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The conference was organized by F. Ruymgaart (Lubbock), W. Stute (Giessen) and Y.

Vardi (New Brunswick). 43 participants attended the meeting, and 32 talks were given.

The aim of the conference was to bring together experts working in the �eld of inverse

problems, with special emphasis on statistical methodology and applications. The unique

facilities of the Oberwolfach institute provided an excellent opportunity for an exchange

of ideas and signi�cantly contributed to the success of the meeting.

Some topis which were discussed in greater detail were:

� Applications to Image Analysis

� Inverse Problems in Survival Analysis

� Curve Estimation under Constraints

� Problems in Tomography

� Statistical Aspects of Inverse Problems

� Deconvolution Techniques

� Algorithms for Inverse Problems



Bob R. S. ANDERSSEN

Linking Mathematics to Data with Exempli�cations from Human

Movement, Electromagnetic Induction in the Earth and Molecular Weight

Distribution Determination

Operationally, applied mathematics is the dynamic activity of linking mathematics to

data: for given data

(i) identify the question to be answered;

(ii) formulate a model which relates the data to the phenomenon of interest (i.e. the

information which encapsulates the answer);

(iii) recover the phenomenon of interest from the available data; and �nally,

(iv) construct an answer to the question from the resulting information.

The solution of \inverse problems" and the application of \statistics" are closely linked

to all stages of this dynamic process:

(a) the model formulation may involve stochastic considerations;

(b) the input data to the model must, often, be deconvolved from available and related

measurements;

(c) the recovery of an estimate of the phenomenon of interest involves the solution of

an improperly posed problem and must be performed with �nite and noisy data.

These and related matters, along with some of the challenges they pose, were illustrated

and analysed within the frameworks of the following examples:

� the numerical di�erentiation of human movement data to recover accelerations on

di�erent scales in walking motion;

� the recovery of electrical conductivity as a function of depth within the Earth from

measurements of the Earth's transient magnetic �eld;

� the role of the molecular weight distribution as a molecular characterization in

polymer dynamics including wheat-
our tough mixing and bread making;

� the deconvolution and analysis of �eld-
ow data in the experimental recovery of

molecular weight distributions.

Viktor BENE

�

S

A Stereological Inverse Problem for a Function of Three Variables

The problem consists in stereological unfolding of spatial geometrical parameters of spheroidal

particles from planar parameters observed in vertical uniform random section planes. A

theoretical relation between corresponding probability densities as functions of three vari-

ables (size, shape factor, orientation) is derived. Results on real data from metallography

are presented and statistical problems discussed.
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Rudolf BERAN

Basis Economy in REACT Fits to Linear Models

REACT estimators for the mean of a Gaussian linear model use model-selection, shrink-

age, and ideas from signal-processing to exploit the supere�ciency loophole in classical

parametric information bounds. REACT methods may also be viewed as smoothing

techniques. The acronym sketches the steps in the methodology: Risk Estimation and

Adaptation after Coordinate Transformation. If a linear combination of the �rst few vec-

tors in the transformed regression basis closely approximates the unknown mean vector,

then the asymptotic maximum risk of a monotone-shrinkage REACT estimator greatly

undercuts that of the least squares estimator. In experiments on scatterplots found in

the smoothing literature, REACT �ts draw remarkable bene�t from the economy of some

natural regression bases.

P. BICKEL

Inference in Hidden Markov Models (HMM)

Let X
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; : : : ; X
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These results are obtained both under the hypothesized model and also under the as-

sumption that the Y

i

's are generated by a geometrically mixing stationary process and

are used to obtain consistency and asymptotic normality for the MLE. These results can

be viewed as extensions with a simpli�ed proof of results of Bickel, Ritov, Ryden (1998).

Nicolai BISSANTZ

Non-parametric Deprojection in Galaxy Research

Non-parametric deprojection methods are widespread in astrophysics. Some of the main

applications include the search for Black Holes in the centres of galaxies and the analysis

of surface-brightness and kinematical data from galaxies.

One important example is our Milky Way, which I will focus on in this talk. The DIRBE

experiment on the COBE-satellite has produced maps of the Milky Way in several Near-

Infra-Red (NIR)-bands. These maps have been corrected against several foregroundef-

fects, including zodiacal light, dust absorption and point sources (Spergel et al, 1996).

We used this corrected data to produce three-dimensional light-distribution models of the

Milky Way with non-parametric deprojection methods, including the Richardson-Lucy

deprojection and penalized maximum likelihood estimation. The models that result from

these �tting procedure, which consists of several steps, �t the observed data better than

available parametric �ts.
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Laurent CAVALIER

Sharp Adaptation for Inverse Problems with Random Noise

Using the singular value decomposition (SVD), we transform a general model of inverse

problem with random noise into an in�nite-dimensional sequence space model. In this

model, we construct an adaptive estimator that mimics the asymptotical behaviour of

the best linear oracle chosen among a �nite class. We prove that this estimator is sharp

adaptive on di�erent ellipsoids �(�;Q) for � and Q unknown, i.e. it asymptotically

attains the exact minimax L

2

-risk.

We apply this method to construct sharp adaptive estimators in two examples of practical

inverse problems: tomography and deconvolution.

Yair CENSOR

Dykstra's Algorithm for Finding the Projection of a Point onto an

Intersection of Closed Convex Sets and its Extension to Bregman Projections

We describe Dykstra's algorithm (invented [1] in 1983, rediscovered [2] by Han in 1988,

see also [3]) which de
ects the current point prior to projecting it onto the next set and

achieves in this way not just feasibility but convergence to the projection of the initial

point onto the (assumed nonempty) intersection of a given �nite family of closed convex

sets in the Euclidean space.

The close relation of this algorithm with Hildreth's norm minimization method and other

techniques is discussed. Recently [4,5] we extended this method to encompass Bregman

projections. In doing so we show that Dykstra's algorithm with Bregman projections is

actually the nonlinear extension of Bregman's primal-dual coordinate ascent row-action

minimization method.

REFERENCES

[1] R.L. Dykstra, \An algorithm for restricted least squares regression", Journal of the

American Statistical Association, 78 (1983) 837-842.

[2] S.P. Han, \A successive projection method", Mathematical Programming, 40 (1988)

1-14.

[3] T. Robertson, F.T. Wright, and R.L. Dykstra, ORDERRESTRICTED STATISTICAL

INFERENCE, John Wiley & Sons, Chichester, UK, 1988.

[4] Y. Censor and S. Reich, \The Dykstra algorithm with Bregman Projections", Com-

munications in Applied Analysis, 2 (1998) 407-419.

[5] L.M. Bregman, Y. Censor, and S. Reich, \Dykstra's algorithm is the nonlinear exten-

sion of Bregman's optimization method", Technical Report, March 23, 1998.

P.P.B. EGGERMONT

Maximum Penalized Likelihood Estimation

We consider/compare least squares and maximum penalized likelihood approaches to the

standard nonparametric problem of estimating the density f

0

(x) of the random variable

X from the i.i.d. sample X

1

; X

2

; : : : ; X

n

. The least squares estimators we consider are

solutions to
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jxj) is the two-sided exponential. Thus, kernel density

estimators in general may be thought of as least squares estimators. Since kernel estima-

tors are very good by just about any criterion, it would seem that there is not much point

in considering the maximum penalized likelihood estimator, the solution, denoted by f

nh

,

to
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(note that the density constraint is not enforced.) Here R(f) is the roughness penaliza-

tion functional of GOOD (1971), R(f) =k (

p

f)
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. KLONIAS (1982, 1984) derived

bounds for the estimation error in terms of the Hellinger distance, which were not quite

satisfactory. However, it can be shown that
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and this implies the same order bounds on the L

1

error as for kernel estimators. Simula-

tion experiments indicate that f

nh

is practically indistinguishible from the kernel density

estimator with the optimal Epanechnikov kernel. Thus the two approaches are not very

di�erent in the end.

Things are even more similar when considering the estimation of monotone or convex den-

sities on (0;1), by adding the monotonicity or convexity constraint to the minimization

problems (1) and (3). For monotone densities, with h = 0, the problems (1) and (3) are

equivalent [Grenander (1956)]. The equivalence still holds if F

n

is replaced by A

�

� dF

n

for some kernel A with smoothing parameter � (and h = 0). Moreover, something special

happens. The map lcm de�ned on all densities on (0;1) by

lcm : ' 7�! the derivative of the least concave majorant of

x

R

0

'(t)dt

is a contraction in all L

p

norms (1 � p � 1), as well as in Hellinger, Kullback-Leibler,

and Pearson's �

2

distances. This immediately implies error bounds on the estimator.

For convex density estimation the problems (1) and (3) with h = 0 are again equivalent,

and likewise when F

n

is replaced by A

�

�dF

n

. This leads to error bounds on the estimator

in L

2

error only.

For nonparametric deconvolution theoretical comparisons between the least squares and

maximum penalized likelihood approaches are extremely di�cult, but simulation studies

strongly suggest the superiority of the latter.
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Andrey FEUERVERGER

On Kugelverteilung Problems Revisited

We consider the classical \thin-slice" stereological unfolding problem ofWicksell (Biometri-

ka, 1925) as well as its \thick-slice" version in which the section thickness is comparable

to the actual radii of the spheres themselves. (Bach, 1967; Goldsmith 1967). It is pointed

out that in a statistical sense, these two problems cannot be treated by analogy to each

other, for example, the thin-slice version requires a heavier order of smoothing than classi-

cal kernel density estimators in order to attain optimal performance, while the thick-slice

version does not! In that statistical sense, the thick-slice problem is hardly ill-posed at

all. We also stress that the nice linear relations between the folded and unfolded dis-

tributions allow us to write an expectation with respect to one of these distributions as

an expectation with respect to the other. This fact has been underutilized in statistical

applications of Wicksell-type problems. Thus, for example, it is possible to obtain an

unbiased estimator for the unfolded distribution and this may be used as the basis for

statistical inference. Another possiblity is to implement ideas related to cross-validation

for bandwidth selection. The properties of a number of such procedures are considered.

Alexander GOLDENSHLUGER

On Pointwise Adaptive Nonparametric Deconvolution

We consider estimating an unknown function f from indirect white noise observations

with particular emphasis on the problem of nonparametric deconvolution. Nonparametric

estimators that can adapt to unknown smoothness of f are developed. The adaptive

estimators are speci�ed under two sets of assumptions on the kernel of the convolution

transform. In particular, kernels having the Fourier transform with polynomially and

exponentially decaying tails are considered. It is shown that the proposed estimates

possess, in a sense, the best possible abilities for pointwise adaptation.

Piet GROENEBOOM

Deconvolution and Late Stopping

Let Z

1

; : : : ; Z

n

be a sample generated by the density h

0

, given by

h

0
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Z
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0
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k(x) = b
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1
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The distribution function F

0

can be estimated by the nonparametric maximum likelihood

estimator (NPMLE)

^
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log
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over all distribution functions F . In this situation it makes no sense to estimate the density

f

0

by straightforward maximum likelihood, analogously to the situation of a directly
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observable sample X

1

; : : : ; X

n

, where straightforward maximum likelihood estimation of

the density leads to point masses 1=n at the observation points.

On the other hand, the NPMLE

^

F

n

is a perfectly well-de�ned estimate of F

0

that can

be computed by several methods, for example by EM with very late stopping. It can be

proved that one can also use the NPMLE

^

F

n

for estimating f

0

by introducing

(1)

^

f

n;h

(t) =

Z

K

h

(t� x)d

^

F

n

(x) ;

where K

h

(x) = h

�1

K(x=h) for a continuously di�erentiable symmetric kernel K with

support [�1; 1] that integrates to 1.

If f

0

is twice di�erentiable at t 2 (0;M), one can estimate f

0

(t) at rate n

�2=7

, using (1)

and taking h � c � n

�1=7

. This is the usual rate for estimating the derivative of a density,

unless more restrictive smoothness conditions are imposed on the density. So, although

we actually try to estimate a density, the inverse problem character of the estimation

problem causes the slower rate. The asymptotic distribution of n

2=7

f

^

f

n;h

n

(t) � f

0

(t)g,

where h

n

� c �n

�1=7

, can also be explicitly determined, see GROENEBOOM (1998). The

result is used in ROY CHOUDHURY (1998) for \deblurring" images that are blurred by

Poisson noise. References: GROENEBOOM, P. (1998). Nonparametric estimators for

inverse problems. Algorithms and Asymptotics. Technical Report 344, Department of

Statistics, University of Washington. ROY CHOUDHURY, K. (1998). Additive Mixture

Models for Multichannel Image Data. Ph. D. Dissertation, University of Washington,

Seattle.

Martin B. HANSEN

Nonparametric Bayes Inference for Concave Distribution Functions

A way of making Bayesian inference for concave distribution functions is introduced.

This is done by uniquely transforming a mixture of Dirichlet processes on the space of

distribution functions to the space of concave distribution functions. The approach also

gives a way of making Bayesian analysis of multiplicatively censored data. We give a

method for sampling from the posterior distribution by use of a P�olya urn scheme in

combination with a Markov chain Monte Carlo algorithm. The methods are extended

to estimation of concave distribution functions for incompletely observed data. Finally,

consistency issues are touched upon.

N. W. HENGARTNER

A Universal Oracle Inequality for the L

1

-Norm

We study the problem of estimating functions in a prescribed class G, that are closest to

either the true regression g

0

, or its derivative g

0

0

, in the L

1

distance. For both problems,

we propose an estimator ĝ for which the mean absolute error is bounded by

1

n

n

X
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jĝ(X
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)� g
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)j � 3 inf

g2G
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(X
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n

and give bounds for the tail probability of the remainder that depend on the Kolmogorov

entropy of the class G. The methodology is general and readily generalizes to di�erent L

p

metric for 1 � p � 2. These results are universal for they hold for any regression function

g

0

!
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A. HERO

Asymptotic Minimax Methods for Incorporation of Uncertain Side

Information into Penalized ML Image Reconstructions

We present a methodology for incorporating extracted MRI anatomical boundary informa-

tion to improve the performance of penalized likelihood (PL) ECT image reconstruction

and ECT tracer uptake estimation. Under the assumption of perfect errorless side in-

formation it is natural to use a spatially variant quadratic Gibbs penalty which enforces

smoothness everywhere in the ECT image except across the MRI-extracted boundary of

the ROI. When high quality estimates of the anatomical boundary are available and MRI

and ECT images are perfectly registered, the performance of this Gibbs penalty method

is very close to that attainable using perfect side information, i.e., an errorless anatomical

boundary estimate. However when the variance of the MRI-extracted boundary estimate

becomes signi�cant this method performs poorly. We derive a modi�ed Gibbs penalty

function which accounts for errors in side information based on a min-max robustness ap-

proach. The resulting penalty is implemented with a set of averaged Gibbs weights where

the averaging is performed with respect to a limiting form of the induced posterior distri-

bution of the MRI boundary parameters. Examples will be presented for tracer uptake

estimation using the SAGE version of the EM algorithm and a B-spline parameterisation

of the anatomical boundary.

David HUNTER

Optimization Transfer Algorithms in Statistics

Optimization transfer is an iterative technique for solving di�cult optimization problems.

Using convexity arguments, it is often possible to construct, for a given objective function

L(�) and parameter value �

k

, a surrogate function Q(�j�

k

) with the following property:

By driving uphill (or downhill, if the goal is minimization instead of maximization), one

drives the value of L(�) uphill (or downhill). Thus optimization of L(�) is transferred to

the surrogate function, which is constructed to be easier to optimize. As with the EM

algorithm, which is a special case of optimization transfer, the resulting algorithms are

numerically stable, simple to understand and code, and often very fast, where speed is

measured not in number of iterations but in total computation required. The talk outlines

general principles of optimization transfer, cites examples of their use, and presents a

quasi-Newton method for accelerating their convergence.

Geurt JONGBLOED

Isotonic Inverse Estimation in Statistical Inverse Problems

When estimating a distribution function in a statistical inverse problem, plugging in

some nonparametric estimator of the sampling distribution into the inverse relation often

yields an estimator of the distribution function that does not satisfy the basic properties

of distribution functions. Usually it is the monotonicity property that is violated. Based

on such an unsatisfactory estimator, one can construct estimators that are monotone,

using techniques from the theory of isotonic regression.

The (simple) general idea of such estimators will be discussed and illustrated using some

examples.
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H. P. LOPUHA

�

A

Asymptotic Normality of L

1

-Error of the Grenander Estimator

Let f be a decreasing density on [0; 1] and denote f

n

the non-parametric maximum like-

lihood estimator for f . In Groeneboom (1985) an elegant proof, based on the so-called

inverse process

U

n

(a) = supft 2 [0; 1] : F

n

(t)� at is maximalg;

was given for Prakasa Rao's (1969) result on the limit distribution of f

n

(t

0

) with t

0

2 (0; 1)

�xed. Groeneboom also indicated how one might use the process U

n

to obtain asymptotic

normality of k f

n

� f k

1

. Although this result is often quoted and referred to as being

well known, no rigorous proof has ever been given.

In this talk I will give a brief outline of a rigorous proof of asymptotic normality of

k f

n

� f k

1

, which deviates from the guidelines given in Groeneboom (1985). This

was joint work with P. Groeneboom and G. Hooghiemstra. We feel that this result

is important since the problem of estimating a monotone density is closely related to

several other inverse problem, e.g. estimating the distribution function of interval censored

observations, or estimating a monotone hazard.

Bernard A. MAIR

Reconstruction of Positron Emission Tomography Images

This talk discusses new statistical reconstruction algorithms for positron emission to-

mography images. In particular, we will introduce several new algorithms for �nding

a Pearson type estimator instead of the usual maximum likelihood estimator. Some of

these algorithms outperform the usual ML-EM algorithm. In addition we introduce a new

statistical technique for dealing with data corrupted by attenuation. This method uses

the emission and transmission prompts and blank scan data to reconstruct both emission

and attenuation maps for chest phantoms. We will present the results of applying these

algorithms to data obtained from actual PET scanners.

Axel MUNK

Model Checks in Indirect Regression Models

In this paper we propose a class of asymptotic tests for the validity of linear model

assumptions of the regression function f in inverse estimation models Y = Kf(V ) + �

under a random and �xed design assumption, respectively. In particular, this approach

allows to test hypotheses which are L

2

-neighborhoods of the classical null hypothesis

H : f 2 L where L denotes a speci�c parametric regression model. Various applications

are considered in detail, which includes new test procedures for the direct case. These

tests are obtained by preconditioning the inverse regression model with a suitable operator

T which avoids direct estimation of f . Di�erent choices of T are investigated in detail

and their e�ciencies are compared.
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Georg NEUHAUS

On Testing Tumour Onset Times in a Lethal-Incidental Context

The asymptotic distribution of the combined test of Peto et al. (1980) under the null

hypothesis and under local alternatives is derived. A corrected variance estimator is

introduced and the implications of di�erent cell numbers for the Mantel-Haenszel part of

the combined test statistic are discovered. Moreover, it is shown that one may use data

dependent cells.

Furthermore, a conditional version of the combined test is introduced being exactly valid

under the strict null hypothesis and being asymptotically equivalent to its unconditional

counterpart. By a simulation scenario from a real data situation it is demonstrated in

what situations the asymptotics applies.

Robert D. NOWAK

A Multiscale Framework for Poisson Inverse Problems

Many important problems in science and engineering are well modeled by Poisson pro-

cesses. Often, it is of interest to accurately estimate the intensities underlying observed

Poisson data. This talk describes a maximum a posteriori (MAP) estimation method for

linear inverse problems involving Poisson data based on a novel multiscale framework. The

framework itself is founded on a carefully designed multiscale prior probability distribution

placed on the \splits" in the multiscale partition of the underlying intensity, and it admits

a remarkably simple MAP estimation procedure using an expectation-maximization (EM)

algorithm. Unlike many other regularized or Bayesian approaches to this problem, the

EM update equations for our algorithm have simple, closed-form expressions. Addition-

ally, our class of priors has the interesting feature that the \non-informative" member

yields the traditional maximum likelihood algorithm; other choices are made to re
ect

prior belief as to the smoothness of the unknown intensity. It can also be shown that the

informative priors display 1/f spectral characteristics, which suggests that they may be

very reasonable models for natural intensities functions like images.

Douglas NYCHKA

Numerical Weather Prediction

Prediction of meteorological conditions based on the previous state of the atmosphere and

observations is an inverse problem. Here we outline some of the di�culties in transfering

usual statistical methods to this context. Some issues are the sequential nature of weather

prediction and the large size of the problem. We suggest an aproach based on mixtures

of Gaussian densities as a form for the prior distribution of the atmospheric state. This

structure helps to interpret current practice using ensembles of states and poses some

interesting approximation problems for theoretical work.
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Joachim OHSER

Stereological Unfolding of Particle Size Distributions

The stereological unfolding problem for systems of spatially distributed particles is dis-

cussed. It is assumed that all particles have the same shape but di�erent sizes. In classical

stereology the only information used comes from the sizes of the section pro�les observed

in a planar section of the particle system. Here we additionally consider either a shape

parameter, or the complete shape information of the section pro�les. Clearly, if the par-

ticles are spheres then the pro�le shape adds no information about particle size. If the

particles are oblate spheroids, then the size and shape of the typical section ellipse are

independently distributed. In general, however, the size and shape of the section pro�les

are not independent and thus the shape information can be used to re�ne the conven-

tional stereological estimation of particle size distributions. An estimator of the particle

size distribution is given which is best linear unbiased in some sense. As an example

a system of cubic particles with random edge length is studied. Here additional shape

information is provided by the number of vertices of the section polygons. In general, the

shape of a section polygon is not completely characterized by a single shape parameter.

Complete shape information is provided by the coordinates of the vertices of the section

polygons. If the number of vertices of a section polygon is greater than 3 then the size

of the corresponding cube can be computed directly from the polygon shape. In the tri-

angle case only a lower bound of the cube size can be calculated, and this lower bound

is always greater than the size of this triangle. Such geometrical considerations lead to

several estimators of the cube size distribution which are compared using the mean square

l

2

-distance.

Sergei PEREVERZEV

Optimal Discretization and Degrees of Ill-Posedness for Inverse Estimation

in Hilbert Scales in the Presence of Random Noise

The problem of inverse estimation of an unknown element x

0

from noisy observations

y

0

= A

x

0

+ �� in dependence of the natur of random noise � is considered. It is shown

that a combination of a Tikhonov regularization estimator with some projection scheme

is order optimal for a wide class of operators A acting along Hilbert scales.

Frits H. RUYMGAART

Some Results and Some Open Problems Regarding Inverse Statistical

Inference

Two approaches to a general theory of inverse statistical inference will be brie
y discussed.

One is based on Halmos' version of the spectral theorem in the traditional model, where

the unknown parameter is a smooth curve. The construction of estimators and questions

like optimal convergence rates, weak convergence and asymptotic e�ciency of smooth

functionals can be dealt with. Some of these results as well as some open problems in

this area will be considered. A very promising alternative approach suggested by Hall

(personal communication) is to combine Halmos' spectral theorem in a suitable manner

with a wavelet expansion. This approach might be particularly appropriate if the unknown
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parameter is not necessarily a smooth curve. A curious example, not covered by Donoho's

wavelet-vaguelette method, is provided by convolution with the \boxcar". This example

will be used to demonstrate both the potential and some of the prospective di�culties of

this alternative.

A. W. VAN DER VAART

Censoring and Passive Registration

We discussed the estimation of the life time distribution of people in England in the period

1580-1800 from a data base that was put together through \familiy reconstitution". The

data base, consisting of 100 000 entries, was prepared from handwritten registers from

a large number of parishes in England, which recorded events such as births, marriages

and deaths. Unfortunately, the times of death of almost 50 percent of the people in the

data base are missing. This is thought to be due to moving of these persons to other

parishes that are not in the data-base or whose records could not be connected to those

of the parish of birth. Because the time of moving is not recorded in the data-base, the

data cannot be analysed using standard techniques for censored data, such as the Kaplan

Meier estimator. Following Gill we introduced a semiparametric model for which we

discussed the asymptotic behaviour of the maximum likelihood estimators. In this model

it is essential that the person is known to have been alive at a number of registered events,

such as births of children, even though the person's death may be unobserved. The last

moment that the person was known to be alive underestimates the time of censoring (i.e.

moving), but the discrepancy can be modelled. When modelling the registration events as

a Poisson process, this discrepancy is exponentially distributed and maximum likelihood

estimation is shown to come down to deconvolving this exponential distribution, an inverse

problem. To obtain our results we showed, among others, that the rate of convergence of

the Grenander estimator for a monotone density relative to the uniform norm is of the

order (n= logn)

�1=3

.

Erik VAN ZWET

Perfect Stochastic EM

In a missing data problem we observe the result of a (known) many-to-one mapping

of an unobservable `complete' dataset. The aim is to estimate some parameter of the

distribution of the complete data. In this situation, the stochastic version of the EM

algorithm is sometimes a viable option. It is an iterative algorithm that produces an

ergodic Markov chain on the parameter space. The stochastic EM (StEM) estimator is

then a sample from the equilibrium distribution of this chain. Recently, a method called

`coupling from the past' was invented to generate a Markov chain in equilibrium. We

investigate when this method can be used for a StEM chain and give a simple example

where this is indeed possible.
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W.R. VAN ZWET

Statistical Estimation for the Contact Process

The contact process is a highly simpli�ed model for the spread of an infection. At any

time t, each point of the d-dimensional lattice is either infected or healthy. As time passes,

the system changes according to the following dynamics: every infected site may infect

each of its 2d immediate neighbors with Poisson rate m and becomes healthy with rate 1.

All of the Poisson processes involved are independent. The process starts at time t = 0

with e.g. a single infected site at the origin.

Simple as this description may be, the contact process is a di�cult object for probabilistic

study. However, some basic facts have been discovered by probabilists over the past

decades. Here we shall deal with the problem of statistical estimation of the parameter m

on the basis of an observation of the process at a single time t. We propose an estimator

and show that it is consistent and asymptotically normal as t tends to in�nity.

Yehuda VARDI

Estimating Mixing Probabilities Subject to Lower and Upper Bound

Constraints with Applications

Consider k known probability vectors, h

i

2 IR

m

; i = 1; : : : ; k, let f be an unknown

probability vector f 2 IR

k

with known lower and upper bounds a and b, respectively

(a; b 2 IR

k

) and let g 2 IR

m

be a probability vector obtained by mixing the h

i

's with the

probability-weights f

i

.

We derive the maximum likelihood estimate (MLE) of the mixing probability vector f ,

subject to a � f � b, based on a random sample from g. The MLE is derived using the

EM algorithm, and it generalizes the much studied EM algorithm in emission tomogra-

phy linear-inverse problems with positivity constraints and many other applications to

include lower and upper bound constraints on the vector f . Applications in statistics,

signal recovery, �nance, discrete tomography and more are discussed. Convergence of the

iterated log-likelihood values, as well as the iterated probability vectors (f 's), is proved.

Gerhard WINKLER

Recent Developments in Edge-Preserving Noise Reduction

Some recent and very recent methods and algorithms are presented, discussed and com-

pared. The conclusions are illustrated by way of examples from medical imaging like

fMRI and others.

We focus on approaches like the Bayesian, local M-smoothing, adaptive weights smoothing

and chains of nonlinear Gaussian �lters.
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Cun-Hui ZHANG

Risk Bounds in Isotonic Regression

Nonasymptotic risk bounds are provided for maximum likelihood-type estimators of a

nearly increasing unknown function, with general average loss at design points. These

bounds are optimal up to scale constants in a certain sense, and they imply uniform

n

�1=3

-consistency for uniformly bounded unknown functions under mild assumptions on

the stochastic structure of the data.

Jacques ZUBER

A Goodness-of-�t Test for Nonlinear Models Based on Nonparametric

Techniques

The talk is devoted to goodness-of-�t tests for parametric possibly nonlinear heteroscedas-

tic regression models. The test statistic is constructed using a marked empirical process

based on residuals. We investigate the consistency of this test statistic and of the esti-

mators needed to compute it. We illustrate our results with numerical experiments and

comparisons to other tests.

Berichterstatter: Winfried Stute (Giessen)
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