form:

log t = λ1f1(s) + λ2f2(s) + · · ·+ λrfr(s), (1)

with components f1, f2, . . . , fr that are the same for every athlete, and coefficients λ1, λ2, . . . , λr which
summarize the athlete under consideration. The number of components and coefficients r is known as the
rank of the model and measures its complexity. The Riegel power law is a very special case, demanding
that log t = 1.06 log s + c; that is, a rank 2 model with λ1 = 1.06 for every athlete, f1(s) = log s, and
an athlete-specific constant λ2f2(s) = c. Our analyses will show that the best model has rank r = 3
(meaning above we consider patterns or matrices of size n × n = 4 since above n = r + 1). This means
that the model has r = three universal components f1(s), f2(s), f3(s), and every athlete is described by their
individual three-coefficient-summary λ1, λ2, λ3. Remarkably, we find that f1(s) = log s (for a suitable unit
of distance/time, see S.II.b), yielding an individual power law; the corresponding coefficient λ1 thus has the
natural interpretation as an individual power law exponent.

Table 11 contains the exact form for the components f1, f2, f3 in our model; they are also displayed in
Figure 2 top left. More details on how to obtain components and coefficients can be found in the methods
section, “obtaining the low-rank components and coefficients”, and in supplementary experiment (S.II.b).



Data Set, Analyses and Model Validation
The basis for our analyses is the online database www.thepowerof10.info, which catalogues British individ-
uals’ performances achieved in officially ratified athletics competitions since 1954. The excerpt we consider
contains performances between 1954 and August 3, 2013. It contains (after error removal) records of 164,746
individuals of both genders, ranging from the amateur to the elite, young to old, comprising a total of
1,417,432 individual performances over 10 different distances: 100m, 200m, 400m, 800m, 1500m, the Mile,
5km, 10km, Half-Marathon, Marathon (42,195m). All British records over the distances considered are con-
tained in the dataset; the 95th percentile for the 100m, 1500m and Marathon are 15.9, 6:06.5 and 6:15:34,
respectively. As performances for the two genders distribute differently, we present only results on the subset
of 101,775 male athletes in the main corpus of the manuscript; female athletes and further subgroup analyses
are considered in the supplementary results. The data set is available upon request, subject to approval by
British Athletics. Full code of our analyses can be obtained from [download link will be provided here after
acceptance of the manuscript].

Adhering to state-of-the-art statistical practice (see [14, 27, 15, 8]), all prediction methods are validated
out-of-sample, i.e., by using only a subset of the data for estimation of parameters (training set) and com-
puting the error on predictions made for a distinct subset (validation or test set). As error measures, we
use the root mean squared error (RMSE) and the mean absolute error (MAE), estimated by leave-one-out
validation for 1000 single performances omitted at random.

We would like to stress that out-of-sample prediction error is the correct way to evaluate the quality
of prediction, as opposed to merely reporting goodness-of-fit in-sample; since outputting an estimate for an
instance that the method has already seen does not qualify as prediction.

More details on the data set and our validation setup can be found in the supplementary material.

Findings on the UK athletes data set
(I) Prediction accuracy. We evaluate prediction accuracy of ten methods, including our proposed method,
LMC. We include, as naive baselines: (1.a) imputing the event mean, (1.b) imputing the average of the k-
nearest neighbours; as representative of the state-of-the-art in quantitative sports science: (2.a) the Riegel
formula, (2.b) a power law predictor with exponent estimated from the data, which is the same for all athletes,
(2.c) a power law predictor with exponent estimated from the data, with one exponent per athlete, (2.d) the
Purdy points scheme [33]; as representatives for the state-of-the-art in matrix completion: (3.a) imputation
by expectation maximization on a multivariate Gaussian [12] (3.b) nuclear norm minimization [10, 11].
We instantiate our low-rank local matrix completion (LMC) in two variants: (4.a) rank 1, and (4.b) rank 2.

Methods (1.a), (1.b), (2.a), (2.b), (2.d), (4.a) require at least one observed performance per athlete,
methods (2.c), (4.b) require at least two observed performances in distinct events. Methods (3.a), (3.b) will
return a result for any number of observed performances (including zero). Prediction accuracy is therefore
measured by evaluating the RMSE and MAE out-of-sample on the athletes who have attempted at least three
distances, so that the two necessary performances remain when one is removed for leave-one-out validation.
Prediction is further restricted to the best 95-percentile of athletes (measured by performance in the best
event) to reduce the effect of outliers. Whenever the method demands that the predicting events need to be
specified, the events which are closest in log-distance to the event to be predicted are taken. The accuracy
of predicting time (normalized w.r.t. the event mean), log-time, and speed are measured. We repeat this
validation setup for the year of best performance and a random calendar year. Moreover, for completeness
and comparison we treat 2 additional cases: the top 25% of athletes and athletes who have attempted at least
4 events, each in log time. More details on methods and validation are presented in the methods appendix.

The results are displayed in Table 2 (RMSE of log-time prediction) and supplementary Tables 3 (MAE of
log-time prediction), 5 (rel.RMSE of time prediction) and 6 (rel. MAE of time prediction). Of all benchmarks,
k-nearest neighbours (1.b), Purdy points (2.d) and Expectation Maximization (3.a) perform best. LMC rank
2 substantially outperforms k-nearest neighbours, Purdy points and Expectation Maximization (two-sided
Wilcoxon signed-rank test significant on the validation samples of absolute prediction errors; p ≤2.0e-8 on
top 95% in log-time and p ≤1.4e-11 for top 25% in log-time); rank 1 outperforms Purdy points on the year of
best performance data (p ≤3.0e-3) for the best athletes, and is on a par on athletes up to the 95th percentile.



Both rank 1 and 2 outperform the power law models (p ≤1.1e-42), the improvement in RMSE of LMC rank
2 over the power law models reaches over 50% for data from the fastest 25% of athletes.

(II) The rank (number of components) of the model. Paragraph (I) establishes that LMC is the
best method for prediction. LMC assumes a fixed number of prototypical athletes, viz. the rank r, which is
the complexity parameter of the model. We establish the optimal rank by comparing prediction accuracy of
LMC with different ranks. The rank r algorithm needs r attempted events for prediction, thus r+1 observed
events are needed for validation. Table 7 displays prediction accuracies for LMC ranks r = 1 to r = 4, on
the athletes who have attempted k > r events, for all k ≤ 5. The data is restricted to the top 25% in the
year of best performance in order to obtain a high signal to noise ratio. We observe that rank 3 outperforms
all other ranks, when applicable; rank 2 always outperforms rank 1 (both p ≤1e-4).

We also find that the improvement of rank 2 over rank 1 depends on the event predicted: improvement is
26.3% for short distances (100m,200m), 29.3% for middle distances (400m,800m,1500m), 12.8% for the mile
to half-marathon, and 3.1% for the Marathon (all significant at p=1e-3 level) (see Figure 5). These results
indicate that inter-athlete variability is greater for short and middle distances than for Marathon.

(III) The three components of the model. The findings in (II) imply that the best low-rank model
assumes 3 components. To estimate the components (fi in Equation (1)) we impute all missing entries
in the data matrix of the top 25% athletes who have attempted 4 events and compute its singular value
decomposition (SVD) [18]. From the SVD, the exact form of components can be directly obtained as the
right singular vectors (in a least-squares sense, and up to scaling, see methods appendix and S.II.b). We
obtain three components in log-time coordinates, which are displayed in the left hand panel of Figure 2.
The first component for log-time prediction is linear (i.e., f1(s) ∝ log s in Equation (1)) to a high degree of
precision (R2 = 0.9997) and corresponds to an individual power law, applying distinctly to each athlete. The
second and third components are non-linear; the second component decreases over short sprints and increases
over the remainder, and the third component resembles a parabola with extremum positioned around the
middle distances.

In speed coordinates, the first, individual power law component does not display the “broken power law”
behaviour of the world records. Deviations from an exact line can be explained by the second and third
component (Figure 2 middle).

The three components together explain the world record data and its “broken power law” far more
accurately than a simple linear power law trend—with the rank 3 model fitting the world records almost
exactly (Figure 2 right; rank 1 component: R2 = 0.99; world-record data: R2 = 0.93).

(IV) The three athlete-specific coefficients. The three summary coefficients for each athlete
(λ1, λ2, λ3 in Equation (1)) are obtained from the entries of the left singular vectors (see methods appendix).
Since all three coefficients summarize the athlete, we refer to them collectively as the three-number-summary.
(IV.i) Figure 3 displays scatter plots and Spearman correlations between the coefficients and performance
over the full range of distances. The individual exponent correlates with performance on distances greater
than 800m. The second coefficient correlates positively with performance over short distances and displays a
non-linear association with performance over middle distances. The third coefficient correlates with perfor-
mance over middle distances. (All correlations significant at p ≤1.0e-4; t-distribution approximation to the
distribution of Spearman’s correlation coefficient.) The associations for all three coefficients are non-linear,
with the notable exception of the individual exponent on distances exceeding 800m, hence the application of
Spearman correlations. (IV.ii) Figure 4 top displays the three-number-summary for the top 95% athletes in
the database. The athletes appear to separate into (at least) four classes, which associate with the athlete’s
preferred distance. A qualitative transition can be observed over middle distances. Three-number-summaries
of world class athletes (not all in the UK athletics database), computed from their personal bests, are listed
in Table 1; they and also shown as highlighted points in Figure 4 top right. The elite athletes trace a
frontier around the population: all elite athletes are subject to a low individual exponent. A hypothetical
athlete holding all the world records is also shown in Figure 4 top right, obtaining an individual exponent
which comes close to the world record exponent estimated by Riegel [36] (1.08 for elite athletes, 1.06 for
senior athletes). (IV.iii) Figure 4 bottom left shows that a low individual exponent correlates positively
with performance in an athlete’s preferred event. The individual exponents are higher on average (me-
dian=1.12; 5th, 95th percentiles=1.10,1.15) than the world record exponents estimated by Riegel. (IV.iv)
Figure 4 bottom right shows that in cross-section, the individual exponent decreases with age until 20 years,
and subsequently increases. (All correlations significant at p ≤1.0e-4; t-distribution approximation to the
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Figure 2: The three components of the low-rank model, and explanation of the world record data. Left: the components displayed
(unit norm, log-time vs log-distance). Tubes around the components are one standard deviation, estimated by the bootstrap. The
first component is an exact power law (straight line in log-log coordinates); the last two components are non-linear, describing
transitions at around 800m and 10km. Middle: Comparison of first component and world record to the exact power law (log-speed
vs log-distance). Right: Least-squares fit of rank 1-3 models to the world record data (log-speed vs log-distance).
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Figure 3: Matrix scatter plot of the three-number-summary vs performance. For each of the scores in the three-number-summary
(rows) and each event distance (columns), the plot matrix shows: a scatter plot of performances (time) vs the coefficient score of
the top 25% (on the best event) athletes who have attempted at least 4 events. Each scatter plot in the matrix is colored on a
continuous color scale according to the absolute value of the scatter sample’s Spearman rank correlation (red = 0, green = 1).

distribution of Spearman’s correlation coefficient.)
(V) Phase transitions. We observe two transitions in behaviour between short and long distances.

The data exhibit a phase transition around 800m: the second component exhibits a kink and the third
component makes a zero transition (Figure 2); the association of the first two scores with performance shifts
from the second to the first score (Figure 3). The data also exhibits a transition around 5000m. We find
that for distances shorter than 5000m, holding the event performance constant and increasing the standard
of shorter events leads to a decrease in the predicted standard of longer events and vice versa. On the other
hand for distances greater than 5000m this behaviour reverses; holding the event performance constant, and
increasing the standard of shorter events leads to an increase in the predicted standard of longer events. See
supplementary section (S.IV) for details.

(VI) Universality over subgroups. Qualitatively and quantitatively similar results to the above
can be deduced for female athletes, and subgroups stratified by age or training standard; LMC remains an
accurate predictor, and the low-rank model has similar form. See supplement (S.II.c).



Figure 4: Scatter plots exploring the three number summary. Top left and right: 3D scatter plot of three-number-summaries
of athletes in the data set, colored by preferred distance and shown from two angles. A negative value for the second score is a
indicates that the athlete is a sprinter, a positive value an endurance runner. In the top right panel, the summaries of the elite
athletes Usain Bolt (world record holder, 100m, 200m), Mo Farah (world beater over distances between 1500m and 10km), Haile
Gabrselassie (former world record holder from 5km to Marathon) and Takahiro Sunada (100km world record holder) are shown;
summaries are estimated from their personal bests. For comparison we also display the hypothetical data of an athlete who holds
all world records. Bottom left: preferred distance vs individual exponents, color is percentile on preferred distance. Bottom right:
age vs. exponent, colored by preferred distance.

Athlete Specialization Individual Exponent (λ1) Score 2 (λ2) Score 3 (λ3)
Usain Bolt Sprints 1.11 -0.367 0.081
Mo Farah Middle-Long 1.08 0.033 -0.076
Haile Gabrselassie Long 1.08 0.114 -0.056
Galen Rupp Long 1.08 0.104 -0.040
Seb Coe Middle 1.09 -0.085 -0.036
Takahiro Sunada Ultra-Long 1.09 0.138 -0.010
Paula Radcliffe Long (Female) 1.10 0.189 0.025

Table 1: Estimated three-number-summary (λi) for a selection of elite athletes. The scores λ1, λ2, λ3 are as in
Equation (1). Since component 1 is a power law (see the top-left of Figure 2), λ1 may be interpreted as an individual exponent.
See the bottom right panel of Figure 4 for a scatter plot of the athletes in the database.



Discussion and Outlook
We have presented the most accurate existing predictor for running performance to date—local low-rank
matrix completion (finding I); its predictive power confirms the validity of a three-component model (finding
II) that offers a parsimonious explanation for many known phenomena in the quantitative science of running,
including answers to some of the major open questions of the field. More precisely, we establish:

The individual power law. In log-time coordinates, the first component of our physiological model is
linear with high accuracy, yielding an individual power law (finding III). This is a novel and rather surprising
finding, since, although world-record performances are known to obey a power law [28, 19, 36, 22, 39, 17],
there is no reason to suppose a-priori that the performance of individuals is governed by a power law. This
parsimony a-posteriori unifies (A) the parsimony of the power law with the (B) empirical correctness of
scoring tables. To what extent this individual power law is exact is to be determined in future studies.

An explanation of the world record data. The broken power law on world records can be seen as
a consequence of the individual power law and the non-linearity in the second and third component (finding
III) of our low-rank model. The breakage point in the world records can be explained by the differing
contributions in the non-linear components of the distinct individuals holding the world records.

Thus both the power law and the broken power law on world record data can be understood as epiphe-
nomena of the individual power law and its non-linear corrections.

Universality of our model. The low-rank model remains unchanged when considering different sub-
groups of athletes, stratified by gender, age, or calendar year; what changes is only the individual three-
number-summaries (finding VI). This shows the low-rank model to be universal for running.

The three-number-summary reflects an athlete’s training state. Our predictive validation im-
plies that the number of components of our model is three (finding II), which yields three numbers describing
the training state of a given athlete (finding IV). The most important summary is the individual exponent
for the individual power law which describes overall performance, especially on middle and longer distances
(IV.iii). The second coefficient describes whether the athlete has greater endurance (positive) or speed
(negative), the third describes specialization over middle distances (negative) vs short and long distances
(positive). All three numbers together clearly separate the athletes into four clusters, which fall into two
clusters of short-distance runners and one cluster of middle-and long-distance runners respectively (IV.i).
Our analysis provides strong evidence that the three-number-summary captures physiological and/or so-
cial/behavioural characteristics of the athletes, e.g., training state, specialization, and which distance an
athlete chooses to attempt. While the data set does not allow us to separate these potential influences or
to make statements about cause and effect, we conjecture that combining the three-number-summary with
specific experimental paradigms will lead to a clarification; further, we conjecture that a combination of the
three-number-summary with additional data, e.g. training logs, high-frequency training measurements or
clinical parameters, will lead to a better understanding of (C) existing physiological models.

Some novel physiological insights can be deduced from leveraging our model on the UK athletics database:

• We find that the individual exponent correlates with performances at middle distances above 800m and
especially long distances above 5km (finding III). We also find that LMC is most effective for the longer-
sprints and middle distances; the improvement of the higher rank over the rank 1 version is lowest over
the marathon distance (supplement S.I.c). This indicates that the variability in performances on long
distances may to a large extent be explained by a single factor, which may imply that there is only
one way to be a fast marathoner (in the database). For example, some middle-distance runners
use a high maximum velocity to coast whereas other runners use greater endurance to run closer to
their maximum speed for the duration of the race; if the type of running (coasting vs endurance) is
a physiological correlate to the specialization summary (as hypothesized above), it could imply that
the “one way” corresponds to possessing a high level of endurance—as opposed to being able to coast
relative to a high maximum speed. In any case, the low-rank model predicts that a marathoner who
is not close to world class over 10km is unlikely to be a world class marathoner.

• The phase transitions which we observe (finding V) provide additional observational evidence for a
transition in the complexity of the physiology underlying performance between long and short distances.
This finding is bolstered by the difference we observe between the increase in performance of the rank 2



predictor over the rank 1 predictor for short/middle distances over long distances. Our results may have
implications for existing hypotheses and findings in sports science on the differences in physiological
determinants of long and short distance running respectively. These include differences in the muscle
fibre types contributing to performance (type I vs. type II) [38, 21], whether the race length demands
energy primarily from aerobic or anaerobic metabolism [6, 16], which energy systems are mobilized
(glycolysis vs. lipolysis) [7, 42] and whether the race terminates before the onset of a V̇O2 slow
component [5, 31]. We conjecture that the combination of our methodology with experiments will shed
further light on these differences.

• An open question in the physiology of aging is whether sprinting power or endurance capabilities
diminish faster with age. Our analysis provides cross-sectional evidence that training standard
decreases with age, and specialization shifts away from endurance: a larger exponent is
correlated with worse performance on endurance type events (finding IV.i), and exponent increases, in
cross-section, with age (finding IV.iv). This confirms observations of Rittweger et al. [37] on masters
world-record data. There are multiple possible explanations for this, for example longitudinal changes
in specialization, or selection bias due to the distances older athletes prefer; our model renders these
hypotheses amenable to quantitative validation.

• We find that there are a number of high-standard athletes who attempt distances different
from their inferred best distance; most notably a cluster of young athletes (< 25 ys) who run short
distances (mostly in accordance with legal limitations of participation), and a cluster of older athletes
(>40 y) who run long distances, but who we predict would perform better on longer resp. shorter
distances. Moreover, the third component of our model implies the existence of athletes with very
strong specialization in their best event; there are indeed high profile examples of such athletes,
such as Zersenay Tadese, who holds the half-marathon world best performance (58:23) but has as yet
to produce a marathon performance even close to this in quality (best performance, 2:10:41).

We also anticipate that our framework will prove fruitful in equipping the practioner with new
methods for prediction and quantification:

• Individual predictions are crucial in race planning—especially for predicting a target performance
for events such as the Marathon for which months of preparation are needed; the ability to accurately
select a realistic target speed will make the difference between an athlete achieving a personal best
performance and dropping out of the race from exhaustion.
N.B.: We would like to stress that using a prediction as part of marathon preparation without profes-
sional support may lead to injury and is entirely at the risk of the user.

• Predictions and the three-number-summary yield a concise description of the runner’s specialization
and training state and are thus of immediate use in training assessment and planning, for example
in determining the potential effect of a training scheme or finding the optimal event(s) for which to
train.
N.B.: We would like to stress that our study is not able to assign a conclusive meaning to the three-
number summary, due to the limitations of the data set; therefore decisions should not be based on a
hypothesized interpretation without consideration.

• The presented framework allows, in principle, for the derivation of novel and more accurate scoring
schemes, including scoring tables for any type of population.
N.B.: We would like to stress that the form of the derived scoring tables may depend on the selection
of the data from which they are derived.

• Predictions for elite athletes allow for a more precise estimation of quotas and betting risk. For
example, we predict that a fair race between Mo Farah and Usain Bolt is over 492m (374-594m with
95% confidence), Chris Lemaitre and Adam Gemili have the calibre to run 43.5 (±1.3) and 43.2 (±1.3)
resp. seconds over 400m. Kenenisa Bekele is capable, in a training state where he can achieve his
personal bests over 5km, 10km and the half-marathon, of a 2:00:36 marathon (±3.6 mins).
N.B.: We would like to stress that such predictions need to be taken with much caution, as they are only
insofar correct as our model extends, from the general population of British runners (who successfully
participated in official events), to the very extremes of human performance.



We further conjecture that the physiological laws we have validated for running will be immediately
transferable to any sport where a power law has been observed on the collective level, such as swimming,
cycling, and horse racing.
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Methods
The following provides a guideline for reproducing the results. Raw and pre-processed data in MATLAB and
CSV formats is available upon request, subject to approval by British Athletics. Complete and documented
source code of algorithms and analyses can be obtained from [download link will be provided here after
acceptance of the manuscript].

Data Source
The basis for our analyses is the online database www.thepowerof10.info, which catalogues British individ-
uals’ performances achieved in officially ratified athletics competitions since 1954, including Olympic athletic
events (field and non-field events), non-Olympic athletic events, cross country events and road races of all
distances.

With permission of British Athletics, we obtained an excerpt of the database by automated querying
of the freely accessible parts of www.thepowerof10.info, restricted to ten types of running events: 100m,
200m, 400m, 800m, 1500m, the Mile, 5000m (track and road races), 10000m (track and road races), Half-
Marathon and Marathon. Other types of running events were available but excluded from the present
analyses; the reasons for exclusion were a smaller total of attempts (e.g. 3000m), a different population of
athletes (e.g. 3000m is mainly attempted by younger athletes), and varying conditions (steeplechase/ hurdles
and cross-country races).

The data set consists of two tables: athletes.csv, containing records of individual athletes, with fields:
athlete ID, gender, date of birth; and events.csv, containing records of individual attempts on running
events until August 3, 2013, with fields: athlete ID, event type, date of the attempt, and performance in
seconds.

The data set is available upon request, subject to approval by British Athletics.

Data Cleaning
Our excerpt of the database contains (after error and duplication removal) records of 164,746 individuals
of both genders, ranging from the amateur to the elite, young to old, and a total of 1,410,789 individual
performances for 10 different types of events (see previous section).

Gender is available for all athletes in the database (101,775 male, 62,971 female). The dates of birth
of 114,168 athletes are missing (recorded as January 1, 1900 in athletes.csv due to particulars of the
automated querying); the date of birth of six athletes is set to missing due to an recorded age at recorded
attempts of eight years or less.

For the above athletes, a total of 1,417,476 attempts was recorded, out of which 1,410,789 remained in
the data set after cleaning: 192,947 over 100m, 194,107 over 200m, 109,430 over 400m, 239,666 over 800m,
176,284 over 1500m, 6,590 at the Mile distance, 96,793 over 5000m (the track and road races), 161,504 over
10000m (on the track and road races), 140,446 for the Half-Marathon and 93,033 for the Marathon. 6,643
duplicate events were removed, and a number of 44 events whose reported performances are better than the
official world records of their time, or extremely slow. Dates of the attempt were set to missing for 225 of
the attempts that recorded January 1, 1901, and one of the attempts that recorded August 20, 2038.

Data Preprocessing
The events and athletes data sets are collated into (10×164, 746)-tables/matrices of performances, where the
10 columns correspond to events and the 164, 746 rows to individual athletes. Rows are indexed increasingly
by athlete ID, columns by the type of event. Each entry of the table/matrix contains one performance (in
seconds) of the athlete by which the row is indexed, at the event by which the column is indexed, or a missing
value. If the entry contains a performance, the date of that performance is stored as meta-information.

We consider two different modes of collation, yielding one table/matrix of performances of size (10 ×
164, 746) each.

In the first mode, which in Tables 2 ff. is referenced as “best” , one proceeds as follows. First, for each
individual athlete, one finds the best event of each individual, measured by population percentile. Then,
for each type of event which was attempted by that athlete within a year before that best event, the best



performance for that type of event is entered into the table. If a certain event was not attempted in this
period, it is recorded as missing.

For the second mode of collation, which in Tables 2 ff. is referenced as “random” , one proceeds as follows.
First, for each individual athlete, a calendar year is uniformly randomly selected among the calendar years
in which that athlete has attempted at least one event. Then, for each type of event which was attempted
by that athlete within the selected calendar year, the best performance for that type of event is entered into
the table. If a certain event was not attempted in the selected calendar year, it is recorded as missing.

The first collation mode ensures that the data is of high quality: athletes are close to optimal fitness,
since their best performance was achieved in this time period. Moreover, since fitness was at a high level,
it is plausible that the number of injuries incurred was low; indeed it can be observed that the number of
attempts per event is higher in this period, effectively decreasing the influence of noise and the chance that
outliers are present after collation.

The second collation mode is used to check whether and, if so how strongly, the results depend on the
athletes being close to optimal fitness.

In both cases choosing a narrow time frame ensures that performances are relevant to one another for
prediction.

Athlete-Specific Summary Statistics
For each given athlete, several summaries are computed based on the collated matrix.

Performance percentiles are computed for each event which an athlete attempts in relation to the other
athletes’ performances on the same event. These column-wise event-specific percentiles, yield a percentile
matrix with the same filling pattern (pattern of missing entries) as the collated matrix.

The preferred distance for a given athlete is the geometric mean of the attempted events’ distances.
That is, if s1, . . . , sm are the distances for the events which the athlete has attempted, then s̃ = (s1 · s2 · . . . ·
sm)1/m is the preferred distance.

The training standard for a given athlete is the mean of all performance percentiles in the corresponding
row.

The no. events for a given athlete is the number of events attempted by an athlete in the year of the
data considered (best or random).

Note that the percentiles yield a mostly physiological description; the preferred distance is a behavioural
summary since it describes the type of events the athlete attempts. The training standard combines both
physiological and behavioural characteristics.

Percentiles, preferred distance, and training standard depend on the collated matrix. At any point when
rows of the collated matrix are removed, future references to those statistics refer to and are computed for
the matrix where those have been removed; this affects the percentiles and therefore the training standard
which is always relative to the athletes in the collated matrix.

Outlier Removal
Outliers are removed from the data in both collated matrices. An outlier score for each athlete/row is
obtained as the difference of maximum and minimum of all performance percentile of the athlete. The five
percent rows/athletes with the highest outlier score are removed from the matrix.

Prediction: Evaluation and Validation
Prediction accuracy is evaluated on row-sub-samples of the collated matrices, defined by (a) a potential
subgroup, e.g., given by age or gender, (b) degrees-of-freedom constraints in the prediction methods that
require a certain amount of entries per row, and (c) a certain performance percentiles of athletes.

The row-sub-samples referred to in the main text and in Tables 2 ff. are obtained by (a) retaining all
rows/athletes in the subgroup specified by gender, or age in the best event, (b) retaining all rows/athletes
with at least no. events or more entries non-missing, and discarding all rows/athletes with strictly less
than no. events entries non-missing, then (c) retaining all athletes in a certain percentile range. The
percentiles referred to in (c) are computed as follows: first, for each column, in the data retained after step



(b), percentiles are computed. Then, for each row/athlete, the best of these percentiles is selected as the
score over which the overall percentiles are taken.

The accuracy of prediction is measured empirically in terms of out-of-sample root mean squared error
(RMSE) and mean absolute error (MAE), with RMSE, MAE, and standard deviations estimated from the
empirical sample of residuals obtained in 1000 iterations of leave-one-out validation.

Given the row-sub-sample matrix obtained from (a), (b), (c), prediction and thus leave-one-out validation
is done in two ways: (i) predicting the left-out entry from potentially all remaining entries. In this scenario,
the prediction method may have access to the performance of the athlete in question which lie in the future of
the event to be predicted, though only performances of other events are available; (ii) predicting the left-out
entry from all remaining entries of other athletes, but only from those events of the athlete in question that
lie in the past of the event to be predicted. In this task, temporal causality is preserved on the level of the
single athlete for whom prediction is done; though information about other athletes’ results that lie in the
future of the event to be predicted may be used.

The third option (iii) where predictions are made only from past events has not been studied due to
the size of the data set which makes collation of the data set for every single prediction per method and
group a computationally extensive task, and due to the potential group-wise sampling bias which would be
introduced, skewing the measures of prediction-quality—the population of athletes on the older attempts
is different in many respects from the more recent attempts. We further argue that in the absence of such
technical issues, evaluation as in (ii) would be equivalent to (iii); since the performances of two randomly
picked athletes, no matter how they are related temporally, can in our opinion be modelled as statistically
independent; positing the contrary would be equivalent to postulating that any given athlete’s performance
is very likely to be directly influenced by a large number of other athlete’s performance history, which is an
assumption that appears to us to be scientifically implausible. Given the above, due to equivalence of (ii)
and (iii), and the issues occurring in (iii) exclusively, we can conclude that (ii) is preferrable over (iii) from
a scientific and statistical viewpoint.

Prediction: Target Outcomes
The principal target outcome for the prediction is “performance”, which we present to the prediction methods
in three distinct parameterisations. This corresponds to passing not the raw performance matrices obtained
in the section “Data Pre-processing” to the prediction methods, but re-parameterized variants where the
non-missing entries undergo a univariate variable transform. The three parameterizations of performance
considered in our experiments are the following:
(a) normalized: performance as the time in which the given athlete (row) completes the event in question
(column), divided by the average time in which the event in question (column) is completed in the sub-
sample;
(b) log-time: performance as the natural logarithm of time in seconds in which the given athlete (row)
completes the event in question (column);
(c) speed: performance as the average speed in meters per second, with which the given athlete (row)
completes the event in question (column).
The words in italics indicate which parameterisation is referred to in Table 2. The error measures, RMSE
and MAE, are evaluated in the same parameterisation in which prediction is performed. We do not evaluate
performance directly in un-normalized time units, as in this representation performances between 100m and
the Marathon span 4 orders of magnitude (base-10), which would skew the measures of goodness heavily
towards accuracy over the Marathon.

Unless stated otherwise, predictions are made in the same parameterisation on which the models are
learnt.

Prediction: Models and Algorithms
In the experiments, a variety of prediction methods are used to perform prediction from the performance
data, given as described in “Prediction: Target Outcomes”, evaluated by the measures as described in the
section “Prediction: Evaluation and Validation”.



In the code available for download, each method is encapsulated as a routine which predicts a missing entry
when given the (training entries in the) performance matrix. The methods can be roughly divided in four
classes: (1) naive baselines, (2) representatives of the state-of-the-art in prediction of running performance,
(3) representatives of the state-of-the-art in matrix completion, and (4) our proposed method and its variants.

The naive baselines are:
(1.a) mean: predicting the the mean over all performances for the same event. (1.b) k-NN: k-nearest
neighbours prediction. The parameter k is obtained as the minimizer of out-of-sample RMSE on five groups
of 50 randomly chosen validation data points from the training set, from among k = 1, k = 5, and k = 20.

The representatives of the state-of-the-art in predicting running performance are:
(2.a)Riegel: The Riegel power law formula with exponent 1.06. (2.b) power law: A power law predictor,

as per the Riegel formula, but with the exponent estimated from the data. The exponent is the same for all
athletes and estimated as the minimizer of the residual sum of squares. (2.c) ind.power law: A power law
predictor, as per the Riegel formula, but with the exponent estimated from the data. The exponent may be
different for each athlete and is estimated as the minimizer of the residual sum of squares. (2.d) Purdy:
Prediction by calculation of equivalent performances using the Purdy points scheme [33]. Purdy points are
calculated by using the measurements given by the Portugese scoring tables which estimate the maximum
velocity for a given distance in a straight line, and adjust for the cost of traversing curves and the time
required to reach race velocity. The performance with the same number of points as the predicting event is
imputed.

The representatives of the state-of-the-art in matrix completion are:
(3.a) EM: Expectation maximization algorithm assuming a multivariate Gaussian model for the rows

of the performance matrix in log-time parameterisation. Missing entries are initialized by the mean of
each column. The updates are terminated when the percent increase in log-likelihood is less than 0.1%.
For a review of the EM-algorithm see [3]. (3.b) Nuclear Norm: Matrix completion via nuclear norm
minimization [10, 40].

The variants of our proposed method are as follows:
(4.a-d) LMC rank r: local matrix completion for the low-rank model, with rank r = 1, 2, 3, 4. (4.a) is

LMC rank 1, (4.b) is LMC rank 2, and so on.
Our algorithm follows the local/entry-wise matrix completion paradigm in [26]. It extends the rank 1

local matrix completion method described in [25] to arbitrary ranks.
Our implementation uses: determinants of size (r+ 1× r+ 1) as the only circuits; the weighted variance

minimization principle in [25]; the linear approximation for the circuit variance outlined in the appendix
of [4]; modelling circuits as independent for the co-variance approximation.

We further restrict to circuits supported on the event to be predicted and the r log-distance closest events.
For the convenience of the reader, we describe the exact way in which the local matrix completion

principle is instantiated, in the section “Prediction: Local Matrix Completion” below
In the supplementary experiments we also investigate two aggregate predictors to study the potential

benefit of using other lengths for prediction:
(5.a) bagged power law: bagging the power law predictor with estimated coefficient (2.b) by a weighted

average of predictions obtained from different events. The weighting procedure is described below. (5.b)
bagged LMC rank 2: estimation by LMC rank 2 where determinants can be supported at any three events,
not only on the closest ones (as in line 1 of Algorithm 1 below). The final, bagged predictor is obtained as a
weighted average of LMC rank 2 running on different triples of events. The weighting procedure is described
below.

The averaging weights for (5.a) and (5.b) are both obtained from the Gaussian radial basis function
kernel exp

(
γ∆∆>

)
, where ∆ = log(sp) − log(sp′) and sp is the vector of predicting distances and sp′ is

the predicted distance. The kernel width γ is a parameter of the bagging. As γ approaches 0, aggregation
approaches averaging and thus the “standard” bagging predictor. As γ approaches −∞, the aggregate
prediction approaches the non-bagged variants (2.b) and (4.b).

Prediction: Local Matrix Completion
The LMC algorithm we use is an instance of Algorithm 5 in [26], where, as detailed in the last section, the
circuits are all determinants, and the averaging function is the weighted mean which minimizes variance, in



first order approximation, following the strategy outlined in [25] and [4].
The LMC rank r algorithm is described below in pseudo-code. For readability, we use bracket notation

M [i, j] (as in R or MATLAB) instead of the usual subscript notation Mij for sub-setting matrices. The
notation M [:, (i1, i2, . . . , ir)] corresponds to the sub-matrix of m with columns i1, . . . , ir. The notation
M [k, :] stands for the whole k-th row. Also note that the row and column removals in Algorithm 1 are only
temporary for the purpose of computation, within the boundaries of the algorithm, and do not affect the
original collated matrix.

Algorithm 1 – Local Matrix Completion in Rank r.
Input: An athlete a, an event s∗, the collated data matrix of performances M .
Output: An estimate/denoising for the entry M [a, s∗]

1: Determine distinct events s1, . . . , sr 6= s∗ which are log-closest to s∗, i.e., minimize
∑r
i=1(log si− log s∗)2

2: Restrict M to those events, i.e., M ←M [:, (s∗, s1, . . . , sr)]
3: Let v be the vector containing the indices of rows in M with no missing entry.
4: M ←M [(v, a), :], i.e., remove all rows with missing entries from M , except a.
5: for i = 1 to 400 do
6: Uniformly randomly sample distinct athletes a1, . . . , ar 6= a among the rows of M .
7: Solve the circuit equation detM [(a, a1, . . . , ar), (s

∗, s1, . . . , sr)] = 0 for s∗, obtaining a number mi.
8: Let A0, A1 ←M [(a, a1, . . . , ar), (s

∗, s1, . . . , sr)].
9: Assign A0[a, s∗]← 0, and A1[a, s∗]← 1.

10: Compute σi ← 1
| detA0+detA1| + | detA0|

(detA0−detA1)2

11: Assign the weight wi ← σ−2i
12: end for
13: Compute m∗ ←

(∑400
i=1 wimi

)
·
(∑400

i=1 wi

)−1
14: Return m∗ as the estimated performance.

The bagged variant of LMC rank r repeatedly runs LMC rank r with choices of events different from
the log-closest, weighting the results obtained from different choices of s1, . . . , sr. The weights are obtained
from 5-fold cross-validation on the training sample.

Obtaining the Low-Rank Components and Coefficients
We obtain three low-rank components f1, . . . , f3 and corresponding coefficients λ1, . . . , λ3 for each athlete
by considering the data in log-time coordinates. Each component fi is a vector of length 10, with entries
corresponding to events. Each coefficient is a scalar, potentially different per athlete.

To obtain the components and coefficients, we consider the data matrix for the specific target outcome,
sub-sampled to contain the athletes who have attempted four or more events and the top 25% percentiles,
as described in “Prediction: Evaluation and Validation”. In this data matrix, all missing values are imputed
using the rank 3 local matrix completion algorithm, as described in (4.c) of “Prediction: Models and Algo-
rithms”, to obtain a complete data matrixM . For this matrix, the singular value decompositionM = USV >

is computed, see [18].
We take the components f2, f3 to be the the 2-th and 3-rd right singular vectors, which are the 2-nd and

3-rd column of V . The component f1 is a re-scaled version of the 1-st column v of V , such that f1(s) ≈ log s,
where the natural logarithm is taken. More precisely, f1 := β−1v, where the re-scaling factor β is obtained
as the ordinary least-squares regression coefficient of the linear explanatory model v(s) = β log s+ c, where
s ranges over the ten event distances, which is β = 0.0572. A more detailed study of v and the regression
coefficient can be found in supplementary experiment (S.II.b).

The three-number-summary referenced in the main corpus of the manuscript is obtained as follows: for
the k-th athlete we obtain from the left singular vector the entries Ukj . The second and third score of the
three-number-summary are obtained as λ2 = Uk2 and λ3 = Uk3. The individual exponent is λ1 = β · Uj1.

The singular value decomposition has the property that the fi and λj are guaranteed to be least-squares
estimators for the components and the coefficients in a projection sense.



Computation of standard error and significance
Standard errors for the singular vectors (components of the model of Equation 1) are computed via inde-
pendent bootstrap sub-sampling on the rows of the data set (athletes).

Standard errors for prediction accuracies are obtained by bootstrapping of the predicted performances
(1000 per experiment). A method is considered to perform significantly better than another when error
regions at the 95% confidence level (= mean over repetitions ± 1.96 standard errors) do not intersect.

Predictions and three-number-summary for elite athletes
Performance predictions and three-number-summaries for the selected elite athletes in Table 1 and Figure 4
are obtained from their personal best times. The relative standard error of the predicted performances is
estimated to be the same as the relative RMSE of predicting time, as reported in Table 2.

Calculating a fair race
Here we describe the procedure for calculating a fair racing distance with error bars between two athletes:
athlete 1 and athlete 2. We first calculate predictions for all events. Provided that athlete 1 is quicker on
some events and athlete 2 is quicker on others, then calculating a fair race is feasible. If athlete 1 is quicker on
shorter events then athlete 2 is typically quicker on all longer events beyond a certain distance. In that case,
we can find the shortest race si whereby athlete 2 is predicted to be quicker; then a fair race lies between si
and si−1. The performance curves in log-time vs. log-distance of both athletes will be locally approximately
linear. We thus interpolate the performance curves between log(si) and log(si−1)—the crossing point gives
the position of a fair race in log-coordinates. We obtain confidence intervals by repeating this procedure
after sampling data points around the estimated performances with standard deviation equal to the RMSE
(see Table 2) on the top 25% of athletes in log-time.



Supplementary Analyses
This appendix contains a series of additional experiments supplementing those in the main corpus. It con-
tains the following findings:

(S.I) Validation of the LMC prediction framework.
(S.I.a) Evaluation in terms of MAE. The results in terms of MAE are qualitatively similar to those in
RMSE; smaller MAEs indicate the presence of outliers.
(S.I.b) Evaluation in terms of time prediction. The results are qualitatively similar to measuring
prediction accuracy in RMSE and MAE of log-time. LMC rank 2 has an average error of approximately 2%
when predicting the top 25% of male athletes.
(S.I.c) Prediction for individual events. LMC outperforms the other predictors on each type of event.
The benefit of higher rank is greatest for middle distances.
(S.I.d) Stability w.r.t. the unit measuring performance. LMC performs equally well in predicting
(performance in time units) when performances are presented in log-time or time normalized by event aver-
age. Speed is worse when the rank 2 predictor is used.
(S.I.e) Stability w.r.t. the events used in prediction. LMC performs equally well when predicting
from the closest-distance events and when using a bagged version which uses all observed events for predic-
tion.
(S.I.f) Stability w.r.t. the event predicted. LMC performs well both when the predicted event is close
to those observed and when the predicted event is further from those observed, in terms of event distance.
(S.I.g) Temporal independence of performances. There are no differences between predictions made
only from past events and predictions made from all available events (in the training set).
(S.I.h) Run-time comparisons. LMC is by orders of magnitude the fastest among the matrix completion
methods.

(S.II) Validation of the low-rank model.
(S.II.a) Synthetic validation. In a synthetic low-rank model of athletic performance that is a proxy to
the real data, the singular components of the model can be correctly recovered by the exact same procedure
as on the real data. The generative assumption of low rank is therefore appropriate.
(S.II.b) The individual power law component, and the distance/time unit. The first singular com-
ponent can be explained by a linear model in log-distance (R-square 0.9997) with slope β = 0.0572± 0.0003
and intercept c = −0.136± 0.003.
(S.II.c) Universality in sub-groups. Quality of prediction, the low-rank model, its rank, and the
singular components remain mostly unchanged when considering subgroups male/female, older/younger,
elite/amateur.

(S.III) Exploration of the low-rank model.
(S.III.a) Further exploration of the three-number-summary. The three number summary also cor-
relates with specialization and training standard.
(S.III.b) Preferred distance vs optimal distance. Most but not all athletes prefer to attend the event
at which they are predicted to perform best. A notable number of younger athletes prefer distances shorter
than optimal, and some older athletes prefer distances longer than optimal.

(S.IV) Pivoting and phase transitions. The pivoting phenomenon in Figure 1, right panel, is found
in the data for any three close-by distances up to the Mile, with anti-correlation between the shorter and
the longer distance. Above 5000m, a change in the shorter of the three distances positively correlates with
a change in the longer distance.

(S.I.a) Evaluation in terms of MAE. Table 3 reports on the goodness of prediction methods in terms
of MAE. Compared with the RMSE (Table 2, the MAE tend to be smaller than the RMSE, indicating the
presence of outliers. The relative prediction-accuracy of methods when compared to each other is qualita-
tively the same.



(S.I.b) Evaluation in terms of time prediction. Tables 5 and 6 report on the prediction accuracy of
the methods tested in terms the relative RMSE and MAE of predicting time. Relative measures are chosen
to avoid bias towards the longer events. The results are qualitatively and quantitatively very similar to the
log-time results in Tables 2 and 3; this can be explained that mathematically the RMSE and MAE of a
logarithm approximate the relative RMSE and MAE well for small values.

(S.I.c) Individual Events. Prediction accuracy of LMC rank 1 and rank 2 on the ten different events is
displayed in Figure 5. The reported prediction accuracy is out-of-sample RMSE of predicting log-time, on
the top 25 percentiles of Male athletes who have attempted 3 or more events, of events in their best year
of performance. The reported RMSE for a given event is the mean over 1000 random prediction samples,
standard errors are estimated by the bootstrap.
The relative improvement of rank 2 over rank 1 tends to be greater for shorter distances below the Mile. This
is in accordance with observation (IV.i) which indicates that the individual exponent is the best descriptor
for longer events, above the Mile.

(S.I.d) Stability w.r.t. the measure of performance. In the main experiment, the LMC model is
learnt on the same measure of performance (log-time, speed, normalized) which is predicted. We investigate
whether the measure of performance on which the model is learnt influences the prediction by learning the
LMC model on either measure and comparing all predictions using the log-time measure. Table 9 displays
prediction accuracy when the model is learnt in any one of the measures of performance. Here we check
the effect of calibration in one coordinates system and testing in another. The reported goodness is out-of-
sample RMSE of predicting log-time, on the top 25 percentiles of Male athletes who have attempted 3 or
more events, of events in their best year of performance. The reported RMSE for a given event is the mean
over 1000 random prediction samples, standard errors are estimated by the bootstrap.
We find that there is no significant difference in prediction goodness when learning the model in log-time
coordinates or normalized time coordinates. Learning the model in speed coordinates leads to a significantly
better prediction than log-time or normalized time when LMC rank 1 is applied, but to a worse prediction
with LMC rank 2. As overall prediction with LMC rank 2 is better, log-time or normalized time are the
preferable units of performance.

(S.I.e) Stability w.r.t. the event predicted.
We consider here the effect of the ratio between the predicted event and the closest predictor. For data

of the best 25% of Males in the year of best performance (best), we compute the log-ratio of the closest
predicting distance and the predicted distance for Purdy Points, the power law formula and LMC rank 2.
See Figure 6, where this log ratio is plotted by error. The results show that LMC is far more robust to error
for predicting distances far from the predicted distance.

(S.I.f) Stability w.r.t. the events used in prediction. We compare whether we can improve predic-
tion by using all events an athlete has attempted, by using one of the aggregate predictors (5.a) bagged
power law or (5.b) bagged LMC rank 2. The kernel width γ for the aggregate predictors is chosen from
−0.001,−0.01,−0.1,−1,−10 as the minimizer of out-of-sample RMSE on five groups of 50 randomly chosen
validation data points from the training set. The validation setting is the same as in the main prediction
experiment.
Results are displayed in Table 10. We find that prediction accuracy of (2.b) power law and (5.a) bagged
power law is not significantly different, nor is (4.b) LMC rank 2 significantly different from (5.b) bagged
LMC rank 2 (both p > 0.05; Wilcoxon signed-rank on the absolute residuals). Even though the kernel width
selected is in the majority of cases σ = −1 and not σ = −10, the incorporation of all events does not lead to
an improvement in prediction accuracy in our aggregation scheme. We find there is no significant difference
(p > 0.05; Wilcoxon signed-rank on the absolute errors) between the bagged and vanilla LMC for the top
95% of runners. This demonstrates that the relevance of closer events for prediction may be learn from the
data. The same holds for the bagged version of the power law formula.

(S.I.g) Temporal independence of performances. We check here whether the results are affected
by using only temporally prior attempts in predicting an athlete’s performance, see section “Prediction:
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from the top 25% of male athletes with no. events≥ 3 in the best year.
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Figure 7: The figure displays mean run-times for the 3 matrix completion algorithms tested in the paper: Nuclear Norm, EM
and LMC (rank 3). Run-times (y-axis) are recorded for completing a single entry in a matrix of size indicated by the x-axis. The
averages are over 100 repetitions, standard errors are estimated by the bootstrap.

Evaluation and Validation” in “Methods”. To this end, we compute out-of-sample RMSEs when predictions
are made only from those events.

Table 4 reports out-of-sample RMSE of predicting log-time, on the top 25 percentiles of Male athletes
who have attempted 3 or more events, of events in their best year of performance. The reported RMSE
for a given event is the mean over 1000 random prediction samples, standard errors are estimated by the
bootstrap.

The results are qualitatively similar to those of Table 2 where all events are used in prediction.

(S.I.h) Run-time comparisons. We compare the run-time cost of a single prediction for the three matrix
completion methods LMC, nuclear norm minimiziation, and EM. The other (non-matrix completion) meth-
ods are fast or depend only negligibly on the matrix size. We measure run time of LMC rank 3 for completion
of a single entry for matrices of 28, 29, . . . , 213 athletes, generated as described in (S.II.a). This is repeated
100 times. For a fair comparison, the nuclear norm minimization algorithm is run with a hyper-parameter
already pre-selected by cross validation. The results are displayed in Figure 7; LMC is faster by orders of
magnitude than nuclear norm and EM and is very robust to the size of the matrix. The reason computation
speeds up over the smallest matrix sizes is that 4 × 4 minors, which are required for rank 3 estimation are
not available, thus the algorithm must attempt all ranks lower than 3 to find sufficiently many minors.

(S.II.a) Synthetic validation. To validate the assumption of a low-rank generative model, we investigate
prediction accuracy and recovery of singular vectors in a synthetic model of athletic performance.

Synthetic data for a given number of athletes is generated as follows:
For each athlete, a three-number summary (λ1, λ2, λ3) is generated independently from a Gaussian dis-

tribution with the same mean and variance as the three-number-summaries measured on the real data and
with uncorrelated entries.

Matrices of performances are generated from the model

log(t) = λ1f1(s) + λ2f2(s) + λ3f3(s) + η(s) (2)

where f1, f2, f3 are the three components estimated from the real data and η(s) is a stationary zero-mean
Gaussian white noise process with adjustable variance. We take the components estimated in log-time
coordinates from the top 25% of male athletes who have attempted at least 4 events as the three components
of the model. The distances s are the same ten event distances as on the real data. In each experiment the
standard deviation of η(s)

Accuracy of prediction: We synthetically generate a matrix of 1000 athletes according to the model
of Equation (2), taking as distances the same distances measured on the real data. Missing entries are
randomized according to two schemes: (a) 6 (out of 10) uniformly random missing entries per row/athlete.
(b) per row/athlete, four in terms of distance-consecutive entries are non-missing, uniformly at random.
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Figure 8: LMC and Nuclear Norm prediction accuracy on the synthetic low-rank data. x-axis denotes the noise level (standard
deviation of additive noise in log-time coordinates); y-axis is out-of-sample RMSE predicting log-time. Left: prediction performance
when (a) the missing entries in each ros are uniform. Right: prediction performance when (b) the observed entries are consecutive.
Error bars are one standard deviation, estimated by the bootstrap.
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Figure 9: Accuracy of singular component estimation with missing data on synthetic model of performance. x-axis is distance,
y-axis is components in log-time. Left: singular components of data generated according to Equation 2 with all data present. Right:
singular components of data generated according to Equation 2 with missing entries estimated with LMC rank 3; the observation
pattern and number of athletes is identical to the real data. The tubes denote one standard deviation estimated by the bootstrap.

We then apply LMC rank 2 and nuclear norm minimization for prediction. This setup is repeated 100
times for ten different standard deviations of η between 0.01 and 0.1. The results are displayed in Figure 8.

LMC performance outperforms nuclear norm; LMC performance is also robust to the pattern of miss-
ingness, while nuclear norm minimization is negatively affected by clustering in the rows. RMSE of LMC
approaches zero with small noise variance, while RMSE of nuclear norm minimization does not.

Comparing the performances with Table 2, an assumption of a noise variance of Std(η) = 0.01 seems
plausible. The performance of nuclear norm on the real data is explained by a mix of the sampling schemes
(a) and (b).

Recovery of model components. We synthetically generate a matrix which has a size and pattern of
observed entries identical to the matrix of top 25% of male athletes who have attempted at least 4 events in
their best year. We set Std(η) = 0.01, which was shown to be plausible in the previous section.

We then complete all missing entries of the matrix using LMC rank 3. After this initial step we estimate
singular components using SVD, exactly as on the real data. Confidence intervals are estimated by a
bootstrap on the rows with 100 iterations.

The results are displayed in Figure 9.
One observes that the first two singular components are recovered almost exactly, while the third is a

slightly deformed. This is due to the smaller singular value of the third component.

(S.II.b) The individual power law component, and the distance/time unit. We examine linearity
of the first singular vector v, as listed in Table 11 and as described in methods section “Obtaining the Low-
Rank Components and Coefficients”. In an ordinary least squares regression model explaining v by log s and
an intercept, we find that v ≈ β log s + c with an R-squared of 0.9997 (Table 12), where the scaling factor
is β = 0.0572 ± 0.0003 and the intercept is c = −0.136 ± 0.003. The intercept corresponds to a choice of
unit, the scaling factor to a choice of basis for the logarithm. Thus re-scaling v with β−1, that is, setting
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Figure 10: The three components of the low-rank model in subgroups. Left: for older runners. Middle: for amateur runners =
best event below 25th percentile. Right: for female runners. Tubes around the components are one standard deviation, estimated
by the bootstrap. The components are the analogous components for the subgroups described as computed in the left-hand panel
of Figure 2.

f1 := β−1v in the low-rank model, and re-scaling the first individual coefficient with β, corresponds to the
choice of the natural basis.
The residuals of the the linear model appear to be plausibly explained by the second and third singular com-
ponent (Table 12), though the small number of fitting nodes which is 10 does not allow a for an assessment
that is more than qualitative.

(S.II.c) Universality in sub-groups. We repeat the methodology for component estimation described
above and obtain the three components in the following sub-groups: female athletes, older athletes (> 30
years), and amateur athletes (25-95 percentile range of training standard). Male athletes were considered
in the main corpus. For female and older athletes, we restrict to the top 95% percentiles of the respective
groups for estimation.

Figure 10 displays the estimated components of the low-rank model. The individual power law is found
to be unchanged in all groups considered. The second and third component vary between the groups but
resemble the components for the male athletes. The empirical variance of the second and third component is
higher, which may be explained by a slightly reduced consistency in performance, or a reduction in sample
size. Whether there is a genuine difference in form or whether the variation is explained by different three-
number-summaries in the subgroups cannot be answered from the dataset considered.

Table 8 displays the prediction results in the three subgroups. Prediction accuracy is similar but slightly
worse when compared to the male athletes. Again this may be explained by reduced consistency in the
subgroups’ performances.

(S.III.a) Further exploration of the three-number-summary. Scatter plots of preferred distance and
training standard against the athletes’ three-number-summaries are displayed in Figure 11. The training
standard correlates predominantly with the individual exponent (score 1); score 1 vs. standard—r = −0.89
(p ≤ 0.001); score 2 vs. standard—r = 0.22 (p ≤ 0.001); score 3 vs. standard—r = 0.031 (p = 0.07); all
correlations are Spearman correlations with significance computed using a t-distribution approximation to
the correlation coefficient under the null. On the other hand preferred distance is associated with all three
numbers in the summary, especially the second; score 1 vs. log(specialization)—r = 0.29 (p ≤ 0.001); score
2 vs. log(specialization)—r = −0.58 (p ≤ 0.001); score 3 vs. log(specialization)—r = −0.14 (p =≤ 0.001);
The association between the third score and specialization is non-linear with an optimal value around the
middle distances. We stress that low correlation does not imply low predictive power; the whole summary
should be considered as a whole, and the LMC predictor is non-linear. Also, we observe that correlations
increase when considering only performances over certain distances, see Figure 2.

(S.III.b) Preferred event vs best event. For the top 95% male athletes who have attempted 3 or
more events, we use LMC rank 2 to compute which percentile they would achieve in each event. We then
determine the distance of the event at which they would achieve the best percentile, to which we will refer as
the “optimal distance”. Figure 12 shows for each athlete the difference between their preferred and optimal



Figure 11: Scatter plots of training standard vs. three-number-summary (top) and preferred distance vs. three-number-summary.
In each case the individual exponents, 2nd and 3rd scores (λ2, λ3) are displayed on the y-axis and the log-preferred distance and
training standard on the x-axis.

distance.
It can be observed that the large majority of athletes prefer to attempt events in the vicinity of their

optimal event. There is a group of young athletes who attempt events which are shorter than the predicted
optimal distance, and a group of old athletes attempting events which are longer than optimal. One may
hypothesize that both groups could be explained by social phenomena: young athletes usually start to train
on shorter distances, regardless of their potential over long distances. Older athletes may be biased to at-
tempting endurance type events.

(S.IV) Pivoting and phase transitions. We look more closely at the pivoting phenomenon illustrated in
Figure 1 top right, and the phase transition discussed in observation (V). We consider the top 25% of male
athletes who have attempted at least 3 events, in their best year.

We compute 10 performances of equivalent standard by using LMC rank 1 in log-time coordinates,
by setting a benchmark performance over the marathon and sequentially predicting each lower distance
(marathon predicts HM, HM predicts 10km etc.). This yields equivalent benchmark performances t1, . . . , t10.

We then consider triples of consecutive distances si−1, si, si+1 (excluding the Mile since close in distance
to the 1500m) and study the pivoting behaviour on the data set, by performing the analogous prediction
displayed Figure 1.

More specifically, for each triple, we predict the performance on the distance si+1 using LMC rank 2,
from the performances over the distances si−1 and si. The prediction is performed in two ways, once with
and once without perturbation of the benchmark performance at si−1, which we then compare. Intuitively,
this corresponds to comparing the red to the green curve in Figure 1. In mathematical terms:

1. We obtain a prediction t̂i+1 for the distance si+1 from the benchmark performances ti, ti−1 and consider
this as the unperturbed prediction, and

2. We obtain a prediction t̂i+1 + δ(ε) for the distance si+1 from the benchmark performance ti on si
and the perturbed performance (1 + ε)ti−1 on the distance si−1, considering this as the perturbed
prediction.

We record these estimates for ε = −0.1, 0.09, . . . , 0, 0.01, . . . , 0.1 and calculate the relative change of
the perturbed prediction with respect to the unperturbed, which is δi(ε)/t̂i. The results are displayed in
Figure 13.



Figure 12: Difference of preferred distance and optimal distance, versus age of the athlete, colored by specialization distance.
Most athletes prefer the distance they are predicted to be best at. There is a mismatch of best and preferred for a group of younger
athletes who have greater potential over longer distances, and for a group of older athletes who’s potential is maximized over shorter
distances than attempted.

We find that for pivot distances si shorter than 5km, a slower performance on the shorter distance si−2
leads to a faster performance over the longer distance si, insofar as this is predicted by the rank 2 predictor.
On the other hand we find that for pivot distances greater than or equal to 5km, a faster performance over
the shorter distance also implies a faster performance over the longer distance.

References
[1] L Véronique Billat. Use of blood lactate measurements for prediction of exercise performance and for control of

training. Sports medicine, 22(3):157–175, 1996.

[2] L Véronique Billat and J Pierre Koralsztein. Significance of the velocity at VO2max and time to exhaustion at
this velocity. Sports Medicine, 22(2):90–108, 1996.

[3] Christopher M Bishop et al. Pattern recognition and machine learning, volume 4. springer New York, 2006.

[4] Duncan AJ Blythe, Louis Theran, and Franz Kiraly. Algebraic-combinatorial methods for low-rank matrix
completion with application to athletic performance prediction. arXiv preprint arXiv:1406.2864, 2014.

[5] F Borrani, R Candau, GY Millet, S Perrey, J Fuchslocher, and JD Rouillon. Is the VO2 slow component
dependent on progressive recruitment of fast-twitch fibers in trained runners? Journal of Applied Physiology,
90(6):2212–2220, 2001.

[6] Laurent Bosquet, Luc Léger, and Patrick Legros. Methods to determine aerobic endurance. Sports Medicine,
32(11):675–700, 2002.

[7] George A. Brooks and Jacques Mercier. Balance of carbohydrate and lipid utilization during exercise: the
"crossover" concept. Journal of Applied Physiology, 76(6):2253–2261, 1994.

[8] Michael W. Browne. Cross-validation methods. Journal of Mathematical Psychology, 44(1):108–132, 2000.

[9] Matthew W. Bundle, Reed W. Hoyt, and Peter G. Weyand. High-speed running performance: a new approach
to assessment and prediction. Journal of Applied Physiology, 95(5):1955–1962, 2003.

[10] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization. Foundations of
Computational mathematics, 9(6):717–772, 2009.



200m 400m 800m 1500m 5km 10km HM
−0.1

−0.05

0

0.05

0.1

f(
ε)

/t i

distance

Short Performance peturbations

 

 
(1−ε)t

i−2
>t

i−2

(1−ε)t
i−2

<t
i−2

Figure 13: Pivot phenomenon in the low-rank model. The figure quantifies the strength and sign of pivoting as in Figure 1, top
right, at different middle distances si (x-axis). The computations are based on equivalent log-time performances ti−1, ti, ti+1 at
consecutive triples si−1, si, si+1 of distances. The y-coordinate indicates the signed relative change of the LMC rank 2 prediction of
ti+1 from ti−1 and ti changes, when ti is fixed and ti−1 undergoes a relative change of 1%, 2%, . . . , 10% (red curves, line thickness
is proportional to change), or −1%,−2%, . . . ,−10% (blue curves, line thickness is proportional to change). For example, the largest
peak corresponds to a middle distance of si = 400m. When predicting 800m from 400m and 200m, the predicted log-time ti+1 (=
800m performance) decreases by 8% when ti−1 (= 200m performance) is increased by 10% while ti (= 400m performance) is kept
constant.

[11] Emmanuel J. Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix completion.
Information Theory, IEEE Transactions on, 56(5):2053–2080, 2010.

[12] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the royal statistical society. Series B (methodological), pages 1–38, 1977.

[13] Pietro Enrico Di Prampero. Factors limiting maximal performance in humans. European journal of applied
physiology, 90(3-4):420–429, 2003.

[14] Bradley Efron. Estimating the error rate of a prediction rule: improvement on cross-validation. Journal of the
American Statistical Association, 78(382):316–331, 1983.

[15] Bradley Efron and Robert Tibshirani. Improvements on cross-validation: the 632+ bootstrap method. Journal
of the American Statistical Association, 92(438):548–560, 1997.

[16] Oliver Faude, Wilfried Kindermann, and Tim Meyer. Lactate threshold concepts. Sports Medicine, 39(6):469–
490, 2009.

[17] Juan M. García-Manso, Juan M. Martín-González, Nancy Dávila, and Enrique Arriaza. Middle and long distance
athletics races viewed from the perspective of complexity. Journal of theoretical biology, 233(2):191–198, 2005.

[18] Gene H. Golub and Christian Reinsch. Singular value decomposition and least squares solutions. Numerische
Mathematik, 14(5):403–420, 1970.

[19] Franklin M. Henry. Prediction of world records in running sixty yards to twenty-six miles. Research Quarterly.
American Association for Health, Physical Education and Recreation, 26(2):147–158, 1955.

[20] Archibald V Hill, CNH Long, and H Lupton. Muscular exercise, lactic acid, and the supply and utilisation of
oxygen. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character,
pages 84–138, 1924.

[21] Hans Hoppeler, Hans Howald, Kevin Conley, Stan L. Lindstedt, Helgard Claassen, Peter Vock, and Ewald R.
Weibel. Endurance training in humans: aerobic capacity and structure of skeletal muscle. Journal of Applied
Physiology, 59(2):320–327, 1985.

[22] Leon Katz and J Sylvan Katz. Fractal (power law) analysis of athletic performance. Research in Sports Medicine:
An International Journal, 5(2):95–105, 1994.

[23] Joseph B Keller. A theory of competitive running. Physics today, page 43, 1973.



[24] Arthur Edwin Kennelly. An approximate law of fatigue in the speeds of racing animals. In Proceedings of the
American Academy of Arts and Sciences, pages 275–331. JSTOR, 1906.

[25] Franz J. Király and Louis Theran. Obtaining error-minimizing estimates and universal entry-wise error bounds
for low-rank matrix completion. NIPS 2013, 2013. arXiv 1302.5337.

[26] Franz J. Király, Louis Theran, and Ryota Tomioka. The algebraic combinatorial approach for low-rank matrix
completion. Journal of Machine Learning Research, 2015. accepted, to appear. arXiv 1211.4116.

[27] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and model selection. In
IJCAI, volume 14, pages 1137–1145, 1995.

[28] Milton H. Lietzke. An analytical study of world and olympic racing records. Science, 119(3089):333–336, 1954.

[29] Timothy D. Noakes, Kathryn H. Myburgh, and Robert Schall. Peak treadmill running velocity during the
VO2max test predicts running performance. Journal of sports sciences, 8(1):35–45, 1990.

[30] François Péronnet and Guy Thibault. Mathematical analysis of running performance and world running records.
Journal of Applied Physiology, 67(1):453–465, 1989.

[31] David C. Poole, Thomas J. Barstow, Glenn A. Gaesser, Wayne T. Willis, and Brian J Whipp. VO2 slow
component: physiological and functional significance. Medicine and science in sports and exercise, 26(11):1354–
1358, 1994.

[32] J Gerry Purdy. Computer generated track and field scoring tables: I. historical development. Medicine and
science in sports, 6(4):287, 1974.

[33] J Gerry Purdy. Computer generated track and field scoring tables: II. theoretical foundation and development
of a model. Medicine and science in sports, 7(2):111–115, 1974.

[34] J Gerry Purdy. Computer generated track and field scoring tables: III. model evaluation and analysis. Medicine
and science in sports, 9(4):212–218, 1976.

[35] Peter S. Riegel. Time predicting. Runner’s World Magazine, Aug, 1977.

[36] Peter S. Riegel. Athletic records and human endurance. American Scientist, 69(3):285–290, 1980.

[37] Jörn Rittweger, Pietro Enrico di Prampero, Nicola Maffulli, and Marco V. Narici. Sprint and endurance power
and ageing: an analysis of master athletic world records. Proceedings of the Royal Society B: Biological Sciences,
276(1657):683–689, 2009.

[38] B. Saltin, J. Henricksson, E. Hygaard, and P. Andersen. Fibre types and metabolic potentials of skeletal muscles
in sedentary man and endurance runners. Annals of the New York Academy of Sciences, pages 3–29, 1977.

[39] Sandra Savaglio and Vincenzo Carbone. Human performance: Scaling in athletic world records. Nature,
404(6775):244–244, 2000.

[40] Ryota Tomioka, Kohei Hayashi, and Hisashi Kashima. On the extension of trace norm to tensors. In NIPS
Workshop on Tensors, Kernels, and Machine Learning, page 7, 2010.

[41] Gerrit Jan Ingen van Schenau, Jos J de Koning, and Gert de Groot. Optimisation of sprinting performance in
running, cycling and speed skating. Sports Medicine, 17(4):259–275, 1994.

[42] Michelle C. Venables, Juul Achten, and Asker E. Jeukendrup. Determinants of fat oxidation during exercise in
healthy men and women: a cross-sectional study. Journal of applied physiology, 98(1):160–167, 2005.

[43] Karlman Wasserman, Brian J. Whipp, SN Koyl, and WL Beaver. Anaerobic threshold and respiratory gas
exchange during exercise. Journal of applied physiology, 35(2):236–243, 1973.



Generic
Baselines

State of art
Performance Predictors

State of art
Matrix Completion

Proposed
Method: LMC

ev
a
lu

a
ti

o
n

p
er

ce
n
ti

le
s

n
o
.e

v
en

ts

d
a
ta

ty
p
e

r.
m

ea
n

k
-N

N

in
d
iv

id
u
a
l

p
o
w
er

la
w

ri
eg

el

p
o
w
er

la
w

p
u
rd

y

n
u
cl

ea
r

n
o
rm

E
M

L
M

C
ra

n
k

1

L
M

C
ra

n
k

2

log time 0-95 3 best 0.1308 0.0618 0.1033 0.0982 0.0973 0.0610 0.3909 0.0566 0.0586 0.0515
±0.0032 ±0.0027 ±0.0042 ±0.0046 ±0.0046 ±0.0031 ±0.0457 ±0.0028 ±0.0026 ±0.0027

normalized 0-95 3 best 0.1364 0.0716 0.1067 0.1059 0.1050 0.0684 0.1900 0.0634 0.0643 0.0576
±0.0044 ±0.0046 ±0.0048 ±0.0066 ±0.0065 ±0.0043 ±0.0120 ±0.0045 ±0.0038 ±0.0039

speed 0-95 3 best 0.6655 0.3057 0.6096 0.5467 0.5415 0.3077 26.6210 0.2922 0.3123 0.2530
±0.0147 ±0.0146 ±0.0245 ±0.0251 ±0.0243 ±0.0176 ±11.4828 ±0.0165 ±0.0149 ±0.0129

log time 0-95 3 random 0.1380 0.0544 0.0931 0.0931 0.0919 0.0591 0.4416 0.0561 0.0567 0.0471
±0.0032 ±0.0025 ±0.0035 ±0.0038 ±0.0038 ±0.0028 ±0.0428 ±0.0031 ±0.0027 ±0.0024

normalized 0-95 3 random 0.1450 0.0623 0.0951 0.1011 0.0998 0.0682 0.2046 0.0634 0.0640 0.0538
±0.0043 ±0.0037 ±0.0039 ±0.0048 ±0.0046 ±0.0038 ±0.0117 ±0.0039 ±0.0037 ±0.0035

speed 0-95 3 random 0.6935 0.2585 0.5917 0.5052 0.4979 0.2835 24.7206 0.2801 0.2863 0.2261
±0.0143 ±0.0117 ±0.0312 ±0.0176 ±0.0167 ±0.0137 ±10.9157 ±0.0196 ±0.0120 ±0.0105

log time 0-95 4 best 0.1268 0.0735 0.0777 0.0819 0.0822 0.0581 0.1779 0.0529 0.0536 0.0467
±0.0032 ±0.0030 ±0.0024 ±0.0032 ±0.0032 ±0.0023 ±0.0199 ±0.0024 ±0.0021 ±0.0022

log time 0-25 3 best 0.0557 0.0416 0.0806 0.0683 0.0720 0.0411 0.3008 0.0383 0.0411 0.0306
±0.0015 ±0.0014 ±0.0031 ±0.0026 ±0.0026 ±0.0012 ±0.0275 ±0.0013 ±0.0014 ±0.0011

Table 2: Out-of-sample RMSE for prediction methods on different data setups. Predicted performance is of the 25 top percentiles
of male athletes, in their best year. Standard errors are bootstrap estimates over 1000 repetitions. Compared method classes
are (1) generic baselines, (2) state-of-the-art in performance prediction, (3) state-of-the-art in matrix completion, (4) local matrix
completion (columns). Methods are (1.a) r.mean: predicting the mean of all athletes (1.b) k-NN: predicting the nearest neighbor.
(2.a) riegel: Riegel’s formula (2.b) power law: power law with free exponent and coefficient. Exponent is the same for all athletes.
(2.c) ind.power law: power law with free exponent and coefficient. (2.d) purdy: Purdy points scheme (3.a) EM: expectation
maximization (3.b) nuclear norm: nuclear norm minimization (4.a) LMC with rank 1 (4.b) LMC with rank 2. Data setup is
specified by (i) evaluation: what is predicted. log-time = natural logarithm of time in seconds, normalized = time relative to mean
performance, speed = average speed in meters per seconds, (ii) percentiles: selected percentile range of athletes, (iii) no.events tried
= sub-set of athletes who have attempted at least that number of different events, (iv) data type: collation mode of performance
matrix; best = 1 year around best performance, random = random 2 year period. LMC rank 2 significantly outperforms all
competitors in either setting.
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log time 0-95 3 best 0.1054 0.0421 0.0696 0.0661 0.0654 0.0423 0.1282 0.0387 0.0402 0.0336
±0.0025 ±0.0014 ±0.0024 ±0.0023 ±0.0023 ±0.0014 ±0.0115 ±0.0013 ±0.0014 ±0.0012

normalized 0-95 3 best 0.1062 0.0441 0.0700 0.0681 0.0674 0.0441 0.0907 0.0400 0.0413 0.0347
±0.0027 ±0.0018 ±0.0026 ±0.0026 ±0.0025 ±0.0017 ±0.0051 ±0.0016 ±0.0016 ±0.0014

speed 0-95 3 best 0.5463 0.2118 0.3989 0.3640 0.3600 0.2197 2.2846 0.2023 0.2130 0.1716
±0.0122 ±0.0067 ±0.0145 ±0.0130 ±0.0126 ±0.0070 ±0.8163 ±0.0065 ±0.0072 ±0.0058

log time 0-95 3 random 0.1119 0.0373 0.0655 0.0656 0.0646 0.0411 0.1501 0.0376 0.0385 0.0320
±0.0026 ±0.0012 ±0.0021 ±0.0021 ±0.0021 ±0.0014 ±0.0131 ±0.0014 ±0.0013 ±0.0011

normalized 0-95 3 random 0.1136 0.0397 0.0660 0.0686 0.0676 0.0438 0.1013 0.0395 0.0405 0.0338
±0.0029 ±0.0016 ±0.0021 ±0.0025 ±0.0023 ±0.0016 ±0.0055 ±0.0016 ±0.0015 ±0.0013

speed 0-95 3 random 0.5727 0.1825 0.3795 0.3552 0.3497 0.2066 2.5636 0.1913 0.1995 0.1607
±0.0126 ±0.0060 ±0.0145 ±0.0114 ±0.0112 ±0.0061 ±0.7841 ±0.0065 ±0.0065 ±0.0052

log time 0-95 4 best 0.1014 0.0514 0.0557 0.0551 0.0553 0.0406 0.0716 0.0350 0.0366 0.0310
±0.0024 ±0.0016 ±0.0017 ±0.0020 ±0.0020 ±0.0013 ±0.0051 ±0.0013 ±0.0013 ±0.0010

log time 0-25 3 best 0.0424 0.0294 0.0559 0.0479 0.0507 0.0310 0.0970 0.0282 0.0300 0.0221
±0.0012 ±0.0009 ±0.0019 ±0.0015 ±0.0016 ±0.0008 ±0.0092 ±0.0008 ±0.0009 ±0.0007

Table 3: Out-of-sample MAE for prediction methods on different data setups. Predicted performance is of the 25 top percentiles
of male athletes, in their best year. Standard errors are bootstrap estimates over 1000 repetitions. Compared method classes
are (1) generic baselines, (2) state-of-the-art in performance prediction, (3) state-of-the-art in matrix completion, (4) local matrix
completion (columns). Methods are (1.a) r.mean: predicting the mean of all athletes (1.b) k-NN: predicting the nearest neighbor.
(2.a) riegel: Riegel’s formula (2.b) power law: power law with free exponent and coefficient. Exponent is the same for all athletes.
(2.c) ind.power law: power law with free exponent and coefficient. (2.d) purdy: Purdy points scheme (3.a) EM: expectation
maximization (3.b) nuclear norm: nuclear norm minimization (4.a) LMC with rank 1 (4.b) LMC with rank 2. Data setup is
specified by (i) evaluation: what is predicted. log-time = natural logarithm of time in seconds, normalized = time relative to mean
performance, speed = average speed in meters per seconds, (ii) percentiles: selected percentile range of athletes, (iii) no.events tried
= sub-set of athletes who have attempted at least that number of different events, (iv) data type: collation mode of performance
matrix; best = 1 year around best performance, random = random 2 year period. LMC rank 2 significantly outperforms all
competitors in either setting.
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log time 0-95 3 best 0.1398 0.0637 0.1065 0.0100 0.0991 0.0639 0.3624 0.0574 0.0622 0.0545
±0.0066 ±0.0057 ±0.0054 ±0.0063 ±0.0063 ±0.0066 ±0.0849 ±0.0060 ±0.0054 ±0.0050

normalized 0-95 3 best 0.1483 0.0792 0.1103 0.1051 0.1042 0.0724 0.1769 0.0658 0.0694 0.0620
±0.0097 ±0.0104 ±0.0068 ±0.0066 ±0.0068 ±0.0097 ±0.0222 ±0.0096 ±0.0078 ±0.0086

speed 0-95 3 best 0.7153 0.3308 0.6553 0.5827 0.5772 0.3383 19.2009 0.3067 0.3410 0.2918
±0.0349 ±0.0348 ±0.0356 ±0.0368 ±0.0385 ±0.0440 ±9.9799 ±0.0393 ±0.0310 ±0.0321

log time 0-95 3 random 0.1380 0.0544 0.0931 0.0931 0.0919 0.0591 0.4416 0.0561 0.0567 0.0471
±0.0032 ±0.0027 ±0.0035 ±0.0039 ±0.0038 ±0.0027 ±0.0435 ±0.0031 ±0.0027 ±0.0023

normalized 0-95 3 random 0.1450 0.0623 0.0951 0.1011 0.0998 0.0682 0.2046 0.0634 0.0640 0.0538
±0.0044 ±0.0037 ±0.0038 ±0.0049 ±0.0049 ±0.0039 ±0.0124 ±0.0041 ±0.0038 ±0.0033

speed 0-95 3 random 0.6935 0.2585 0.5917 0.5052 0.4979 0.2835 24.7206 0.2801 0.2863 0.2261
±0.0147 ±0.0121 ±0.0329 ±0.0171 ±0.0167 ±0.0134 ±10.7164 ±0.0199 ±0.0121 ±0.0112

log time 0-95 4 best 0.1368 0.0763 0.0823 0.0859 0.0862 0.0620 0.2371 0.0608 0.0599 0.0531
±0.0075 ±0.0060 ±0.0042 ±0.0060 ±0.0059 ±0.0038 ±0.0423 ±0.0064 ±0.0041 ±0.0040

log time 0-25 3 best 0.0539 0.0425 0.0810 0.0675 0.0710 0.0412 0.2479 0.0358 0.0417 0.0318
±0.0027 ±0.0030 ±0.0056 ±0.0050 ±0.0051 ±0.0026 ±0.0600 ±0.0022 ±0.0030 ±0.0022

Table 4: Prediction only from events which are earlier in time than the performance to be predicted. The table shows out-of-sample
RMSE for performance prediction methods on different data setups. Predicted performance is of the 25 top percentiles of male
athletes, in their best year. Standard errors are bootstrap estimates over 1000 repetitions. Legend is as in Table 2.
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time 0-95 3 best 0.1295 0.0627 0.0959 0.0973 0.0964 0.0596 0.1785 0.0560 0.0569 0.0499
±0.0027 ±0.0027 ±0.0035 ±0.0064 ±0.0065 ±0.0025 ±0.0105 ±0.0028 ±0.0023 ±0.0024

time 0-95 3 random 0.1357 0.0535 0.0874 0.0907 0.0895 0.0585 0.1961 0.0544 0.0550 0.0461
±0.0029 ±0.0022 ±0.0028 ±0.0031 ±0.0031 ±0.0026 ±0.0116 ±0.0025 ±0.0022 ±0.0020

time 0-95 4 best 0.1232 0.0745 0.0750 0.0782 0.0785 0.0566 0.1167 0.0525 0.0522 0.0455
±0.0025 ±0.0031 ±0.0021 ±0.0027 ±0.0027 ±0.0021 ±0.0084 ±0.0029 ±0.0019 ±0.0019

time 0-25 3 best 0.0559 0.0422 0.0760 0.0668 0.0704 0.0406 0.1579 0.0377 0.0402 0.0302
±0.0015 ±0.0016 ±0.0025 ±0.0022 ±0.0023 ±0.0012 ±0.0113 ±0.0012 ±0.0014 ±0.0001

Table 5: Exactly the same table as Table 2 but relative root mean squared errors reported in terms of time. Models are learnt on
the performances in log-time.
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time 0-95 3 best 0.1057 0.0424 0.0669 0.0654 0.0647 0.0420 0.0876 0.0384 0.0397 0.0333
±0.0023 ±0.0015 ±0.0022 ±0.0023 ±0.0024 ±0.0014 ±0.0048 ±0.0013 ±0.0013 ±0.0012

time 0-95 3 random 0.1116 0.0372 0.0635 0.0651 0.0642 0.0410 0.0980 0.0373 0.0381 0.0318
±0.0024 ±0.0012 ±0.0018 ±0.0019 ±0.0020 ±0.0013 ±0.0055 ±0.0013 ±0.0013 ±0.0011

time 0-95 4 best 0.1006 0.0519 0.0547 0.0540 0.0543 0.0401 0.0605 0.0348 0.0362 0.0307
±0.0023 ±0.0016 ±0.0016 ±0.0018 ±0.0018 ±0.0013 ±0.0032 ±0.0013 ±0.0012 ±0.0011

time 0-25 3 best 0.0425 0.0296 0.0542 0.0476 0.0504 0.0308 0.0688 0.0280 0.0297 0.0220
±0.0011 ±0.0001 ±0.0017 ±0.0015 ±0.0016 ±0.0008 ±0.0046 ±0.0008 ±0.0008 ±0.0007

Table 6: Exactly the same table as Table 2 but relative mean absolute errors reported in terms of time. Models are learnt on the
performances in log-time.

no
ev
en
ts
.

r1 r2 r3 r4

3 0.0411 0.0306 — —
±0.0014 ±0.0011

4 0.0446 0.0328 0.0309 —
±0.0016 ±0.0013 ±0.0012

5 0.0518 0.0408 0.0400 0.0408
±0.0032 ±0.0033 ±0.0034 ±0.0036

Table 7: Determination of the true rank of the model. Table displays out-of-sample RMSE for predicting performance with LMC
rank 1-4 (columns) Predicted performance is of the 25 top percentiles of male athletes, in their best year, who have attempted at
least the number of events indicated by the row. The model is learnt on performances in log-time coordinates. Standard errors are
bootstrap estimates over 1000 repetitions. The entries where no. events ≥ rank are empty, as LMC rank r needs r+ 1 attempted
events for leave-one-out-validation. Prediction with LMC rank 3 is always better or equally good compared to using a different
rank, in terms of out-of-sample prediction accuracy.
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Amateur 0.0305
±0.0002

Female 0.0305
±0.0003

Old 0.0326
±0.0003

Table 8: Prediction in three different subgroups: amateur athletes, female athletes, older athletes. Table displays out-of-sample
RMSE for predicting performance with LMC rank 2.
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1 0.0410 0.0376 0.0399
±0.0014 ±0.0011 ±0.0013

2 0.0304 0.0315 0.0305
±0.0011 ±0.0011 ±0.0001

Table 9: Effect of performance measure in which the LMC model is learnt. The model is learnt on three different measures of
performance: log-time, time normalized by event mean, speed (columns). The table shows out-of-sample RMSE for predicting
log-time performance with LMC rank 1,2. Standard errors are bootstrap estimates over 1000 repetitions. Performance is of the 25
top percentiles of male athletes, in their best year of performance.
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0-25 3 0.0310 0.0654 0.0308 0.0666
±0.0011 ±0.0025 ±0.0011 ±0.0025

0-95 3 0.0529 0.0898 0.0512 0.0948
±0.0031 ±0.0040 ±0.0028 ±0.0039

0-95 4 0.0480 0.0762 0.0467 0.0825
±0.0034 ±0.0029 ±0.0021 ±0.0030

Table 10: Comparison of prediction using all distances, to prediction using only closest distances. Table displayes out-of-sample
RMSE of predicting log-time, for (5.a) the bagged power law and (5.b) the bagged LMC rank 2 predictor, compared with the un-
bagged variants, (2.b) and (4.b). Predicted performance is of the 25 top percentiles of male athletes, in their best year. Standard
errors are bootstrap estimates over 1000 repetitions. The results of the bagging predictors are very similar to the unbagged one.

s 100m 200m 400m 800m 1.5km Mile 5km 10km HM M
f1 2.254 2.875 3.574 4.305 4.964 5.049 6.179 6.844 7.555 8.243
f2 0.4473 0.4721 0.5265 0.3045 0.0798 0.0806 -0.1597 -0.1983 -0.2279 -0.2785
f3 -0.1750 -0.2004 -0.1145 0.2224 0.3263 0.3092 0.3157 0.2717 -0.1153 -0.6912
v 0.1291 0.1647 0.2047 0.2466 0.2843 0.2892 0.3539 0.3920 0.4327 0.4721

Table 11: The three components of the low-rank model 1. An entry in the rows i = 1, 2, 3 is fi(s), where s is the column header;
HM is the half-Marathon, M is the Marathon. The components are obtained as described in methods, “obtaining the low-rank
components and coefficients”. v is the raw singular vector described there from which f1 is obtained by rescaling. v, f2, f3 are
displayed in Figure 2 top left with standard error tubes per entry. The entries for v have, on average, an estimated standard error of
0.005, the entries for f2 have, on average, an estimated standard error of 0.02, and the entries for f3 have, on average, an estimated
standard error of 0.04.



variables β β2 β3 c
model 1 log s 0.0572± 0.0003 −0.136± 0.003
model 2 log s, f2 0.0547± 0.0007 −0.017± 0.004 −0.115± 0.006
model 3 log s, f2, f3 0.0554± 0.0007 −0.013± 0.004 0.002± 0.001 −0.120± 0.006

t1 p(X > |t1|) t2 p(X > |t2|) t3 p(X > |t3|) tc p(X > |tc|)
model 1 168 1.7e-15 -51 2.3e-11
model 2 81 1.1e-12 -3.9 5.9e-3 -21 1.5e-7
model 3 80 2.5e-10 -3.0 2.5e-2 1.8 0.13 -21 7.1e-7

F P (X > F ) RSE R-squared
model 1 2.8e+4 1.7e-15 0.0020 0.9997
model 2 3.9e+4 6.6e-15 0.0012 0.9999
model 3 3.4e+4 4.4e-13 0.0011 0.9999

Table 12: Explaining the first singular component, v. The following explanatory linear models are fitted: v explained by β log s+c
(model 1); v explained by β log s + β2f2 + c (model 2); v explained by β log s + β2f2 + β3f3 + c. The β, β2, β3 are the estimated
coefficients, ± one standard error. t1, t2, t3 are the t-statistics of β, β2, β3; tc is the t-statistic of c. The F-statistic of the respective
model is F , RSE is the residual standard error.
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