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100 people leave their hats at the door at a party and
pick up a completely random hat when they leave.
How likely is it that at least one of them will get
back their own hat? If the hats carry name tags,
how difficult is it to arrange for all hats to be re-
turned to their owner? These classical questions of
probability theory can be answered relatively easily.
But if a geometric component is added, answering
the same questions immediately becomes very hard,
and little is known about them. We present some
of the open questions and give an overview of what
current research can say about them.

1 Uniform random permutat ions

Imagine we have a set A with finitely many, say n, elements. We could number
these elements in a certain order by 1, 2, . . . to n. By reordering the elements we
obtain what we call a permutation of the set A. In other words, a permutation
is a one-to-one map from the set to itself, that is, a map that assigns to every
element from the set exactly one other element and no two elements in the set
get assigned to the same element.
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Figure 1: A permutation of the numbers 1 to 6. The arrows show the way σ
assigns new places to the numbers and point from j to σ(j). The
last line shows the reordered set of numbers after having applied σ.

Permutations are interesting to study in various contexts. 1 Here we will add
a further ingredient to our setup, namely, randomness. The idea of choosing at
random among all permutations of a given set is almost as old as probability
theory itself. One of the first examples is what is today known as the ‘hat
problem’, first considered by Pierre Rémont de Montmort (1678–1719) in 1708.

1.1 The hat problem

Assume that n people, each wearing a hat, come to a party, leave their hats by
the door, get thoroughly drunk, and pick up a completely random hat when
they leave. What is the probability that at least one of them ends up taking
their own hat? To find the answer, we assign numbers 1 to n to the people, and
also to their respective hats. If we define A to be the set of numbers {1, . . . , n},
then the map σ : A→ A that maps each person to the hat they have picked up
is a permutation. The number of possible ways the people can pick up the hats
is the number of arranging n elements, which is exactly n! = 1 · 2 · . . . · (n− 1) ·n.
To see why this is the case, count the number of possible hats the first person
could take, multiply it with the number of possible hats for the second person,
for the third person, and so on. Since none of the permutations is preferred
in any way (the people are so drunk that they pick completely random hats),
all n! permutation maps σ occur with equal probability; we also say they are
uniformly distributed. Phrasing this a little more technically, this means we are
studying the uniform probability measure on the space S(n) of permutations
of length n. 2

1 For example, they are useful when dealing with symmetry groups, as Jay Taylor and
Eugenio Giannelli explain in Section 3 of their Snapshot 5/2016 Symmetry and characters of
finite groups.
2 The notion of a probability measure is central in probability theory. If you are not familiar
with this term you may think of it as a function that assigns to every event in a collection of
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What is then the probability that at least one person obtains their own hat?
This is equivalent to asking: what is the probability that σ(j) = j for at least
one j ∈ A?

It turns out that the probability P(k) of precisely k people finding their own
hat is equal to

P(k) = 1
k!

n−k∑
j=1

(−1)j

j! .

If the total number of people gets very large, that is, as n tends to infinity, P(k)
converges to P(k) = e−1

k! . This is the Poisson distribution with parameter 1.
In particular, for a large party the probability that at least one person picks
up their own hat is approximately 1 − 1/e ≈ 0.63, since the probability that
no-one picks up their own hat is e−1 and these two probabilities must sum to 1.
We will not give a derivation here that the Poisson distribution gives the right
probabilities for the hat problem; instead, we focus on an even easier problem.

1.2 The hat problem revis i ted: te lephone chains

Imagine that all of the guests of our party were diligent enough to leave their
phone number inside their respective hat. The morning after the party, someone
(call her j) wants to get back her own hat. She will call the number in the hat
σ(j) she took, unless it is her own number (in which case she was lucky enough
to grab her own hat in the first place). The person σ(j) on the other end will
be pleased to learn who picked up their hat, but in most cases j will still not
have found her own hat. To find it, she needs to ask the person σ(j) to dial the
number in the hat they took, and call σ(σ(j)) = σ2(j). This procedure is then
repeated until j gets a call from the person who holds her hat. The question is:
how many people do we expect to be involved before j gets a call?

In the language of permutations, we are asking about the length of the
cycle containing a given point j. Let us write `j for the smallest integer so
that applying `j times the map σ to j produces j itself, that is σ`j(σ)(j) = j.
For example, in the permutation shown in Figure 1 we have `2 = 1, because
σ(2) = 2, whereas `3 = 5, because σ5(3) = 3 and σk(3) 6= 3 for every 1 6 k < 5.
The (unordered) set

Oj(σ) = {j, σ(j), σ2(j), . . . , σ`j(σ)−1(j)}

of all elements that can be reached from j by applying σ multiple times is called

all possible events a certain probability between 0 and 1, with certain rules for combining
probabilities. It is normalized in such a way that if one asks “What is the probability that
something happens?”, we get the answer 1.
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the orbit of j under σ. The cycle

Cj(σ) = (j, σ(j), σ2(j), . . . , σ`j(σ)−1(j))

is the ordered set containing the elements of Oj(σ) in the order in which
they appear when applying σ iteratively, but where we do not care about the
actual starting point of the cycle. Using the example from Figure 1 again, this
means that we identify five possible cycles coming from the orbit {3, σ(3) =
4, σ2(3) = 6, σ3(3) = 5, σ4(3) = 1}, that is, we consider the following cycles to
be equivalent:

(3, 4, 6, 5, 1) = (4, 6, 5, 1, 3) = (6, 5, 1, 3, 4) = (5, 1, 3, 4, 6) = (1, 3, 4, 6, 5).

The number of elements a cycle contains, that is, the number `j , is called the
length of the cycle (and the same applies for an orbit). You can see (think about
the example above) that for an orbit of length k there are k! ways to order its
elements, but only (k-1)! cycles with the elements of that orbit.

As an answer to our question we will find, for each number k, the probability
P(`j = k) that j is contained in a cycle of length `j = k, meaning the probability
that exactly k people have to receive a call before j gets her hat back. The
problem we have posed can be solved by simple counting.

Let us introduce the notation
(
n
k

)
for the number of ways of picking k elements

out of a set of size n when the order of the elements does not matter. It can be
shown that

(
n
k

)
= n!

k!(n−k)! . We can now easily count the permutations having
a cycle of length k containing j. First we pick j, then there are

(
n−1
k−1
)
ways

of picking k − 1 elements other than the fixed element j from the set A, and
thus

(
n−1
k−1
)
(k− 1)! = (n−1)!

(n−k)! ways of fixing a cycle with k elements that contains
j. We do not care what the n − k elements outside the cycle Cj(σ) do, and
for given Cj(σ) there are (n − k)! ways of arranging them. Hence, there are(
n−1
k−1
)
(k− 1)!(n−k)! permutations of n elements which include a cycle of length

k containing j. Since we again are assuming that the permutations are uniformly
distributed, we only have to divide by the total number of permutations (which
is n! as you might remember from before) to obtain

P(`j = k) = 1
n!

(
n− 1
k − 1

)
(k − 1)!(n− k)! = 1

n
. (1)

Surprisingly, the result does not depend on k and we thus have found for person
j to regain her hat, it is equally likely that k people need to get involved for all
k 6 n. This has the somewhat discouraging consequence that with probability
1/2, at least half of the party guests will need to be called before person j
recovers her hat.
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1.3 Yet another problem

Let us now ask a related, but different, question. What is the probability that,
for at least one of the guests, regaining their hat will involve contacting more
than half of the people? In other words, what is the probability that a cycle of
length > n/2 exists in a uniformly distributed random permutation?

As above, the answer is not difficult and comes down to counting. Let us fix
a k > n/2. Then the only difference to the reasoning above when counting the
permutations is that we do not insist on a fixed element j in the cycle. Hence
there are now

(
n
k

)
ways of choosing k elements to form a cycle of length k. Recall

from above that there are (k − 1)! different cycles containing these elements,
and there are (n− k)! ways of completing the permutation outside of the chosen
cycle. Thus we find

P(`j = k for some j) = 1
n!

(
n

k

)
(k − 1)!(n− k)! = 1

k
. (2)

A hidden pitfall in this argument is that it would not work if we had considered
k 6 n/2. For example, a permutation having two cycles of length n/2 would
have been counted twice. But as we are only interested in cycles of length > n/2,
things are fine.

Observe that generally a permutation σ cannot have a cycle of length k and
a cycle of length m at the same time when k 6= m and k,m > n/2. In the
language of probability theory we say that the events that there exist cycles of
length k are disjoint for different k > n/2. This allows us to simply add up the
probabilities P(`j = k for some j) for all bn/2c + 1 6 k 6 n, where the floor
function bxc of x is defined to be the largest integer smaller than x, to obtain

P(`j > n/2 for some j) =
n∑

k=bn/2c+1

1
k

n→∞−→ ln 2 ≈ 0.693. (3)

As noted in the equation, for a very large party, when n grows to infinity, the
probability that there is at least one person for whom more than half of the people
will have to get involved before she gets her hat back, is about 0.693. 3 This
calculation is at the heart of a very intriguing piece of recreational mathematics,
known as the 100 prisoners problem, which you can read about in [12]. Much
more is known about uniform random permutations, but we want to go in a
different direction now.

3 You can compute this result for example by using integral estimates for the harmonic
series that appears here.
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Figure 2: The underlying geometry. The dotted lines show the Z2-lattice
structure; XL is the ‘cutout’ defined by the chessboard pattern.
Positions xj are given by the integer coordinates of XL.

2 Spat ia l random permutat ions

Assume that the host of the party takes precautions so that the guests may
more easily find their hats. He prepares a large room with a chessboard pattern
on the floor, and as many tiles as there are guests. Each guest places their hat
on the center of a tile. After the party, the guests go to the tile where they think
their hat is. Being drunk, they may be off by a few tiles in any direction, so
two or more people may end up claiming the same hat. Such disputes need be
resolved, but for our discussion here we will disregard this problem. Eventually
everyone should hold precisely one hat, not necessarily their own. The question
we pose is the same as above: how many people will need to be called before
person j recovers her hat?

In the language of random permutations, the situation can be described as
follows. For L ∈ N let XL = Z2 ∩ [−L,L]2. Each point xj , j 6 n = (2L+ 1)2,
in XL represents the position of hat number j.

As above, a permutation σ on {1, . . . , n} means that person j picked up hat
number σ(j), but now we do not want to assume that all permutations occur
with equal likelihood. Rather, we expect that the guests might still remember
roughly where they left their hat and thus are more likely to grab a hat close to
their own. A naive way to implement this assumption would be to say person
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number 1 picks a random hat near (say, no more than 2 tiles from) position
x1, then person 2 picks one of the hats still available near position x2, and so
on. Unfortunately, this will not work. There is a high probability that at some
point person would j find that all hats near xj are already taken, and thus
would need to find a hat far from xj .

A better way is to assign a cost function (or “energy”) to each person–hat
pair (j, σ(j)) which becomes large when a person picks a hat far from their own
tile. For simplicity and concreteness, we pick φj(σ) = |xj − xσ(j)|2 for our cost
function. Then we say that the sum

H(σ) =
n∑
j=1

φj(σ) =
n∑
j=1
|xj − xσ(j)|2 (4)

represents the “total energy” of the system. For a parameter α > 0, and we
will see later what the purpose of this parameter is, we define the probability of
a given permutation σ to be

PL(σ) = 1
ZL(α) e

−αH(σ) , with ZL(α) =
∑

σ∈S(n)

e−αH(σ) . (5)

The factor ZL(α) is the sum over all possible permutations σ. A permutation
obtained via the probability measure defined in equation (5), where the proba-
bilities depend on the location of the points xj , will be called a spatial random
permutation (SRP for short).

You can see that PL(σ) gets small very fast for a permutation with large
energy H(σ) since the probability is directly proportional to the exponential
factor e−αH(σ) . A permutation with H(σ) large is thus very unlikely; this effect
is stronger when α is large and weaker when α is small. Indeed, the identity
permutation id where every person picks their own hat (and thus φi(id) = 0 for
all i) has the smallest total energy, but this does not mean that this situation
will occur very often. The reason is that there is only one identity permutation,
and the normalization constant ZL(α) becomes very large when n = (2L+ 1)2

is large.
For example, let us consider the situation where everyone except two adjacent

people obtains their own hat. There are n ways to pick who will have the first
misplaced hat, and 4 ways to pick a neighbor (except at the boundary of the
chessboard, but this does not make a big difference in our calculation if we
assume the party to be quite large). The energy of each such permutation is 2,
and so the probability that everyone except two people obtains their own hat
is 2n

ZL(α) e
−2α . If we fix α, then for a very large number of people n, this will

always be much larger than PL(id) = 1
ZL(α) .
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More generally, if we think of not only one pair of misplaced neighboring
hats, but k such pairs, where k is a number such that k is still much smaller
than n then we have – again roughly and up to boundary effects – a number of
2n · (2n− 2) · . . . · (2n− 2k) ways to do that. Since 2n · (2n− 2) · . . . · (2n− 2k) >
(2n− 2k)k, the probability of σ having k misplaced neighboring pairs is greater
than (2n−2k)k

ZL
e−2αk . For large n and moderate k this is again much larger than

the probability of finding one pair.
We see that there is a competition at work: misplacing many hats makes

H(σ) large, but at the same time there are by far more ways to misplace many
hats than there are to misplace only a few. This competition between energy
(the size of H(σ)) and “entropy” (the number of permutations that have a
certain property, for example, having precisely k displaced hats) puts the spatial
hat problem into the field of statistical mechanics. 4

The parameter α determines the respective importance of the two effects.
If α is small, a typical permutation will have many misplacements, while for
large α, many people will find their own hat. Figure 3 shows two typical
random permutations obtained with the probability measure (5), for different
α. Looking at the pictures, one could easily conjecture that for large α, every
telephone queue for recovering a given hat will be short, no matter how many
guests there are, while for smaller α the length of a typical queue will grow with
the number of guests. When translated to the language of permutations, this
means that we conjecture long cycles to be present when α is small, but absent
when α is large. In fact, it is not a simple thing to decide if this statement is
true or false, the answer is a subject of current research. We will come back to
the model and some of the recent findings in the last section, but before that,
let us look beyond the hat problem.

3 Spat ia l random permutat ions: solved and unsolved
problems

SRPs would not be so interesting if they were only about a variant of the hat
problem. It turns out, however, that they have relationships with many other
parts of mathematics and physics. Here we discuss two of these connections.

4 Statistical mechanics is the branch of physics which takes a statistical approach to
describing the behavior of very large numbers of particles, for example, the number of atoms
in a gas. The behavior of the individual particles is deterministic, but if the number of them
becomes sufficiently high, exact calculations of the behavior of the whole system based on the
microscopic behavior of the individual particles becomes totally impractical. Considering the
system as effectively random has proved to be a very useful technique, and is for example the
basis of the theory of thermodynamics.
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Figure 3: Two examples of a spatial random permutation with side length 11,
corresponding to L = 5. On the left, α = 0.7, on the right, α = 2. An
arrow from a point xj to a point y means that xσ(j) = y, that is that
person j, whose hat was at xj , picked up the hat at the position y.

3.1 SRPs and bond percolat ion

Firstly, an SRP is a variant of constrained bond percolation. Percolation theory
has its origins in the mathematical description of the percolation of fluids through
porous media, with the basic question being “Does the liquid reach from the
center to the boundary if we consider a large piece of material?”. This question
has given rise to many interesting and difficult mathematical problems, and has
found applications in different fields, for instance, epidemiology and geology.
The relevant model of bond percolation is the following: in a rectangular grid,
such as XL in Figure 2, toss an unfair coin (with heads probability p, 0 < p < 1)
for each pair of neighboring points. If the coin comes up heads, connect the
pair with a straight line, a “bond”. After doing this for all pairs, check whether
the center of the the grid is connected with its boundary. If this happens with
a positive (that is, not 0) probability when the grid grows infinitely large, we
say that percolation occurs. It was proved by Harry Kesten in 1980 [7] that
bond percolation on the square lattice occurs if and only if p > 1/2. We say
that there is a percolation transition at the critical parameter pc = 1/2.

What does bond percolation have to do with SRPs? We will find out by first
considering a variant of the model given in equation (5): instead of allowing (in
principle) all permutations σ to occur, let us now forbid those permutations
where |xi − xσ(i)| > 1. In the context of the hat problem, this means that each
guest picks up a hat that is either her own, or lies directly above, below, to
the left, or to the right of her own. The set of all permutations that are still
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allowed is denoted by S1(n). The energy H(σk) of a permutation σk ∈ S1(n)
where k hats are misplaced is then equal to k, and such a permutation has the
probability

PL(σk) = 1
Z̃L(α)

e−αk , Z̃L(α) :=
∑

σ∈S1(n)

e−H(σ) . (6)

The quantity Z̃l(α) is again the sum over all allowed permutations, but note
that it is different from ZL(α) since S1 is much smaller than S. Note also that
thanks to our restriction to nearest neighbor permutations from S1, the model
now makes sense (and is interesting) for all α ∈ R, not only for α > 0.

Why does this variant have anything to do with bond percolation? To answer
this question, let us write ωk for a combination of connected and unconnected
neighbors of the set XL as occurring in bond percolation after having tossed
all coins, and with the property that in ωk precisely k pairs of neighbors have
been connected. If m is the number of all pairs of neighbors that exist in XL,
the probability of connecting exactly those of ωk is given by

PL,bp(ωk) = pk(1− p)m−k =
( p

1− p

)k
(1− p)m =: 1

ZL,bp(β) e
−βk (7)

with ZL,bp = (1− p)−m and β = ln((1− p)/p). By solving for the probability
p, we see that in this language, the results of Kesten say that bond percolation
occurs if and only if β < 0. The similarities between equations (6) and (7)
should now be obvious: the bond percolation model (7) is of the same form as
our special SRP variant (6) when identifying α with β. We could therefore use
the latter as a model to analyze bond percolation if we equate the occurence of
percolation with the presence of a cycle connecting the point 0 to the boundary
of the grid in the SRP model. But there is an important difference. While ωk
can be any arrangement of connections between nearest neighbors, in a a valid
arrangement in σk for each point x in XL one of the following three alternatives
hold: either x is connected to exactly two of its neighbors, or to none at all,
or it is connected to exactly one neighbor y in such a way that the pair x; y is
disconnected from all other points.

This difference, and others which we will not address here, have drastic
effects. First and foremost, they destroy the “independence” property that is
present in the bond percolation model and makes its analysis possible. Here,
independence means that the probability of connecting two points is independent
of all the other connections already made. This fact leads to the absence of
almost any rigorous result for this specific model of SRP. However, numerical
investigations (of the closely related model (5)) are possible, and they show
that the special rules about which arrangements are possible in our SRP variant
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makes percolation much harder to achieve than in the original bond percolation
model. Numerical simulations [6, 1] suggest that there is a percolation transition,
meaning occurence of a cycle connecting 0 to the boundary, only for SRPs in
three and more space dimensions. In two dimensions, by contrast, it seems that
no matter what α is, the probability of reaching the boundary from the center
converges to zero as n → ∞; the expected length of the excursion diverges,
though. Of these statements, the only one that we know how to prove is that
when α is large enough, there are no long cycles, and no percolation [2].

3.2 SRPs and Bose-Einstein condensat ion

The other model to which SRPs are related is, perhaps surprisingly, the Bose-
Einstein condensate, a state of matter that, unlike the common solid, liquid or
gas that we are familiar with in our daily life, can only occur under extreme con-
ditions. Bose-Einstein condensates (BEC for short) were theoretically predicted
to exist in 1924/25. Inspired by the work of Satyendra Nath Bose (1894–1974)
on the statistics of light particles (photons), Albert Einstein (1879–1955) real-
ized that Bose’s mathematics could apply also to atoms and anticipated the
existence of a new form of matter, the Bose-Einstein condensate. A BEC is
a group of atoms cooled to practically absolute zero. They start to clump
together and completely lose their identities as individual atoms, such that the
group behaves as though it were a single particle. This state of matter was
first experimentally realized in 1995, an achievement which earned its creators
a Nobel prize in physics. Although the first theoretical description is almost
a century old there are still major open problems to be solved for a complete
theoretical description of BEC.

The phenomenon of Bose-Einstein condensation can be linked to an averaged,
or “annealed” version of the SRP measure (5), which we will now introduce.
Let us pick n completely arbitrary points x = (x1, . . . , xn) in a d-dimensional
box Λd = [−L,L]d, and define for every choice of points x the energy in the
same way as in (4), with the only difference that the points x are no longer
lattice points of Z2:

H(σ,x) =
n∑
j=1
|xj − xσ(j)|2. (8)

The annealed SRP measure is the probability measure on permutations of
{1, . . . , n} given by

PaL(σ) = 1
ZL(α)

∫
[−L,L]d

dx1 . . .

∫
[−L,L]d

dxn e−αH(σ,x) , (9)
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where now the normalization constant is

ZL(α) = 1
n!

∫
[−L,L]d·n

∑
σ∈S(n)

e−αH(σ,x) dx. (10)

Again, we can ask about the typical length `j of the cycle containing j for fixed
j, as the number of points n tends to infinity. Will it stay bounded, or will it
grow to infinity?

Whereas we were not able to give a precise answer for the percolation model,
this question can be answered in the case of the annealed measure (9). Indeed,
the answer matches conjectures made in the percolation model. It was shown
in [2] that in two dimensions, for all α > 0 the cycle containing j is finite with
probability 1 in the limit as n tends to infinity, or, equivalently,

lim
M→∞

lim
n→∞

PaL(`j > M) = 0.

Since this holds for all α, there is no phase transition, that is, there is no critical
value of α for which cycles would suddenly have infinite length.

On the other hand, in dimension 3 or higher, there is a phase transition. If
we define

αc := πζ(d/2)−2/d (11)

where ζ(z) =
∑∞
j=1 j

−z is the Riemann zeta function, it follows that

lim
M→∞

lim
n→∞

PaL(`j > M)
{

= 0 if α > αc

> 0 if α < αc
.

In other words, αc is exactly the critical value for which the behavior of the
cycles changes. For α < αc we expect to see with a positive probability the
appearance of infinitely large cycles containing j, but for α > αc, the probability
of such an event is 0.

The expression (11) is familiar from quantum physics: it is the critical tem-
perature for an ideal Bose gas at density 1, where α = T/4 and T is the physical
temperature of the quantum gas. This is no coincidence: it turns out that we
may describe the free Bose gas as a system of spatial random permutations, 5

and Bose-Einstein condensation then corresponds to the occurrence of infinite
cycles in the limit of an infinitely large box. This connection was first observed
in a somewhat vague sense by Feynman [4], then made rigorous by Sütő [10],
and finally extended and cast into the language of permutations in [2]. The
connection between the ideal Bose gas and spatial random permutations is

5 To make this somewhat more precise: using the Feynman-Kac formula, the density matrix
of the gas can be rewritten as such a system of SRPs.
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Figure 4: The 20 longest cycles of a SRP of side length 400, having 160000
points. The parameter values are, from left to right, α = 0.6, α = 0.3
and α = 0.05. Points involved in a given cycle are of the same color.
For clarity of the image, the arrows indicating where exactly each
point is mapped are suppressed, and cycles ranging below 21st in
total length are not shown. The holes in the pictures are occupied
by such smaller cycles.

not limited to the free Bose gas. As explained in [11] and [3], it works for the
interacting Bose gas as well, but leads to a much more complicated model,
for which we cannot prove the existence of a phase transition. This is not
unexpected; a rigorous understanding of interacting Bose-Einstein condensation
at positive temperature is among the most difficult open problems in theoretical
physics. What is however interesting is that via SRP, probability theory might
be able to contribute to the solution of this problem.

3.3 Spat ia l random permutat ions – fur ther l inks and state of the ar t

Before we end this article, let us briefly come back to our first SRP model (5)
on the rectangular lattice. Even though it looks easier than the annealed model
(9) we introduced for the connection to Bose-Einstein condensates, it is much
more difficult to handle mathematically, and no rigorous results on the existence
of a phase transition are available. The advantage that (5) does have is that
it is easy to implement and visualize on a computer, and this gives rise to yet
another host of intriguing, but unsolved, problems.

Take a look at Figure 4, which shows the 20 longest cycles of a SRP with
2L+ 1 = 400 for different values of α. You can see that the points belonging to
the longest cycles of a SRP are very interesting geometric objects: they look
like fractals, which are, roughly speaking, objects that reveal fine structure on
every scale; no matter how closely we zoom in, there is always finer structure
to observe. We can also observe that the long cycles seem to fill the space more
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densely the smaller the value of α. This intuitive observation coincides with a
careful numerical study carried out in [1]. It reveals that the long cycles of SRP
in two dimensions indeed appear to have a fractal dimension, a characteristic
quantity we can view as a measure of how densely the space is filled, in the
sense of having “more than” length (1 dimension), but “less than” area (2
dimensions), and that this fractal dimension decreases linearly with α, at least
when α is small.

For larger α, SRP cycles appear to undergo what is known as a Kosterlitz-
Thouless transition [8, 5]; this means that the probability of finding a point x
in a cycle of length K or larger, when viewed as a function of K changes its
behavior when α passes a critical value αc. Finally, there is some evidence
that SRP cycles might be related to the traces of Schramm-Löwner curves.
Explaining anything about latter object would seriously exceed the capacity of
this article, and we refer to [9].

Of the above conjectures, none are proved or disproved at the time of writing,
and there is a good chance that all of them will be very difficult. Like many
models of statistical mechanics, (5) is easy to describe, but unfortunately difficult
to analyze.
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