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Introduction.

Hyperbolic groups were introduced in 1987 by Gromov. In itself, this subject constitutes

a signi�cant proportion of the geometric theory of groups. Geometric group theory has

grown into a major �eld over the last two decades or so, though its roots can be traced back

to the early years of this century. For example, Dehn made use of hyperbolic geometry to

solve the word problem for surface groups. Out of this developed small cancellation theory,

which is still important today, and which might be viewed as a kind of precursor to the

theory of hyperbolic groups. Since then, hyperbolic geometry has been one of the principal

sources of ideas in combinatorial group theory. One should also mention the work of

Aleksandrov, Busemann and Toponogov starting in the late 40s, who developed synthetic

methods in Riemannian geometry. These techniques have exerted a strong in
uence on

the evolution of the subject.

Another important source of ideas has been low-dimensional topology, in particular

3-manifold theory. These were translated into group theory through the work of Stalling,

Dunwoody etc. Since the work of Thurston towards the end of the 70s, 3-dimensional

topology and hyperbolic geometry have become intimately linked. This convergence of

ideas produced a 
urry of activity which has never lost pace. Among the more recent

developments to spring from this source has been the theory of group actions on R-trees,

introduced by Morgan and Shalen, and developed by Rips, Bestvina, Feighn, Levitt, Paulin

and others. It is now one of the most powerful tools in the subject.
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It was against this background that Gromov published his article on hyperbolic groups.

As a typical example of such a group, one might consider the fundamental group of a com-

pact negatively curved manifold. The entire subject is founded on an axiom, commonly

termed the \thin triangles" axiom, which is a coarse version of a comparison axiom intro-

duced by Aleksandrov. It is remarkable how such a simple axiom can capture so much of

the large scale geometry of negatively curved spaces. The large number of equivalent nat-

ural formulations of this notion bear witness to its central importance. Today there is an

extensive literature on the subject, both elaborating on ideas already set out by Gromov,

and exploring many new directions.

We have had to be very selective in the choice of topics : clearly, many important

results where not even mentionned.

B. Bowditch T. Delzant
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Lecture 1. B.Bowditch.

Introduction.

A survey lecture: what will and what will not be done in the programme:

-Small cancellation theory and hyperbolic geometryg Olshanskii's work on the Burnside

problem, generic groups.

-The geodesic 
ow and its (potential) applications (e.g. bounded cohomology).

-The Novikov conjecture and related problems.

-Symbolic dynamics of the geodesic 
ow and zeta function for hyperbolic groups.

-Decision problems in group theory (word problem, conjugacy problem and isomorphism

problem).

Lecture 2. A. von Heydebreck, Franz Degenhardt.

De�nitions, �rst examples.

(a) Equivalent de�nitions of hyperbolicity. (b) Some examples, �nite trees, hyperbolic

n-space H

n

. (c) The lemma of approximation by �nite trees. (d) As a corollary, if �

acts properly discontinuously on a (e) De�nition of a hyperbolic group as one which acts

properly discontinuously Corollary of (d): A hyperbolic groups has �nitely many conjugacy

classes of �nite subgroups.

Lecture 3. E. Lebeau.

CAT(�) spaces.

(a) De�nition of the CAT(�) property. (b) The Cartan-Hadamard Theorem: (c) The-

orem :

Let (X; �) and (Y; d) be two metric spaces, and suppose � � 1, K � 0. A \(�;K)-

quasi-isometry" between X and Y is a map f : X �! Y such that for all x; x

0

2 X

�

�1

�(x; x

0

)�K � d(f(x); f(x

0

)) � ��(x; x

0

) +K

and

(8y 2 Y )(9x 2 X)(d(f(x); y) � K):

The notion of quasiisometry thus gives an equivalence relation between metric spaces.

A fundamental property of hyperbolicity is its quasi-isometry invariance (for geodesic

spaces). The most direct way to prove this is to use quasigeodesics. In particular, hy-

perbolicity of a �nitely generated group is independent of the generating set.

3



Lecture 5. B. Priwitzer.

Isoperimetric inequalities and hyperbolicity.

One can characterise hyperbolicity in terms of isoperimetric inequalities. Let M be a

compact Riemannian manifold. i) The universal cover of M (or equivalently �

1

(M)) is

hyperbolic. ii) There is some K > 0 such that A(L) � KL for all L.

Lecture 6. J. Winckelman.

The Rips complex.

To any �nitely generated group, �, together with a �nite generating set, and any

natural number, d, is associated a (�nite-dimensional) simplicial complex, P

d

(�), which

admits a discrete cocompact action of �. If � is hyperbolic, and d is large enough (in

relation to the hyperbolicity constant), then P

d

(�) is contractable. Moreover, it satis�es a

inear isometric inequality in each dimension. This construction has many corollaries, for

example: Corollary:

If � is a torsion-free hyperbolic group, then � has a �nite K(�; 1). In particular, � has

�nite cohomological dimension.

Lecture 7. A. Zuk.

Boundaries.

(a) De�nition of the boundary, @X, of a proper hyperbolic space, X (for example,

as parallel classes of (quasi)geodesic rays). The topology of @X ; @X is compact. The

connected components of @X are the topological ends of X.

(b) Invariance of @X by quasiisometry. De�nition of the boundary, @�, of a hyperbolic

group, �. If � is not virtually cyclic, then @� is perfect (no isolated points).

(c) By Stallings's theorem, @� is connected if and only if � does not split over any �nite

subgroup.

(d) Kaimanovich has shown that @� is the same as the Poisson boundary.

Lecture 8. Udo Baumgartner.

Convergence groups.

(a) Let M be a perfect compact metrisable space, and suppose that � acts by homeo-

morphism on M . De�nition: � is a (uniform) convergence group if the induced action on

the space of distinct triples of M is properly discontinuous (and cocompact). (b) The def-
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inition of convergence group is equivalent to the original de�nition of Gehring and Martin

in terms of convergent subsequences. (c) Classi�cation of elements of a convergence group

(elliptic, parabolic, loxodromic). (d) If � acts properly discontinuously (cocompactly) on

a proper hyperbolic space, X, then it acts as a (uniform) convergence group on @X. (e)

Thus, a hyperbolic group � acts as a uniform convergence group on @�. Remark: There

is a converse due to Bowditch.

Lecture 9. S. Rogmann.

Classi�cation of isometries and elementary subgroups.

(a) Let X be any hyperbolic geodesic space. Any non-identity isometry of X is one of

three types, elliptic, parabolic or loxodromic (or hyperbolic). If X is proper, and � acts

properly discontinuously on X, then this agrees with the classifaction of elements of � as

a convergence group acting on @�. (b) If � acts cocompactly on X, then � cannot contain

any parabolic element. Put another way, every in�nite order element of a hyperbolic group

is loxodromic.

(c) De�nition of the translation length of an element of a hyperbolic group, �. Given

�, there is some natural number, L, such that the translation length of each element of �

lies in

1

L

N.

Lecture 10. G. Arjantseva.

Free and quasiconvex subgroups of hyperbolic groups.

(a) The Tits alternative for a hyperbolic space: Suppose that � is neither �nite nor

two-ended, then it contains a nonabelian free subgroup. (b) If g is a loxodromic isometry

of X, and h doesn't �x either of the �xed points of g, then there is some natural number,

n, such that g

n

and hg

n

h

�1

generate a free subgroup. If X happens to be Cayley graph

of a hyperbolic group, �, then n can be chosen to be independent of g. (c) De�nition of

a quasiconvex subgroup. Any quasiconvex subgroup of a hyperbolic group is hyperbolic.

(d) Generics subgroups of generic groups are free quasi-convex.

Lecture 11. M. Puschnigg.

The theorem of Bestvina and Mess I.

Let � be a hyperbolic group, and let P be a (�nite-dimensional) contractable simplicial

complex on which � acts

properly discontinuously and cocompactly (for example, the Rips complex, P

d

(�) for

su�ciently large d). Thus, P [ @� has a natural topology as a compact metrisable space.
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The main result of Bestvina and Mess states that this is, in fact, a Z-set compacti�cation

(in the sense of shape theory). In particular, it follows that P [ @� is contractible. It

has a number of important corollaries. For example, for all n � 1, we have H

n

(�;Z�)

�

=

�

H

n�1

(@�), where

�

H denotes the

�

Cech cohomology.

Lecture 12. T. Kuessner.

The theorem of Bestvina and Mess II.

(a) Let M be a closed irreducible 3-manifold such that � = �

1

(M) is hyperbolic. Then

the universal cover

~

M is homeomorphic to R

3

, and

~

M [ @� is a closed 3-ball.

Remark: This potentially represents a major step towards Thurston's Hyperbolisation

conjecture. (b) If � is a hyperbolic group such that @� is connected and has no (global)

cut point, then @� is locally connected.

Lecture 13. G. Kleineidam.

The Besvina-Paulin theorem; �rst applications.

(a) Equivariant Gromov-Hausdor� convergence for metric spaces. (b) Theorem: Let �

be a given �nitely generated group with a preferred system of generators fg

i

j 1 � i � ng,

and let (X

n

; �

n

) be a sequence of ��hyperbolic metric spaces each with an action of a

�. Suppose that �

n

= min

x2X

n

max

1�i�n

�

i

(g

i

x; x) is a not bounded. Then the family of

spaces

1

�

n

X

n

converges in the Gromov-Haudor� equivariant topology to an R-tree without

any global �xed point. This fact has many corollaries. For example: (b) We say that a

group is \rigid" if it does not admit a non-trivial action on an R-tree. (An action of an

R-tree is, rather confusingly, termed \trivial" if it has a global �xed point.)

Lecture 14. Volker Braungardt.

Bass-Serre theory, and the Rips machinery I.

(a) Serre's theorem: The following are equivalent for a group, �:

(1) � is isomorphic to an amalgam �

�

=

A �

C

B (respectively an HNN extension �

�

=

A�

C

), and (2) � acts on a simplicial tree, T , with just one edge orbit, and no edge inversions,

such that for some edge e = [a; b] we have �

a

= A, �

b

= B and �

e

= C, and with a and

b in di�erent (respectively the same) �-orbit. (Here �

x

denotes the stabiliser of x.) (b)

Bass-Serre theory is a generalisation of Serre's theorem to the case where T=� might be

any connected graph.

(c) The \Rips machinery" can be viewed as a generalisation of Bass-Serre theory to group

actions on R-trees. This is indeed more general. In particular, surface groups can act
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freely on R-trees. Some discussion of actions of surface groups, for example, via singular

measured foliations on surfaces.

Lecture 15. Stefan Kuehnlein.

Bass-Serre theory and the Rips machinery II.

(a) Theorem (Rips). Any �nitely generated group acing freely isometrically on an R-

tree can be expressed as a free product of surface groups and free abelian groups. (Note

that any �nitely generated free abelian group acts freely on the real line.) (b) De�nition of

a stable action of a group on an R-tree. Statement of the theorem of Bestvina and Feighn

concerning splittings of �nitely presented groups acting stably on R-trees. (c) Foliated

2-complexes. The resolution of a �nitely presented group acting on an R-tree. A sketch of

the some of the ideas involved in the proof of (a) in the case of �nitely presented groups.

Lecture 16. U. Hamenstaedt.

The topological characterisation of fuchsian groups.

The celebrated theorem of Tukia, Gabai and Casson and Jungreis states that if a group,

�, acts as a convergence group on the circle, then it also admits a properly discontinuous

action on the hyperbolic plane (such that the induced action on the circle at in�nity is

topologically conjugate to the original). The converse is an immediate consequence of

Lecture 7.

Remark: The detailed analysis of Tukia left open the case of (putative)

virtual semitriangle groups, and this case was resolved independently by Gabai and by

Casson and Jungreis.

Lecture 17. G. Levitt.

The JSJ splitting.

The JSJ splitting of a one-ended hyperbolic group is a canonical representation of � as

(the fundamental group of) a �nite graph of groups with two-ended edge groups, such that

every splitting of � over a two-ended subgroup can be read o� from this picture. It was �rst

described by Sela (for splitting over cyclic groups) who made use of the Rips machinery.

It was inspired by the analogous characteristic submanifold construction for irreducible

3-manifolds due to Waldhausen, Johannson, Jaco and Shalen. A topological construction

of the JSJ splitting of an hyperbolic group has been given by Bowditch, using the local

topological properties of the boundary of the group.

Lecture 18. D. Gaboriau.
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Cut points an local connectivity.

The cut point theorem (Bowditch) states that if � is a one-ended hyperbolic group,

then @� has no global cut point. It follows from Bestvina-Mess (Lecture 12) that @� is

locally connected. The proof is by contradiction. Suppose that @� has a global cut point.

The steps are as follows:

(a) Use the separation properties of the set of cut points to construct n R-tree on which

� acts by homeomorphism. (b) Use this to construct another R-tree on which � acts by

isometry. (c) Use the Rips machinery to derive a contradiction.
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