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The conference was organized by Michael R�ockner (Bielefeld) and Stephan Stolz (Notre Dame)

and was attended by 23 participants. The goal of the conference was to bring topologists and

stochastic analysts closer together in order to investigate the geometry of the loop space of a

closed Riemmannian manifold. The participating topologists have become interested in stochastic

analysis since it conjecturally will lead to an analytically rigorous de�nition of the so-called Dirac

operator on loop space. The latter is frequently used in mathematical physics, and it led Witten

to de�ne a genus, which should be thought of as the S

1

-equivariant index of the Dirac operator

on loop space. A mathematically rigorous de�nition of the Dirac operator is expected to give new

relations between Witten's genus and the di�erential geometry of the underlying manifold. The

stochastic analysts on the other hand appreciated that their research might eventually lead to nice

applications outside their �eld.

The conference started out with some introductory lectures on di�erential geometry, Dirac bundles,

characteristic classes and elliptic cohomology, as well as lectures on Wiener measure, stochastic

integration by parts and stochastic exterior forms on Hilbert space bundles. After this various

people gave talks on related research projects. During the whole conference there was a good

atmoshpere dominated by the spirit of learning from each other.
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Wolfgang L

�

uck

The Laplace-Beltrami operator and Bochner's formula

We introduce basic notions like deRham complex, deRham cohomology and Laplace operator and

explain the Hodge-deRham theorem, which identi�es the singular cohomology of a closed Rie-

mannian manifold with the space of harmonic forms. Then we introduce the curvature tensor

and explain how it yields the Ricci tensor and the scalar curvature by contractions. We explain

that the curvature tensor carries the same information as the sectional curvature and how one

can interprete Ricci curvature as a function on the sphere tangent bundle. We state how one gets

Ricci curvature from sectional curvature and scalar curvature by integration. We give geometric

interpretations of all these notions, for instance we explain how scalar curvature and Ricci curva-

ture is linked to the in�nitesimal growth of volumes of balls and sectors respectively. Finally we

state the Bochner-Lichnerowicz formula and present the consequence that positive Ricci curvature

implies the vanishing of the �rst Betti number. We give a list of known topological obstruction

for a closed smooth manifold to carry a Riemannian metric with certain sign-conditions on one of

the curvature notions.

Michael Joachim

The Atiyah-Singer operator and Lichnerowicz's formula

We started o� with the de�nition of Cli�ord algebras, Cli�ord algebra bundles and modules over

those. We introduced the notion of a Dirac bundle over a Riemannian manifold and de�ned its

associated Dirac operator. We then presented the theorem, that the Dirac operator associated to

the Dirac bundle Cl(M) of a given Riemannian manifold M agrees with the Hodge Laplacian.

Next we discussed spin structures on manifolds, the notion of a spinor bundle and investigated

the natural Dirac bundle structures on spinor bundles. Finally we presented the general Bochner

formula for Dirac bundles and the Lichnerowicz formula which is a special case.

Andreas Eberle

Wiener measures on path and loop spaces

In this introductory talk, Wiener measure on the space of continuous loops over a Riemannian

manifold M is de�ned in terms of its marginals. These are absolutely continous w.r.t. the volume

element on M

N

, and the density is a product of heat kernels. The de�nition is motivated by

showing that one is led more or less directly to a measure closely related to Wiener measure, if

one tries to �nd a measure on the loop space that satis�es certain basic assumptions.

Brownian motion and Brownian bridges on manifolds are de�ned as stochastic processes hav-

ing Wiener measure on path or loop space respectively as their sample path distribution. After

reviewing standard results on regularity of Brownian paths, the \rolling without slipping" con-

struction of Brownian motion on a manifold from Brownian motion on R

n

is discussed brie
y.

For this purpose, a very short introduction to Ito and Stratonovich integrals is given.

Finally, a simple approximation scheme for Wiener measures over manifolds is described on a

heuristic level.

David Elworthy

Introduction to integration by parts on path spaces

This expository talk described some of the problems and successes in obtaining integration by

parts formulae for measures on in�nite dimensional spaces such as loop spaces of Riemannian
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manifolds.The starting point was the fact that on an in�nite dimensional Banach space there is no

non-trivial Radon measure which is quasi-invariant ,let alone invariant,by all translations.Gaussian

measures were described:for them there is a Hilbert space of directions for which quasi-invariance

holds with a consequent restricted class of vector �elds for which there is an integration by parts

formula,with the Ito integral coming in as a divergence operator in the case of classical Wiener

space. The extensions of this to spaces of paths and loops on manifolds ,with measures derived

from Brownian motion or other di�usions by Driver and others were then rather brie
y indicated.

Xue-Mei Li

Integration by parts formulae for di�erential forms

Let C

x

0

M be the space of continuous paths on a Riemannian manifold. I described the approach

to integration by parts formulae for functions, using stochastic di�erential equations instead of

using the development map. This method extends for forms to give integration by parts formula

of the following type:
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Remi Leandre

Stochastic cohomology of Chen-Souriau

We de�ne a di�eological structure in the Holderian loop space by using a system of stochastic

plots. This allows to de�ne stochastic cohomology groups of the Holderian loop space. They are

equal to the deterministic cohomology groups of the Holderian loop space: it can be shown by

using the Weil proof from the fact that the Cech cohomology is equal to the de Rham cohomology,

because there are partitions of unity associated to a certain cover of the Holderian loop space. It

can be shown too by using the general theory of cohomology of sheaves.

Anand Dessai

The Atiyah-Singer Index Theorem

Given an elliptic di�erential operator on a closed manifold its index may be computed from

topological data involving the symbol of the operator and the characteristic classes of the manifold.

This is the content of the Atiyah-Singer index theorem. For the Dirac operator D

+

on a Spin-

manifold M the index theorem gives

ind(D

+

) =

^

A(M) =

Z

M

^

A(p

1

(M); p

2

(M); : : : );
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where

^

A is the genus and

^

A is the multiplicative sequence associated to the characteristic power

series

x=2

sinhx=2

. More generally, if E is a complex vector bundle over M then the index of the

twisted Dirac operator D

+

E

is given by

ind(D

+

E

) =

Z

M

^

A(p

1

(M); p

2

(M); : : : ) � ch(E):

In this talk, being part of a series of introductory lectures, we recall the Chern-Weil de�nition of

characteristic classes and sketch the heat kernel proof of the index theorem for the Dirac operator.

John Jones

The Witten genus and loop spaces

A genus is a cobordsim invariant of closed manifolds. Genera are studies via certain generating

functions. A genus is elliptic if its generating series is the power series expansion of an elliptic

function with a simple pole at the origin. The �rst part of the talk was an outline of the general

theory of elliptic genera.

The Witten genus is a particular example of an elliptic genus. The second part of the talk was

an account of the formal calculation relating the Witten genus to free loop space - essentially the

Witten genus is the character valued index of an S

1

-equivariant Dirac operator on the free loop

space. Unfortunately it has not been shown rigorously that this Dirac operator exists so at this

time, this is nothing more than a formal, but very suggestive calculation.

In the third part of the talk I gave an account of two calculations of my student Andrew Stally.

Both calculations are along the following lines: to what extend can you calculate the Witten genus

by taking �nite dimensional approximations to the loop space and then take a limit.

Tilmann Wurzbacher

Some remarks on loop space geometry

Given a �nite dimensional smooth riemannian manifold (M; g) the geometry on the loop space

LM = C

1

(S

1

;M) hinted at by \quantum mechanics of strings" appears to have several surprising

features. Notably, the natural metric on LM seems to be rather the so-called H

1

2

;2

-metric than

the energy metric H

1;2

, leading to a di�erent stochastic set-up than the more traditional couple

Wiener measure plus Brownian motion arising from the �rst quantisation of point mechanics, and

the rotation-invariance shows up not only as a remainder of the larger invariance under the group

of all di�eomorphism of the circle but as a salient ingredient of the geometry and the analysis on

free loop spaces. After recalling brie
y the fact that the H

1

2

;2

-metric is induced on loop groups by

their natural embeddings in the restricted Grassmannian, the talk concentrated on three { partly

conjectural { topics in the geometry of loop spaces of general riemannian manifolds:

* the classical symplectic geometry and geometric quantisation of loop spaces

with special emphasis on di�eomorphism invariance,

* the hamiltonian description and quantisation of non-linear sigma-models

(i.e. harmonic maps) on cylinders with values in M ,

* the hypothetical rotation-equivariant Dirac-Ramond operator on a loop

space and its S

1

-space equivariant index.
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Michael R

�

ockner

Dirichlet operators on loop spaces

In part one of the talk we review the construction of Laplace{type operators �

�

(a particular class

of Dirichlet operators) on a Riemannian manifold M , but with the rôle of the volume measure

replaced by an arbitrary nonnegative Radon measure on M (positively charging every non{empty

open set). The crucial assumption made on � is that it satis�es an integration by parts formula,

i.e., has a logarithmic derivative. Then it is proved that the gradient operator is closable on

L

2

(M ;�), so a corresponding Sobolev space H

1;2

0

(M ;�) is de�ned. Hence �

�

can be de�ned di-

rectly as a self{adjoint (not only symmetric) operator on L

2

(M ;�). In part two of the talk the rôle

of M is replaced by the pinned loop space L

x

0

(M) over M (where x

0

2M is the base point) and

� by the pinned Wiener measure �

x

0

. After reviewing the basic de�nitions of the tangent space

(\Bismut tangent space") and the gradient on L

x

0

(M), it is shown that a completely analogous

construction as for �nite dimensional manifolds gives rise to a Sobolev space H

1;2

0

(L

x

0

(M);�

x

0

)

and a �

x

0

{Laplacian �

�

x

0

on L

x

0

(M) which is self{adjoint on L

2

(L

x

0

(M);�

x

0

). The same con-

struction apart from some technical complications works for the free loop space L(M) with �

x

0

replaced by the Bismut{H�egh Krohn measure.

Igor Kriz

Elliptic cohomology

I explained the de�nition of complex-oriented elliptic cohomology using the formal group law and

universal elliptic genus. I discussed Ando's interpretation of the Kac character formula which

identi�es projective representations of LS

1

with sections of line bundles over the Tate curve, and

related attempts to de�ne elliptic cohomology of X by means of bundles on the free loop space

LX . I explained the 
aw of these attempts related both to representability issues, and also the

fact that the formal group law of the Tate curve is multiplicative. I proposed an approach to this

problem by means of conformal �eld theories: Let �(X) be the space of all maps (e; @e)! (X; �)

for a conformal subsurface of C . Then �(X) has the structure of an operad over and under �(�).

Such operads I call string semigroups. Following the path-integral approach to bundles, I de�ned

a String bundle with structure string semigroup G as the set of all maps �(X)! G in the derived

category of string semigroups. This is a representable functor in the category of simply connected

spaces. I also proposed a possible choice of G as a certain space of \invertible" elements (in a

certain special sense) in the space of Hilbert-Schmidt operators H


n

! H.

Karl-Theodor Sturm

Nonlinear Markov Operators and Harmonic Maps with Values in Metric Spaces of

Nonpositive Curvature

We present a new, elementary theory of harmonic maps f : M ! N between singular spaces

M and N . The target will be a complete geodesic space (N; d) of nonpositive curvature in the

sense of A. D. Alexandrov. The domain will be a measurable space (M;M) with a given Markov

chain (X

n

; IP

x

) on it. Our theory is a nonlinear generalization of the theory of Markov kernels

and Markov chains on M . It allows to construct harmonic maps by an explicit nonlinear Markov

chain Monte Carlo algorithm.

Every Markov chain (X

n

; IP

x

) on M de�nes in a canonical way a nonlinear Markov operator

P acting on the set of measurable maps f :M ! N . The map Pf :M ! N is de�ned pointwise:

For each x 2 M the point Pf(x) 2 N is the unique minimizer of the strictly convex, continuous

function

z 7! IE

x

d

2

(z; f(X

1

)) <1
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on N , i.e. Pf(x) is the barycenter of the distribution of the random variable f(X

1

) on N . In the

linear case N = IR, the operator P coincides with the usual linear Markov operator de�ned by

Pf(x) = IE

x

f(X

1

) =

R

f(X

1

)dIP

x

. We say that a map f : M ! N is harmonic on M

0

� M i�

Pf = f on M

0

.

In the same spirit as above (in the de�nition of expectations as barycenters) one can de�ne

conditional expectations for N -valued random variables. This allows to develop a rich nonlin-

ear martingale theory for (time discrete) processes with values in N . It turns out that a map

f : M ! N is harmonic if and only if the process (f(X

n

))

n

is a N -valued martingale under IP

x

for each x 2M , i.e. i� IE

x

[f(X

n+1

)jF

n

] = f(X

n

) a.s. for all n � 0.

Stephan Stolz

A conjecture concerning positive Ricci curvature and the Witten genus

We give evidence for the following

Conjecture Let M be a closed spin manifold with

1

2

p

1

(M) = 0. If M admits a metric of positive

Ricci curvature, then the Witten genus of M vanishes.

We recall that for spin manifolds the �rst Pontrjagin class p

1

(M) is divisible by 2. The Witten

genus is a formal powerseries, whose coe�cients are characteristic numbers of M . Following Wit-

ten, this genus should be thought of as the S

1

-equivariant index of a hypothetical `Dirac operator'

on the free loop space of M .

Sylvie Paycha

A Bochner-Weitzenb�ock formula on loop groups

On a Riemannian manifold, the Laplacian does not in general commute with the Levi-Civita con-

nection and the obstruction can be expressed in terms of the Ricci curvature of the manifold.

When trying to make sense of a similar statement in in�nite dimensions, one �rst has to make

sense of the notion of Laplacian and the notion of Ricci curvature in in�nite dimensions. There

are many ways to do so and we suggest here to use zeta type renormalized traces in order to de�ne

a Laplacian on functions as a renormalized trace of the Hessian (and similarly for tensors) and the

Ricci curvature as a renormalized trace of the Ricci tensor. This makes sense on a class of in�nite

dimensional Hilbert manifolds including current (and hence loop groups) investigated by Freed

and we can derive a Bochner-Weitzenb�ock type formula which involves an extra term expressed in

terms of a Wodzicki residue. This purely in�nite dimensional term vanishes on loop groups and

we recover an ordinray Bochner-Weitzenb�ock formula (which coincides on cylinder set functions

with a formula derived by Driver and Lhorenz).

Steven Rosenberg

Ricci and Scalar Curvature on Loop Spaces

The in�nite dimensional manifold LM of smooth loops on a closed Riemannian manifold has a

natural L

2

metric and Levi-Civita connection. The sectional curvature for this metric is well-

de�ned, but the classical de�nitions of Ricci curvature Ric and scalar curvature s involve traces

which produce divergent in�nite series on LM: In this talk we use zeta function regularization to

de�ne the Ricci and scalar curvature on LM: We produce a regularization scheme which satis�es

Ric

M

� 0) s

LM

� 0; which is a part of Stolz's \wish list" for the vanishing of the Witten genus.
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Recalling the Lichnerowicz formula in �nite dimensions, this suggests de�ning the Dirac operator

and its square on LM by a similar regularization scheme D � Tr

reg

(e 7! e � r ), e 2 T

�

LM ,

which generalizes the Dirac operator on a �nite dimensional manifold. It is unknown at present if

this regularized operator has a Lichnerowicz formula

Gerard Miosolek

Fredholmness of the exponential map on the free loop space

As a �rst step toward a better understanding of global geometry of Hilbert Riemannian manifolds

one studies singularities of its exponential map. Singular values of exp are the conjugate points.

In contrast with �nite dimensions two types of conjugate points can occur on a Hilbert manifold

depending on whether dexp fails to be 1-1 or onto. Further, there exist complete Hilbert Rie-

mannian manifolds with �nite geodesic segments containing in�nitely many conjugate points of

either type and of possibly in�nite multiplicity. In the talk I described a result stating that the

exponential map on the free loop space L(M) of a compact oriented Riemannian manifold M and

equipped with its natural Sobolev H

1

metric is a nonlinear Fredholm map of index zero. From

this result it follows that none of the situations described above occur on the free loop space. In

particular, there can be only one type of conjugate points on L(M), which answers a question of

W. Klingenberg.

Berichterstatter: Michael Joachim
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