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ON A CHEEGER TYPE INEQUALITY IN CAYLEY GRAPHS OF

FINITE GROUPS

ARINDAM BISWAS

Abstract. Let G be a finite group. It was remarked in [BGGT15] that if the Cayley
graph C(G,S) is an expander graph and is non-bipartite then the spectrum of the adja-
cency operator T is bounded away from −1. In this article we are interested in explicit
bounds for the spectrum of these graphs. Specifically, we show that the non-trivial spec-

trum of the adjacency operator lies in the interval
[
−1 + h(G)4

γ
, 1− h(G)2

2d2

]
, where h(G)

denotes the (vertex) Cheeger constant of the d regular graph C(G,S) with respect to a
symmetric set S of generators and γ = 29d6(d+ 1)2.

1. Introduction

Throughout this article we will consider a finite group G with |G| = n. We will denote
by C(G,S) for a symmetric subset S ⊂ G of size |S| = d, to be the Cayley graph of
G with respect to S. Then C(G,S) is d regular. Given a finite d regular Cayley graph
C(G,S), we have the normalised adjacency matrix T of size n×n whose eigenvalues lie in
the interval [−1, 1]. The normalised Laplacian matrix of C(G,S) denoted by L is defined
as

(1.1) L := In − T,
where In denotes the identity matrix. The eigenvalues of L lie in the interval [0, 2].
It is easy to see that 1 is always an eigenvalue of T and 0 that of L. We denote the
eigenvalues of T as −1 6 tn 6 ... 6 t2 6 t1 = 1 and that of L as λi = 1− ti, i = 1, 2, ..., n.
The graph C(G,S) is connected if and only if λ2 > 0 (equivalently t2 < 1). The graph is
bipartite if and only if λn = 2.

We recall the notion of Cheeger constant.

Definition 1.1 (Vertex boundary of a set). Let G = (V,E) be a graph with vertex set V
and edge set E. For a subset V1 ⊂ V , let N(V1) denoting the neighbourhood of V1 be

N(V1) := {v ∈ V : vv1 ∈ E for some v1 ∈ V1}.
Then the boundary of V1 is defined as δ(V1) := N(V1)\V1.

Definition 1.2 (Cheeger constant). The Cheeger constant of the graph G = (V,E), de-
noted by h(G) is defined as

h(G) := inf{|δ(V1)|
|V1|

: V1 ⊂ V, |V1| 6
|V |
2
}.

This is also called the vertex Cheeger constant of a graph.

Key words and phrases. Cheeger inequality, expander graphs, finite Cayley graphs.
To appear in the European Journal of Combinatorics.
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2 ARINDAM BISWAS

Definition 1.3 ((n, d, ε) expander). Let ε > 0. An (n, d, ε) expander is a graph (V,E)
on |V | = n vertices, having maximal degree d, such that for every set V1 ⊆ V satisfying
|V1| 6 n

2 , |δ(V1)| > ε|V1| holds (equivalently, h(G) > ε).

In this article, we are interested in the spectrum of the Laplace operator L for the
Cayley graph C(G,S). The Cayley graph is bipartite if and only if there exists an index
two subgroup H of G which is disjoint from S. See Proposition 2.6. It was observed in
[BGGT15](Appendix E) that if C(G,S) is an expander graph and is non-bipartite, then
the spectrum of T is not only bounded away from 1 but also from −1. Here we show that

Theorem 1.4. Let the Cayley graph C(G,S) be an expander with |S| = d and h(G) denote
its Cheeger constant. Then if C(G,S) is non-bipartite, we have

λn 6 2− h(G)4

αd6(d+ 1)2
,

where λn is the largest eigenvalue of the normalised Laplacian matrix and α is an absolute
constant (we can take α = 29).

The strategy of the proof closely follows the combinatorial arguments of Breuillard–
Green–Guralnick–Tao in [BGGT15].

2. Proofs

There are two notions of expansion in graphs - the vertex expansion as in Definition 1.3
and the edge expansion.

Definition 2.1 (Edge expansion). Let G = (V,E) be a d-regular graph with vertex set V
and edge set E. For a subset V1 ⊂ V , let E(V1, V \V1) be the edge boundary of V1, defined
as

E(V1, V \V1) := {(v1, s) ∈ E : v1 ∈ V, v1s ∈ V \V1}.
Then the edge expansion ratio φ(V1) is defined as

φ(V1) :=
|E(V1, V \V1)|

d|V1|
.

Definition 2.2 (Edge-Cheeger constant). The edge-Cheeger constant denoted by h(G) is

h(G) := inf
V1⊂V,|V1|6|V |/2

φ(V1).

In a d regular graph the two Cheeger constants are related by the following -

Lemma 2.3. Let G = (V,E) be a d-regular graph

h(G)

d
6 h(G) 6 h(G).

Proof. Let V1 ⊂ V and we consider the map

ψ : E(V1, V \V1)→ δ(V1) given by (v1, s)→ v1s.

The map is surjective hence we have the left hand side and at the worst case d to 1 wherein
we get the right hand side. �
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We have the following inequalities, called the discrete Cheeger-Buser inequality. It is the
version for graphs of the corresponding inequalities for the Laplace-Beltrami operator on
closed Riemannian manifolds. It was first proven by Cheeger [Che70] (lower bound) and
by Buser [Bus82] (upper bound). The discrete version was shown by Alon and Millman
[AM85] (Proposition 2.4).

Proposition 2.4 (Discrete Cheeger-Buser inequality). Let G = (V,E) be a finite d-regular
graph. Let λ2 denote the second smallest eigenvalue of its normalised Laplacian matrix
and h(G) be the (edge) Cheeger constant. Then

h(G)2

2
6 λ2 6 2h(G).

Proof. See [Lub94] prop. 4.2.4 and prop. 4.2.5 or [Chu96] sec. 3. �

Before proceeding further, let us recall the notion of Cayley graph of a group.

Definition 2.5 (Cayley graph). Let G be a finite group and S be a symmetric generating
set of G. Then the Cayley graph C(G,S) is the graph having the elements of G as vertices
and ∀x, y ∈ G there is an edge between x and y if and only if ∃s ∈ S such that sx = y. If
1 ∈ S, then the graph has a loop (which we treat as an edge) going from x to itself ∀x ∈ G.

A graph is said to be r-regular (where r > 1 is an integer) if there are exactly r half edges
connected to each vertex (except for a loop which counts as one half edge). If |S| = d, it
is clear that C(G,S) will be d-regular (where |S| denotes the cardinality of the set S).

Next, we recall the definition of the adjacency matrix associated to any finite undi-
rected graph. For any finite undirected graph G having vertex set V = {v1, ..., v|G|} and
edge set E, the adjacency matrix T is the |V | × |V | matrix having Tij = the number of
edges connecting vi with vj . The discrete Cheeger inequality applies to all finite regular
graphs (the inequality also holds for finite non-regular graphs where we need to consider
the maximum of the degrees of the all the vertices - see [Lub94] prop. 4.2.4, but for our
purposes we shall restrict to regular graphs).

We show the following proposition -

Proposition 2.6 (Criteria for non-bipartite property). A finite Cayley graph C(G,S) is
non-bipartite if and only if there does not exist an index two subgroup H of G which is
disjoint from S.

Proof. Let C(G,S) be bipartite. Then we can partition the vertex set G into two disjoint
sets A and B such that G = A t B. Let 1 ∈ B. Let s ∈ S ∩ B. Then s−1 ∈ S and so
1 = ss−1 ∈ A. This is a contradiction. So S ∩B = φ.
Now suppose x, y ∈ B but xy /∈ B. So xy ∈ A. Thus there exists s1, s2, · · · , s2r+1 ∈ S, r ∈
N such that s1s2 · · · s2r+1(xy) = y. This implies that s1s2 · · · s2r+1x = 1 ∈ B. But this
is impossible because x ∈ B so s1s2 · · · s2r+1x ∈ A. Thus we have a contradiction and
xy ∈ B. So, B is an index 2 subgroup disjoint from S.
The other direction is clear. �

Lemma 2.7. Let G be a finite group and C(G,S) denote its Cayley graph with respect to
a symmetric set S of size d. Let S be such that

|SA\A| > ε′|A| (ε′-combinatorial expansion of S)
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for every set A ⊆ G with |A| 6 |G|2 and some ε′ > 0. Then we have the estimate

|SA\A| > ε′

d
|G\A|

for all sets A ⊆ G with |A| > |G|2 .

Proof. Let Ac = G\A. The proof is based on the fact that |SA\A| > 1
d |SA

c\Ac| for all

subsets A ⊆ G and S = S−1 ⊂ G.
Let s ∈ S,

|sAc ∩A| = |s−1(sAc ∩A)| = |Ac ∩ s−1A| 6 |Ac ∩ SA|
⇒ |SAc\Ac| = |SAc ∩A| = | ∪s∈S sAc ∩A| 6 Σs∈S |SA ∩Ac| = d|SA\A|.

Hence, we have

|SA\A| > 1

d
|SAc\Ac| > ε′

d
|Ac| = ε′

d
|G\A|.

(Using the property of combinatorial expansion of S and noting that |A| > |G|2 ⇒ |A
c| 6

|G|
2 ). �

To prove Theorem 1.4 we have to show that, under the given assumptions, we have

tn > −1 +
h(G)4

αd6(d+ 1)2
,

for some absolute constant α (which we shall precise).

Method of Proof : The proof is based on the following strategy. We shall first fix a
small real number ζ (depending on the degree d and expansion ε) and suppose that the
Cayley graph C(G,S) has an eigenvalue less than −1 + ζ. Under this condition, we shall

obtain a set A, such that |A| is close to |G|2 and which satisfies certain properties when we
take translates of A by elements s ∈ S. This is Lemma 2.8. Using this set A, we shall
construct a subgroup H of G whose index will be 2 (when ζ is small enough) and we shall
show that this H cannot intersect the generating set S of G. This will give the required
contradiction with Proposition 2.6, since the Cayley graph C(G,S) was non-bipartite.

Lemma 2.8. Let G be a finite group, k > 1 and S = S−1 = {s1, ..., sd} be a symmetric
generating set of G. Let S be ε-combinatorially expanding, i.e.,

|SX\X| > ε|X|

for every set X ⊆ G with |X| 6 |G|2 and some ε > 0.1 Suppose, there exists a sufficiently

small ζ, 0 < ζ 6 ε2

4d4
, such that the adjacency matrix T of C(G,S) has an eigenvalue

in [−1,−1 + ζ). Fix β = d2
√

2ζ(2− ζ). Then, there exists a set A with the following
properties

(1) ( 1

2+β+ dβ
ε

)|G| 6 |A| 6 1
2 |G|,

(2) |SA ∩A| 6 1
εβ|A|,

(3) ∀s ∈ S, g ∈ G, |sAg∆(Ag)c| 6 β
(

1 + d
ε + 2

ε

)
|A|.

1It is clear that d > ε and in fact, considering X ⊂ S, |X| 6 |G|
2

we get that d > ε, so that ε
d

always

remains strictly less than 1 for finite Cayley graphs.



ON A CHEEGER TYPE INEQUALITY IN CAYLEY GRAPHS OF FINITE GROUPS 5

Proof. We have

(2.1) ε|X| 6 |SX\X|,

whenever X ⊂ G with |X| 6 |G|2 and using Lemma 2.7 with |S| = d

(2.2)
ε

d
|G\X| 6 |SX\X|,

whenever |X| > |G|2 .

Since T has an eigen-value in [−1,−1 + ζ), T 2 has a non-trivial eigenvalue (say) t′ in
((1− ζ)2, 1].2

Now consider the set S2 (obtained by identifying all equal elements in the multi-set S.S)
and the muti-set S′ = S.S (without identification). T 2 is the adjacency matrix associated
with S′ and |S2| 6 |S′| = d2. Let h(G,S′) denote the vertex Cheeger constant (Definition
1.2) and h(G,S′) denote the edge-Cheeger constant (Definition 2.2) for G with respect to
the multi-set S′.

We have t′ > (1−ζ)2. Let L denote the Laplacian matrix of the graph of G with respect
to S′, with the adjacency operator T 2 and let its eigenvalues be denoted by 0 = L1 6
L2 6 ... 6 Ln 6 2. We know that

L2 = 1− t′ < 1− (1− ζ)2 = ζ(2− ζ).

By the discrete Cheeger-Buser inequality (Proposition 2.4) for the graph of G with
respect to S′ we have

h2(G,S′)

2
6 L2 < ζ(2− ζ).

Hence by Lemma 2.3,

h(G,S′)

d2
6 h(G,S′) <

√
2ζ(2− ζ).

This implies that ∃A ⊂ G with |A| 6 |G|2 such that

(2.3)
|S2A\A|
|A|

6
|S′A\A|
|A|

< d2
√

2ζ(2− ζ) = β.

Claim 2.9. |A ∪ SA| > |G|2 for ζ 6 ε2

4d4
.

Proof of claim. We know that for arbitrary sets X,Y, Z ⊂ G, X(Y ∪ Z) = XY ∪ XZ.
Hence

|S(A ∪ SA)\(A ∪ SA)| = |S2A\A| < d2
√

2ζ(2− ζ)|A|.
Let |A ∪ SA| 6 |G|2 . This implies (using equation 2.1 and 2.3) that

ε|A| 6 ε|A ∪ SA| 6 |S(A ∪ SA)\(A ∪ SA)| < d2
√

2ζ(2− ζ)|A|,
2actually we only need the fact that t′ > (1− ζ)2. That t′ 6= 1 follows when we consider non-bipartite

graphs, since a graph is bipartite iff T has −1 as an eigenvalue.
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which cannot hold for ζ 6 ε2

4d4
.

�

This means that under the assumption ζ 6 ε2

4d4 we have |A ∪ SA| > |G|2 .

We can apply Lemma 2.7 to |A ∪ SA| > |G|2 and use equation 2.2 and equation 2.3 to
get

ε

d
|G\(A ∪ SA)| 6 |S(A ∪ SA)\(A ∪ SA)| = |S2A\A| < β|A|.

Noting the fact that |G\(A ∪ SA)| = |G| − |A ∪ SA|, we have

|G| − dβ

ε
|A| 6 |A ∪ SA| 6 |A|+ |SA|.

We use the fact that,

|SA| 6 |S2A| 6 |A|+ β|A|

to conclude that,

(2.4)

(
1

2 + β + dβ
ε

)
|G| 6 |A|.

For arbitrary sets X,Y, Z ⊂ G we have X(Y ∩ Z) ⊂ XY ∩XZ.

Hence

|S(A ∩ SA)\(A ∩ SA)| 6 |S2A\A| 6 β|A|.

As |A| 6 |G|
2 clearly |A ∩ SA| 6 |G|

2 . So, the hypothesis of ε-combinatorial expansion
applies to A ∩ SA (i.e., ε|A ∩ SA| 6 |S(A ∩ SA)\(A ∩ SA)| 6 β|A|) and we have

(2.5) |A ∩ SA| 6 1

ε
β|A|.

Our next aim is to compute the bounds on |sA∆A|, |sA∆Ac|, |sAg∆Ag|, |sAg∆(Ag)c| for
g ∈ G.

For this,

|sA∆A| = |sA ∪A\sA ∩A|
= |sA ∪A| − |sA ∩A|
= |sA|+ |A| − 2|sA ∩A|
= 2|A| − 2|sA ∩A|
> 2|A| − 2|SA ∩A|

>

(
2− 2β

ε

)
|A|.
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This implies,

|sA∆Ac| = |G \ (sA∆A)|
= |G| − |sA∆A|

6 |G| − (2− 2

ε
β)|A|

6
(
β +

dβ

ε
+

2

ε
β
)
|A|.

Thus we have

(2.6) |sA∆Ac| 6 β
(

1 +
d

ε
+

2

ε

)
|A|

and by the symmetricity of S,

|sAc∆A| 6 β
(

1 +
d

ε
+

2

ε

)
|A|.

Now let g ∈ G be arbitrary. Then we have,

|sAg∆Ag| = |sAg|+ |Ag| − 2|sAg ∩Ag|
= 2|A| − 2|sA ∩A|

>

(
2− 2

ε
β

)
|A|.

(Since for fixed g ∈ G, X,Y ⊂ G, (X ∩ Y )g = Xg ∩ Y g).

Similarly, we get

(2.7) |sAg∆(Ag)c| 6 β
(

1 +
d

ε
+

2

ε

)
|A|

and

|s(Ag)c∆Ag| 6 β
(

1 +
d

ε
+

2

ε

)
|A|.

�

We shall now use the set A which we obtained from the lemma to prove our main
theorem.

Theorem 2.10. Let G be a finite group, k > 1 and S = S−1 = {s1, ..., sd} be a symmetric
generating set of G. Suppose that G does not have an index two subgroup H disjoint from
S. Let S be ε-combinatorially expanding, i.e.,

|SX\X| > ε|X|

for every set X ⊆ G with |X| 6 |G|
2 and some ε > 0. Then all the eigenvalues of the

operator T are > −1 + ε4

αd6(d+1)2
where α is an absolute constant (we can take α = 29).

Proof. The proof will be by contradiction. Keeping the notations of Lemma 2.8, we shall
show that if T has an eigenvalue in [−1,−1 + ζ), where ζ is chosen to be small (precised
in Claim 2.11 and satisfying the condition on ζ in Lemma 2.8), there exists an index 2
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subgroup, H in G which is disjoint from S. This will give the required contradiction.

First we use Lemma 2.8 to conclude that (under the assumption ζ 6 ε2

4d4
) there exists

a set A with the following properties

(1) ( 1

2+β+ dβ
ε

)|G| 6 |A| 6 1
2 |G|,

(2) |SA ∩A| 6 1
εβ|A|,

(3) ∀s ∈ S, |sA∆Ac| 6
(
β + dβ

ε + 2
εβ
)
|A|, |sAc∆A| 6

(
β + dβ

ε + 2
εβ
)
|A|,

(4) ∀s ∈ S, g ∈ G, |sAg∆(Ag)c| 6 β
(

1 + d
ε + 2

ε

)
|A|, |s(Ag)c∆Ag| 6 β

(
1 + d

ε + 2
ε

)
|A|.

Using the above set A, we want to construct the subgroup H of index 2. The method
will be to translate A using the elements g ∈ G and check which of them have large inter-
section with the original set A (i.e, |A ∩Ag| is “almost” |A|).

Take Ag := A ∩Ag,A′g := (A ∪Ag)c. Let B = Ag tA′g (it is a disjoint union). Then

G \B = Bc = A∆Ag

and

B = (A∆Ag)c = A∆(Ag)c.

Also note that X∆Y = Xc∆Y c for all X,Y ⊆ G.

We wish to estimate |B| when g ∈ G. For this, we first estimate |SB∆B| and |SBc∆Bc|.

|SB∆B| 6 Σs∈S |sB∆B|
= Σs∈S |s(A∆(Ag)c)∆(A∆(Ag)c)|
= Σs∈S |(sA∆s(Ag)c)∆(A∆(Ag)c)|
= Σs∈S |(sA∆s(Ag)c)∆(Ac∆Ag)|
= Σs∈S |(sA∆Ac)∆(s(Ag)c∆(Ag))|
6 d(|sA∆Ac|+ |sAg∆(Ag)c|)

6 2dβ
(

1 +
d

ε
+

2

ε

)
|A|.

(where we use the fact that, all the above sets are defined inside G, X∆Y = Xc∆Y c,
sXc = (sX)c, s(X∆Y ) = (sX∆sY ) 3 and ∆ is both associative and commutative).

3These do not hold for sets S ⊂ G in general, i.e., S.Xc 6= (SX)c and SX∆SY ⊂ S(X∆Y ) for arbitrary
sets S,X, Y ⊂ G. This is one of the main reasons why we had to estimate translates of A by elements
s ∈ S rather than translate of A by S.
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Similarly,

|SBc∆Bc| 6 Σs∈S |sBc∆Bc|
= Σs∈S |s(A∆Ag)∆(A∆Ag)|
= Σs∈S |(sA∆sAg)∆(A∆Ag)|
= Σs∈S |(sA∆sAg)∆(Ac∆(Ag)c)|
= Σs∈S |(sA∆Ac)∆(sAg∆(Ag)c)|
6 d(|sA∆Ac|+ |sAg∆(Ag)c|)

6 2dβ
(

1 +
d

ε
+

2

ε

)
|A|.

We now have the following two cases depending on the size of the set B.

(1) |B| 6 |G|2 in which case,

(2.8) |B| 6 2dβ

ε2

(
ε+ d+ 2

)
|A|

(using the fact that ε|B| 6 |SB\B| 6 |SB∆B| 6 2dβ
(

1 + d
ε + 2

ε

)
|A|).

From this it follows that,

(2.9) |A ∩Ag| 6 dβ

ε2

(
ε+ d+ 2

)
|A|.

(There are two ways to see it. B = Ag t A′g and |A′g| > |Ag| when |A| 6 |G|
2 ⇒

|A∩Ag| = |Ag| 6 |B|2 , is one way. The other way is to use G \B = A∆Ag. Hence
after taking the cardinalities and expanding we have |B| = |G| − 2|A|+ 2|A∩Ag|.
Then use the fact that 2|A| 6 |G|, to get that |A ∩Ag| 6 |B|2 .)

OR

(2) |B| > |G|
2 in which case |Bc| 6 |G|2 and then

(2.10) |G\B| 6 2dβ

ε2

(
ε+ d+ 2

)
|A|

(using the fact that ε|Bc| 6 |SBc\Bc| 6 |SBc∆Bc| 6 2dβ
(

1 + d
ε + 2

ε

)
|A|).

From this it follows that,

(2.11)
(

1− dβ

ε2

(
ε+ d+ 2

))
|A| 6 |A ∩Ag|.

(Again, using G \ B = A∆Ag, taking the cardinalities and expanding the expres-
sion we have |G \B| = 2|A| − 2|A ∩Ag|).

Thus for any g ∈ G, we have either

(i) |A ∩Ag| 6 dβ
ε2

(
ε+ d+ 2

)
|A|,

OR
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(ii) |A ∩Ag| >
(

1− dβ
ε2

(
ε+ d+ 2

))
|A|.

The trick now is to use the method of Freiman in [Fm73] to find a subgroup H of G.
We prove it in the following claim.

Claim 2.11. If H := {g ∈ G : |A ∩ Ag| > r|A|} where r = 1 − dβ
ε2

(
ε + d + 2

)
and

β 6 1
23
√
2
× ε2

d(d+1) , then H is a subgroup of G of index 2.

Proof of claim. We have H = H−1, 1 ∈ H and r > 1
2 + dβ

ε2

(
ε+ d+ 2

)
. Also for g, h ∈ H

we have by the triangle inequality

|A\Agh| 6 |A\Ah|+ |Ah\Agh|
6 2(1− r)|A|.

This implies,
|A ∩Agh| > (2r − 1)|A|.

Hence, gh cannot belong to case (i), gh belongs to case (ii), i.e., gh ∈ H. So H is a
subgroup of G.

Let z = dβ
ε2

(
ε+ d+ 2

)
. Using the estimate,

|A|2 = Σg∈G|A ∩Ag|

6 |H||A|+ dβ

ε2

(
ε+ d+ 2

)
|A||G\H|,

we have

|A| 6 |H|+ z(|G| − |H|),

which implies that, (
1

2 + β + dβ
ε

)
|G| − z|G| 6 (1− z)|H|.

(Using the fact that

(
1

2+β+ dβ
ε

)
|G| 6 |A|).

The index of H in G is 2 if |H| > |G|
3 and thus, to conclude that H is a subgroup of G

of index 2, it suffices to show that 4(
1

2 + β + dβ
ε

− z

)
>

1− z
3

⇔ 1(
2 + β + dβ

ε

) > 1 + 2z

3
.

Substituting the expression for z, it suffices to show that,(
2 + β +

dβ

ε

)
+

2dβ

ε2
(ε+ d+ 2)

(
2 + β +

dβ

ε

)
< 3,

4Note that H 6= G since there are elements g ∈ G such that, g ∈ G \H.
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i.e., (
β +

dβ

ε

)
+

2dβ

ε2
(ε+ d+ 2)

(
2 + β +

dβ

ε

)
< 1.

Now, using the fact that β < 1
8
√
2
, dβε < 1

8
√
2
, 2dβ
ε2

< 1
4
√
2(d+1)

, ε < d, 1
4
√
2
< 0.177, we have,(

β +
dβ

ε

)
+

2dβ

ε2

(
ε+ d+ 2

)(
2 + β +

dβ

ε

)
<

(
1

8
√

2
+

1

8
√

2

)
+

1

4
√

2(d+ 1)
(2d+ 2)

(
2 +

1

8
√

2
+

1

8
√

2

)

=
1

4
√

2
+
d+ 1

d+ 1
.
2 + 1

4
√
2

2
√

2
< 0.177 + 0.77

< 1.

Hence the index of H in G is 2 if d2
√

2ζ(2− ζ) = β 6 ε2

23
√
2.d(d+1)

. This gives us the fact

that, for all ζ 6 ε4

29d6(d+1)2
, the index of H in G is 2. �

Up until now, we have argued formally that under the condition on ζ (equivalently β)

being small enough for the set A to exist (essentially β < ε or ζ 6 ε2

4d4
). From the above

claim, we see that all ζ 6 ε4

29d6(d+1)2
satisfies this condition (since ε

d < 1). From now on

fix ζ(> 0) to be any real number 6 ε4

29d6(d+1)2
.

We have found an index two subgroup H in G. We shall now show that this subgroup
H is disjoint from S.

Suppose, on the contrary that t ∈ S ∩H. This means the following

• t ∈ S. Therefore, |tA ∩A| 6 |SA ∩A| 6 β
ε |A| (see Lemma 2.8).

• t ∈ H. Therefore, by definition of H, |tA∩A| > r|A|, where r = 1− dβ
ε2

(
ε+d+2

)
.

Combining, we see that r 6 β
ε . This is clearly a contradiction since 0.82 < (1− 1

4
√
2
) 6 r

and β
ε <

1
8
√
2
< 0.09.

This implies that S ⊂ G\H, contradicting the hypothesis.

To summarise, we have shown that - for any fixed ζ 6 ε4

29d6(d+1)2
, if there exists an

eigenvalue of the normalised adjacency matrix of C(G,S) less than −1 + ζ, then C(G,S)
must be bipartite (equivalently it has an index 2 subgroup disjoint from S). That means,
for non-bipartite C(G,S), we must have all eigenvalues of the normalised adjacency matrix

> −1 + ε4

αd6(d+1)2
with α = 29. We are done.

�

Since, by definition, the vertex Cheeger constant h(G) is the infimum of |SX\X||X| , we can

replace ε by h(G) in the above arguments, thus proving Theorem 1.4.
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3. Concluding Remarks

The above bound is dependent on the Cayley graph structure and does not hold for
general non-bipartite finite, regular graphs. In the setting of arbitrary finite regular graphs
some recent works are worth mentioning. Bauer and Jost in [BJ13] introduced a dual
Cheeger constant h̄ which encodes the bipartiteness property of finite regular graphs. The
dual Cheeger constant h̄ of a d regular graph is defined as

h̄ := max
V1,V2,V1∪V2 6=φ

2|E(V1, V2)|
vol(V1) + vol(V2)

,

for a partition V1, V2, V3 of the vertex set V , vol(Vk) = d|Vk| and |E(V1, V2)| denotes the
number of edges going from V1 into V2. For a general regular graph it was shown by
Bauer-Jost (and independently by Trevisan [Tre09]) that

Theorem 3.1 (Bauer-Jost [BJ13]). Let λn be the largest eigen-value of the graph laplace
operator. Then λn satisfies

(1− h̄)2

2
6 2− λn 6 2(1− h̄)

and the graph is bipartite if and only if h̄ = 1.

There is also the concept of higher order Cheeger constants introduced by Miclo in
[Mic08].

Some recent works treating higher order Cheeger inequalities for general finite graphs
are those by Lee–Gharan–Trevisan in [LGT14] and Liu [Liu15] (for the dual case) etc.
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