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This meeting was organized by Sergio Albeverio (Bonn, Bochum), Leif Arkeryd (G�teborg),

Nigel J. Cutland (Hull), C. Ward Henson (Urbana, Illinois) and Manfred Wol� (T�ubingen).

The very di�erent research areas of the organizers show partially where Nonstandard Anal-

ysis (NSA) is applied in mathematics. The 24 talks of the meeting on Nonstandard Analysis

covered mathematical areas such as partial di�erential equations, additive number theory,

Banach space theory, topology, operator theory, measure theory, stochastic calculus and

even quantum stochastic calculus. Not all the talks used purely the methods of NSA since

there have been some \standard" talks in the spirit of NSA.

The main purpose of NSA is to invent new methods for proving results in an intuitive and

easier way. In this spirit continuum problems are reduced formally to discrete �nite prob-

lems. Another trick is to think in in�nitesimal quantities and the in�nitesimal behaviour

of certain mathematical objects. Such heuristics often used in the physicist's world is made

precise in NSA. Thus NSA provides a powerful tool for modern mathematics applied in

physics, economics and other sciences.

In PDE's the talks were about several physical important equations (Arkeryd, Brze�zniak,

Capinski, Palczewski). C.W. Henson introduced nonstandard hulls and ultraproducts of

Banach spaces which were used in further talks (Raynaud, Johnson). In operator theory

not only approximation of operators in Hilbert space were discussed (Gordon) but there has

been also an informal submeeting of some participants on strongly continuous semigroups

and spectral theory. Furthermore another submeeting was about synthetic di�erential

geometry.

The topics of stochastic processes and stochastic calculus were given in some talks (Benoit

(formulated in Nelson's IST), Osswald, Russo, von Weizs�acker). The generalization to

quantum stochastic calculus was introduced by R.L. Hudson. Most of the material in such

areas is based on the Loeb space construction, also discussed and used in measure theory

(Ross) and operator-valued measure theory (Ylinen). In topology interesting results were

shown using NSA (Loeb, Sari, Zimmer). Modeltheoretic aspects were basic to two talks

(Marker, Kanovei). The remaining talks gave applications of NSA to physics (Nakamura,

Lumer), probability theory (Sun) and additive number theory (Jin).

In my opinion the most interesting result besides application of NSA to get path space

measures in physics (Nakamura) was Jin's usage of NSA in additive number theory. A

research area naturally connected to NSA seems to be quantum stochastic calculus (QSC)

which was presented by Hudson to show the possibilities where one could construct a

nonstandard model of QSC and develope an insightful nonstandard quantum stochastic

calculus.
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Leif Arkeryd

On the stationary Boltzmann equation in a bounded domain in IR

n

with given

indata on the boundary

Consider the stationary Boltzmann equation in a bounded strictly convex C

1

domain


 � IR

n

with inner normal n(x)(�n < � < 2 in jv�v

x

j

�

), with Grad's angular cut-o�, and

with for some � > 0 a cut-o� for velocities smaller than �. The evaporation-condensation

boundary problem in this setting is

(BE)

(

vr

x

F = Q(F; F ); x 2 @
; v 2 IR

n

F = kf

b

; x 2 @
; v � n(x) > 0 :

Under some mild restriction on f

b

> 0 the following holds. There are functions M

j

(m) >

0; j = 1; 2 (depending on f

b

) with lim

m!0

M

j

(m) = 0; lim

m!1

M

2

(m) = 1, such that for

each m > 0, the problem (BE) has a solution F with

Z


�IR

n

F (x; v)dxdv = M

1

(m) and

Z


�IR

n

v

2

F (x; v)dxdv = M

2

(m):

Nonstandard reasoning was central in the discovery of this result. The proof is based on

a general technique introduced by Arkeryd and Nouri, using local aspects of the entropy

dissipation integral for an a priori control in nonlinear stationary kinetic problems. In

contrast to other problems treated by this technique untill now, the study of (BE) in an

essential way uses NSA arguments to established a new separation property fundamental

for the proof in the (BE)-case.

Eric Benoit

Measure theory and stochastic processes in the hyper�nite world

Following E. Nelson, we show that it is possible to construct a theory of probability and

di�usion processes in the hyper�nite world as rich as the classical one. We use the IST

axioms and �nite probability theory. We never need classical measure theory on in�nite

sets. We avoid standardization to stay in the hyper�nite world.

In the �rst part of the talk we study (hyper)discrete measures on a standard set. We

introduce the measure of external subsets. It allows us to de�ne a convenient notion of

negligeable sets. We see also that each classical measure could be obtained as a \standard-

ization" of a (hyper)discrete measure.

In a second part we de�ne an equivalence relation on random variables and the macroscopic

properties. This notions are adapted to the problem: the macroscopic properties are those

we can observe after approximations by in�nitesimals and they are compatible with the

equivalence relation.
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Finally, we apply this ideas to study the brownian motion as the equivalence class of a

Wiener walk. We compute also the \density" of a (discrete) di�usion and prove Girsanov's

theorem.

Zdzis law Brze�zniak

Stochastic Euler equations

Let O be a smooth connected open subset of IR

2

, and let T 2 (0;1). We are concerned

with the existence of a martingale solution to the incompressible stochastic Euler equations

@

t

u + hu;riu+rp = F (t; u) + G(t; u)

_

W; div u = 0 (1)

with the boundary condition

hu;ni = 0 on (0; T )� @O (2)

where n stands for the unit outward normal to @O. We prove existence of a martingale

solution to (1)-(2). The constructed solution is a limit as the viscosity converges to zero of

a sequence of solutions to modi�ed stochastic Navier-Stokes equations. We study various

regularity properties of the solutions, in particular we show the space continuity of the

solution to (1)-(2). The methods used in the paper involve a theory of stochastic integration

in a certain class of Banach spaces (including L

p

{spaces with p � 2) and adaptation and

generalization of some results obtained for classical Euler equations by Kato and Ponce.

We study the dependence of the solution u(t) on the initial value u

0

. For the stochastic

Navier-Stokes equations (SNSE's) we show the continuity of u

0

7! u(�) treated as a mapping

from a state space into the space of square integrable random variables. Our results have

led us closer to solving the old and important problem of existence of stochastic 
ow for

the SNSE's.

Marek Capinski and Nigel J. Cutland

Existence of global stochastic 
ow and attractors for Navier-Stokes equations

Suppose that 
 is a probability space with one parameter group �

t

: 
 ! 
 of measure

preserving maps, and let H be a Hilbert space. For a stochastic evolution equation in H

we say that

' : [0;1)�H � 
 ! H

is a 
ow of solutions if

(i) for each ! 2 
, the function (t; x) 7! '(t; x; !) is continuous,

(ii) for each x 2 H, the process u(t) = '(t; x; !) is a solution of the equation in question

with the initial value u(0) = x (so '(0; x; !) = x).

A 
ow ' is a crude cocycle if for all s 2 IR there is a full set 


s

such that for all ! 2 


s

'(t + s; x; !) = '(t; '(s; x; !); �

s

!)
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hold for each x 2 H and t 2 IR. A cocycle is perfect if 


s

does not depend on s. Under the

condition of invertibility of '(t; �; !) in �nite dimensional spaces H, Arnold and Scheutzow

showed that a crude cocycle can be made perfect, i.e. it may be modi�ed to a stochastically

indistinguishable perfect one.

Part of the importance of cocycles stems from the desire to �nd an appropriate notion of an

attractor for a stochastically evolving system. The abstract notion formulated by Crauel

and Flandoli in the above setting is the following: a random global attractor is a random

compact subset A(!) of H satisfying

'(t; A(!); !) = A(�

t

!); t � 0; lim

t!1

dist ('(t; x; �

�t

!); A(!)) = 0 :

Our interest here is in stochastic 
ows, cocycles and global random attractors for the

stochastic Navier-Stokes equations

u(t) = u

0

+

Z

t

0

[��Au(s)� B(u(s)) + f ]ds+

Z

t

0

g(u(s))d!

s

:

In earlier work Brze�znick, Capinski, Crauel and Flandoli considered special cases of these

equations that can be reduced to equations with random coe�cients and thus solved path-

wise (albeit not simply), and this leads to a pathwise construction of global attractors.

In this work the equations considered are truly stochastic, i.e. irreducible to non-stochastic

ones, although it is necessary to impose a certain orthogonality restriction on the noise.

This gives some deterministic information about the energy of the solution to the equations

which allows the methods of Temam to be used in the stochastic setting. Consequently, we

are able to construct a global 
ow, perfect cocycle and global compact random attractor

for the above stochastic Navier-Stokes equations in dimension 2 with periodic boundary

conditions.

The paper makes essential use of nonstandard analysis. In particular, the global (standard)

stochastic 
ow and the perfect cocycle are constructed on a Loeb space: whereas it may

be possible to obtain a so called crude cocycle on an arbitrary space, it seems that the

richness of a Loeb space is needed for a perfect cocycle.

Evgueni I. Gordon

On approximation of operators and groups

A new approach to approximation of operators in the Hilbert spaces of function on locally

compact abelian groups is introduced. This approach is based on a sampling procedure

applied to the symbols of such operators. To choose the points of sampling we use the

approximations of groups by �nite groups. In the case of the group IR

d

constructed approx-

imations include all �nite-di�erences approximations, which can be obtained by the choice

of an appropriate approximation of groups. The convergence of spectra for approximations

of Schr�odinger type operators with increasing on in�nity and periodic potentials is proved.
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The problems of approximations of noncommutative topological groups by �nite ones are

discussed. The approximability of a large class of nilpotent Lie groups and nonapproxima-

bility of SO(3) are proved. For the compact groups the equivalence of approximability by

�nite groups and the approximability of Hopf algebra by �nite dimensional Hopf algebras

is proved.

C. Ward Henson

Ultraproducts and nonstandard hulls of Banach space structures

This was an expository talk to provide background for the talks of Yves Raynaud and

William B. Johnson which followed in the same morning session. The objective was to

introduce the two main constructions in model theoretic applications to functional analysis

and to show how they are related to each other. The constructions are (1) Banach space

ultraproducts (introduced in the 1966 PhD thesis of Krivine) and (2) Nonstandard Hulls

(introduced in 1968 by Luxemburg in his in
uential paper \A general theory of monads").

Consider an index set I and an ultra�lter U on I. For each set V let

�

V denote the

nonstandard extension of V constructed as the set theoretic ultrapower of V using the

ultra�lter U . If (X(i) : i 2 I) is a sequence of normed linear spaces indexed over I,

then the Banach space ultraproduct of (X(i) : i 2 I) is identical to the nonstandard

hull of the internal normed space X which corresponds to the set theoretic ultraproduct

of (X(i) : i 2 I) with respect to U . In other words, the Banach space ultraproduct

construction and the nonstandard hull construction are essentially identical.

The speaker gave general background about these constructions for structures based on

Banach spaces (lattices, algebras, etc). They apply to any structures in which the basic

operations are bounded and uniformly continuous on each bounded set. Emphasis was

placed on how classes of the classical Banach spaces and structures based on them are closed

under ultraproducts and nonstandard hulls. Emphasis was also placed on the important

question for a given class K of structures, whether or not it is closed under \ultraroots":

namely, is it the case that whenever a Banach space ultrapower of X is in K, then X itself

must also be in K. Closure under ultraproducts and ultraroots corresponds exactly to the

possibility of axiomatizing K using positive bounded sentences in the speaker's logic for

structures from analysis.

Robin L. Hudson

Quantum stochastic calculus for non-standard analysts

Quantum stochastic calculus can be regarded as a noncommutative extension of the Itô

calculus of Brownian motion arising from the identi�cation of the L

2

{space of Wiener mea-

sure with the Fock space over L

2

(IR

+

).

In this exposition, I emphasise the continuous tensor product structure of the Fock space,

which makes the theory of quantum stochastic calculus appear to be a natural candidate
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for description by non-standard analysis, generalising the successfull treatment of Itô cal-

culus.

As well as the creation and annihilation processes A

+

and A, linear combinations of which

correspond to (mutually noncommuting) Brownian motions, quantum stochastic calculus

also uses the preservation process �, using which stochastic integrals against the Poisson

process are also included in the theory. The theory is developed using two fundamental for-

mulas, which express stochastic integrals and products of stochastic integrals, as Lebesgue

integrals, using exponential (factorising) vectors in the Fock space. The fundamental es-

timate, derived from the second of these formulas, extends integrability to a wide class

of operator-valued integrands, permitting de�nition of iterative integrals and solution of

quantum stochastic di�erential equation by the iterative method.

For multidimensional quantum stochastic calculus, we use the Belavkin notation , which

labels the integrator processes by operator valued matrices o
195 the form

L=

0

B

@

0 �u !

0 S v

0 0 0

1

C

A

! 2 Cl and S 2 B(K)

where u; v are vectors in a d-dimensional Hilbert space K. By ZZ

2

{grading the space K,

we can construct a corresponding ZZ

2

{graded quantum stochastic calculus. In the one-

dimensional case K = Cl , this construction gives Fermion �elds acting in the (Boson) Fock

space. We discuss the meaning of the formula

dF (M

L

) = F (M + dM

L

)� F (M

L

):

Finally we discuss multiple quantum stochastic product integrals of the form

b

Y

a

d

Y

c

(1 +

X

c

jk

dM

L

j


 dM

L

k

)

where [a; b[ and [c; d[ are disjoint subintervals of IR

+

.

Renling Jin

Banach density problems in additive number theory

Given a subset A of natural numbers, let

�(A) = inf

n�1

jA \ f1; 2; � � �ngj

n

and d

�

(A) = lim

k!1

sup

n�m=k

jA \ fm + 1; m + 2; � � � ; ngj

n�m

�(A) is called the Shnirel'man density and d

�

(A) is called the Banach density of A.

Shnirel'man's theorem says that if �(A) > 0 and 0 2 A, then there is a k such that

the sum of k{copies of A is the set of all natural numbers. Shnirel'man's theorem about
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Banach density says that if d

�

(A) > 0 and A contains two consecutive numbers, then there

ist a k such that the sum of k{copies of A is a thick set. A set A is called thick if A

contains arbitrarily long (but �nite) sequences of consecutive numbers. In the talk, we

show three di�erent ways to prove Shnirel'man's theorem about Banach density. All three

ways use nonstandard methods and each of those ways reveals a general idea of applying

nonstandard methods to additive number theory.

William B. Johnson

Nonlinear Banach space theory: From ultrapowers to IR

2

This is a survey of part of the two nonlinear-theories of Banach spaces. In the Lipschitz

category the morphisms are Lipschitz mappings between Banach spaces; two spaces are

Lipschitz equivalent if there is a bi-Lipschitz homeomorphism between them. In the uni-

form category the morphisms are uniformly continuous mappings; two Banach spaces are

uniformly equivalent if there is a bi-uniformly continuous homeomorphism between them.

Di�erentiation techniques sometimes allows the passage from Lipschitz equivalence to iso-

morphism while ultraproducts play an important role in relating uniform equivalence to

Lipschitz equivalence.

A new development in the nonlinear theories (by S. Bates, J. Lindenstrauss, D. Preiss, G.

Schechtman, and the speaker) is the study of Lipschitz quotients and uniform quotients

of a given Banach space. Nonlinear quotient mappings have not been previously explored

even when the domain is the Banach space IR

2

; this case, as well as results in the in�nite

dimensional setting, will be discussed.

Vladimir Kanovei and Michael Reeken

Models of ZFC extendable to models of nonstandard set theories

Necessary and su�cient conditions are presented, for a standard model of ZFC to be

extendable to a model of a given nonstandard set theory, for instance, IST, BST, theories

of Hrbacek and Kawai.

Peter A. Loeb

The base operator in analysis and topology

The talk is on joint work with J�urgen Bliedtner. We use nonstandard analysis to simplify

and further expand the theory of base and antibase operators. This includes the theory of

the topologies these operators generate, such as the density topology in measure theory,

and even the �ne topology in potential theory. A simple example of a base operator is the

mapping from sets to their closures in a topological space. Base and antibase operators

replace a set with the collection of points where the set is big. With more structure,

they are also called upper and lower densities. We give a new, simple description of the
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topologies these operators generate using a natural extension of the operators from algebras

of sets on which they are initially de�ned to the full power set of the underlying space X.

We even extend base operators to bounded real-valued functions on X, capturing in an

elementary way topological operations on the functions. Associated with these operators

for bounded measurable functions is an optimal di�erentiation basis. As an application,

we easily construct a lifting for the space of bounded measurable functions, assigning to

each member f the value c at any point where f is \essential close" to c.

Gunter Lumer

Blow up and residual e�ects for solutions in parabolic systems with singular

boundary interactions

We treat systems governed by parabolic equations, in classical 
 � IR

N

and Banach space

X, contexts, with boundary operator B : X ! H � X and \singular interaction" (si u)(0)

= � a distribution or hyperfunction 2 B(IR;H) ({ think of u

0

= �u + F (t); u(0) =

f; uj@
 = ' for t > 0, written in X = C(
), C(@
) identi�ed via harmonic extensions

with H � X;B = \j" plus harmonic extension, A replacing � in the general context

Q(t) = \the semigroup generated by A" = e

tA

, (si u)(0) = � meaning intuitively that �(t)

is added to '(t) as boundary condition). �

0

is always of the form

P

1

j=1

c

j

�

(j)

with c

j

2 H.

We use asymptotic methods �nding classical C

1

solution u(t) for t > 0 =

P

1

j=1

Q

(j)

(t)c

j

(singular at t = 0) when all \nonsingular data" F = f = ' = 0.

Surprising things happen: (1) 9 nondetectable signal (nds) i.e. 9� 6= 0 for which u(t) � 0;

(2) such nds however leave a residual e�ect in the form of a hyperfunction concentrated

at 0 (supp = 0), equal to �Q � �

0

(computed as hyperfunctions convolution in the sense

of Komatsu) which can be explicitely computed in terms of the c

j

and A (as in�nite �{

expansion); we show that if u(t) 6� 0 and remains bounded for all t > 0 it must come from

a � which is a true hyperfunction (i.e. not reducing to a distribution) and such u(t) exists,

so you \can see" (�lm) true hyperfunctions.

Here NSA is used simply to produce one natural way of discovering how to express math-

ematically the physical content of the physical situation intuitively given and to see why

hyperfunctions are indeed needed to capture that full content (by applying to crude non-

standard approximations to the model, the requirement that a physically meaningful de-

scription (model) must have (measurable) standard data producing in turn standard solu-

tion).

David Marker

Logarithmic-exponential series

This is joint work with Lou van den Dries and Angus Macintyre. Using �elds of general-

ized power series, we construct R((t))

LE

the �eld of logarithmic-exponential series. This

is a quite natural nonstandard model of the theory of the real �eld with exponentiation
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which strongly re
ects asymptotic properties of de�nable functions. We use this con-

struction to answer a question of Hardy's by showing that the compositional inverse to

x 7! (logx)(log log x) is not asymptotic to a composition of exponentials, logarithms and

algebraic functions.

The �eld has a natural derivation satisfy the exponential derivation rule (e

f

)

0

= f

0

e

f

with

constant �eld R. As every element of the �eld has an anti-derivative, all linear �rst order

di�erential equations have solutions. The equation y

00

+ y = 0 has no non-trivial solutions.

This leads us to conjecture that there is an intimate connection between solving di�erential

equations in R((t))

LE

and �nding non-oscillating solutions at in�nity. We prove a precise

version of this conjecture for homogeneous second order equations.

Toru Nakamura

Path space measure for 3 + 1� D Dirac equation in momentum space

The Green function for the 3 + 1� D Dirac equation contains not only delta functions as

for the case of 1 + 1 � D, but also the derivative of delta functions. The fact prevents us

away from assigning �{measure for each path, consequently from de�ning �{path integral.

Therefore, we prefer to work in the momentum space. The electromagnetic potentials

cause a momentum of the particle to change from time to time, a stochastic process whose

transition probabilities therefore depend on the potentials. These facts are incorporated

in the de�nition of the �{measure, to obtain the standard solution as the standard part of

the �{path sum with respect to the �{measure.

It is also shown that a standard measure over a standard path-space can be extracted from

the nonstandard one, so that the standard solution is obtained as the standard path integral

with respect to the extracted measure. In the construction, nonstandard analysis concretely

exposes the structure of the measure, which enables us to derive its �ne properties. If the

potentials do not depend on time, our result reduces to that of B. Gaveaus in 1984.

Horst Osswald

Extensions of the classical Wiener space and applications

We study shifts on the space C[0; 1] of real continuous functions of the form

� � b(X; �) : [0; 1] 3 � 7! b(X; �) +

Z

�

0

'(X; s)d�(s);

where ' is a square integrable process on a probability space 
 and b is a Brownian

motion on 
 such that C[0; 1] coincides with the set of trajectories of b. The function ' is

called the kernel of �.

Using Malliavin calculus combined with NSA we give positive answers for a large class of

kernels ' of the following well established question:

Does there exist a measure P absolutely continuous with respect to Wiener measure such

that � � b follows the law of Brownian motion with respect to P ?
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Andrzej Palczewski

Convergence of discrete velocity models to kinetic equations

The problem is formulated as follows. Find an approximation to integro- di�erential equa-

tions of kinetic type

@f

@t

+ v � r

x

f = Q(f; f) =

Z

IR

3

Z

S

2

g(v; v

1

; u)dudv

1

by a system of PDE's

@f

i

@t

+ v

i

� r

x

f

i

=

X

j;k;`

g(v

i

; v

j

; u

k`

ij

)

there f is a socalled one-particle distribution function f = f(x; v; t) and g is a nonlinear

(bilinear) function of f .

The essential di�culty is the approximation of the �xfold integral by summation over a

discrete set of velocities fv

i

g. In solving this problem we introduce in the velocity space

IR

3

a regular grid fv

i

: v

i

= hn; n 2 ZZ

3

g. The problem is then reduced to the analysis of

solutions to diophantine equation x

2

1

+ x

2

2

+ x

2

3

= m. To solve the approximation problem

we have to know that the member of integer solutions to diophantine equation is tending to

in�nity for m!1, and that these solutions are uniformly distributed on a sphere. Recent

results in additive number theory solve both these problems positively (Duke, Iwaniec).

Hence we are able to prove that the discrete approximation converges to the integral and

estimate the error of approximation (which is of order h

2=175

).

To prove convergence we need the existence and uniqueness of solutions for both our models

(continuous and discrete). This can be achieved only for x{independent solutions. Hence

from both equations the term v � r

x

f is dropped. For such a space-homogeneous equation

we can prove the strong convergence of solutions to discrete velocity model to the unique

solution of integro-di�erential equation in the space L

1

(IR

3

) with the polynomial weight

function (1 + v

2

). For the space dependent problem we are able to improve the result of S.

Mischler showing that with our velocity grid solutions to modi�ed discrete velocity equation

converge weakly to the weak solution of DiPerna-Lious of the Boltzmann equation.

Yves Raynaud

Ultrapowers of classical Banach spaces

This talk is intended to give an overview of \concrete" representations of ultrapowers of

classical Banach spaces. The heuristics for �nding such a representation consists either in

considering the given Banach space as a member of a class speci�ed by some additional

structure and several axioms which are conserved through the ultrapower process, and

using a suitable representation theorem, or in relating the given space to another one, the

ultrapowers of which are already known (this is typically done by mean of a locally uniform
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homeomorphism). Several examples are given to illustrate these two ways, starting from

the very classical case of L

p

{spaces, examining then Orlicz spaces, vector-valued spaces

(in these two cases the class of Banach spaces to deal with has to be strictly enlarged),

Calder�on interpolation spaces and non-commutative L

p

{spaces.

David A. Ross

Some recent applications of Loeb measures

The standard part map is not always as well-behaved as one would like for `pushing' Loeb

measures down to standard spaces. I discuss three recent examples of standard applications

where the natural Loeb-measure proofs fail, and need to be supplemented by an unexpected

extra argument:

1. In a nonstandard proof of the classical Kolmogorov Existence Theorem (for probability

measures on an in�nite product IR

I

), the measure given by the push-down of the natural

Loeb measure needs to be constructed on the larger space IR

I

and then `traced' onto IR

I

.

2. To prove the following:

Let (X

i

;B

i

; m

i

)(i 2 IN) be a sequence of Borel measure spaces. There is a Borel measure �

on �

i2IN

X

i

such that if K

i

�X

i

is compact for all i 2 IN and �

i2IN

m

i

(K

i

) converges then

�(�

i2IN

K

i

) = �

i2IN

m

i

(K

i

)

the standard part map can only be used to construct local measures, which then need to

be pasted together using an internal measure to control the amalgamation.

3. If a metric space X is not locally compact, then the space F of closed subsets of X (under

the usual topology) need not be Hausdor�. Nevertheless, there is a reasonable stand-in x

for the standard part map. To prove a Choquet-like result relating precapacities on X to

F{valued random variables, a suitable Loeb measure can be constructed on

�

F and pushed

down via x. However, the argument that x is measurable (and that the resulting image

measure on F has the requisite properties) is di�cult, requiring an unusual appeal to the

completeness of X.

Francesco Russo

Stochastic calculus with respect to �nite quadratic variation processes

We develop a \pathwise stochastic calculus" whose starting point was an article of H. F�ollmer

(1981). Using discretization techniques we de�ne forward, backward and symmetric in-

tegrals and covariation processes. The covariation of a process X with itself is called

quadratic variation and it is denoted by [X;X]. If [X;X] exists X will be called a �nite

quadratic variation process.

I provide a large class of examples of �nite quadratic variation processes (continuous or

with jumps), with some emphasis on Gaussian processes. For such processes X, a calculus

is presented with applications to the study of some stochastic di�erential equations driven

by X.
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The features of the work are essentially the following.

1) Simplicity. Many rules are directly derived using simple calculus (�nite Taylor expan-

sions, uniform continuity . . . ).

2) The calculus goes beyond semimartingales. Our aim was to understand what could be

done when integrators are just Gaussian processes, convolution of martingales as fractional

Brownian motion and Dirichlet processes (sum of a local martingale and a zero quadratic

variation process).

3) It is a bridge between anticipating and non-anticipating integrals. Our integral helps to

relate Skorohod integral with enlargement of �ltration techniques.

Tew�k Sari

Semi-continuous set-valued mappings

Set-valued mappings appear naturally in many areas: optimization theory, mathematical

economics, dynamical systems . . . . Their semi-continuity properties are related to the

notion of limit of families of subsets of a topological space and also to some topologies on

the set of subsets of a topological space. These notions were de�ned and developed, among

others, by Baire, Painlue�e, Hausdor�, Vietoris, Kuratowski and Choquet. The aim of the

talk is to present the main facts of the theory and to show that the nonstandard approach

permits new de�nitions and new simple and insightful proofs.

Yeneng Sun

Continuum approach to stochastic independence: is it possible?

Continuum methods have provided powerful tools in mathematics and its applications.

However, there was no progress on the study of independence via continuum methods. A

reason behind this phenomenon is that independence and joint measurability are never

compatible with each other in the continuum setting except for some trivial cases.

Here we use a larger measure-theoretic framework based on Loeb product spaces to by-

pass this measurability di�culty. Distinct new phenoma arise naturally. In particular we

characterize the satis�ability of various versions of the law of large numbers via almost in-

dependence. This provides a rigorous foundation for the exact cancellation of idiosyncratic

risks underlying many economic models.

Completely new connections between various basic probabilistic concepts are also discov-

ered. It is common sense that pairwise independence and mutual independence are distinct

in the �nite setting. It is also well known that some weaker properties involving the mul-

tiplication of generating functions, characteristic functions and distribution functions are

di�erent. However, it is found that all these concepts are almost equivalent in the ideal

setting. In addition, the duality between independence and another basic probabilistic

concept - exchangeability is established.
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Heinrich von Weizs�acker

Asymptotic separation of measures in Markov-chains

For each N 2 IN, let P

(N)

0

; P

(N)

1

be two probability measures over a common space 


N

. We

are interested in the rate of the exponential decay of the overlap

kP

(N)

0

^ P

(N)

1

k =

1

2

(2� kP

(N)

0

� P

(N)

1

k);

(minimal Bayes risk in statistical language), i.e. we want to evaluate the limit

r = lim

N!1

1

N

log kP

(N)

0

^ P

(N)

1

k

Let for i = 0; 1 the measure P

(N)

i

be the law of an irreducible Markov chain over a �nite

set, governed by the transition matrix �

i

. Then

r = inf

0<t<1

log �(�

t

)

where the (substochastic) matrix �

t

is given by �

t

(x; y) = (�

0

(x; y))

1�t

(�

1

(x; y))

t

and �

denotes spectral radius (Sche�el 97).

This has been extended in (Sche�el-Weizs�acker, Math. Meth. of Stat. 1997/98). The

proof uses large deviations of the empirical pair measure (and an extension thereof), the

variational formula for the spectral radius of nonnegative matrices and a minimax argu-

ment. The talk also mentioned recent related results about optimal information gain in

the continuous parameter problem and some guess for the similar rate in continuous space

time models.

Kari Ylinen

Aspects of operator measures and bimeasures susceptible to a nonstandard

treatment

Complex bimeasures are separately �{additive functions de�ned on the Cartesian product

of two �{algebras. In case they take only nonnegative real values, they can under general

regularity conditions be extended to measures on the product �{algebra, but general Cl {

valued bimeasures do not have this property, and their integration theory meets with serious

di�culties. The author has proved a representation theorem (Stud. Math. 104 (1993),

p. 272) for complex bimeasures in terms of spectral measures. It is therefore conceivable

that a nonstandard treatment of spectral measures and more generally positive operator

measures could shed light on the bimeasure integration problem. More motivation for such

a treatment comes from the recent development by the author with some collaborators

(P. Lahti, M. Maczynski, J.-P. Pellonp�a�a) of integration theory with respect to positive

operator measures and its use in quantum mechanics. As a �rst step towards a nonstandard

14



study of positive operator measures, the construction of the corresponding Loeb space was

announced. If one begins with a standard positive operator measure, the Loeb operator

measure will have its values acting on the original Hilbert space. It is also possible to start

with an internal �nitely additive operator measure relative to an internal inner product

space H, and then the values of the Loeb operator measure will act in the nonstandard hull

c

H. As an application, the semispectral measure corresponding to a semispectral function

on the real line was constructed.

G. Beate Zimmer

Small norm isomorphisms of C(K){spaces

In a joint paper with Nigel Cutland (Bull. Austr. Math. Soc., Vol. 57 (1998), p.55-58), we

used nonstandard peak functions, that is, internal functions of norm one that are supported

in one monad to obtain a new proof of the Banach-Stone theorem. Using nonstandard

peak functions, we were able to extend Banach's elegant original proof, which was for the

special case of compact metric spaces to the general setting of compact Hausdor� spaces.

We characterized peak functions in a way that is invariant under isometries. A linear

isometry then takes a peak function to a peak function. This induces a bijection between

the underlying compact Hausdor� spaces.

Recently I have been looking into generalizations of this result. One possible generalization

would be to look at complex C(K){spaces. Our results for the isometric case did use the

order structure of the reals heavily. I did prove some results on images of peak functions

in the complex case.

It is well-known that a more general version of the Banach-Stone Theorem holds. Proofs

for this generalization were �rst given by Amir and Cambern in 1965. If X and Y are

compact Hausdor� spaces and if there is a linear bijection T : C(X) ! C(Y ) such that

kTk � kT

�1

k = � < 2, then X and Y are homeomorphic. The nonstandard extension of the

operator T (after suitable normalization) then maps a peak function f

x

to a function Tf

x

,

whose values are greater or equal to

�

2

in exactly one monad. Showing that this induces a

homeomorphism between X and Y is a little more work than in the isometric case. I have

a complete proof for this situation, but still hope to make it look a bit less technical.

Finally I am beginning to look into near-isometries of subspaces of C(K){spaces. As every

Banach space can be represented as a subspace of a C(K){space, this is naturally a very

interesting topic to anybody in functional analysis or operator theory.

I would very much like to get a chance to work some more with Nigel Cutland on this and

am sure that this would be produce very interesting results.
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