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This meeting was organized by L. C. Evans (Berkeley), S. M�uller (MPI Leipzig) and E.

Kuwert (Freiburg). The 22 delivered talks addressed a broad spectrum of questions for

nonlinear partial di�erential equations. Most of the considered problems arise in geometry

or in physics, as for example submanifolds with prescribed curvature relations, harmonic

maps, crystal shapes, phase boundaries, Hamilton-Jacobi equations or quantum particles.

The used methods, which are more universal than the problems and can be useful even for

di�erent types of equations, include variational techniques, estimates for fully nonlinear

equations, viscosity solutions, measure-theoretic tools, Strichartz estimates and others.

For the success of the conference, which had 40 participants from about ten di�erent

countries, it was important that the program allowed su�cient time for informal talks and

discussions.

Ernst Kuwert

The following abstracts are in chronological order.
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Regularity for parabolic equations in two space variables

(Ben Andrews)

It has been known for a long time that the regularity theory for elliptic equations in two

space variables is somewhat special: Morrey and Nirenberg provided C

1;�

estimates for

solutions of such equations, depending only on the ellipticity constants and L

1

bounds

for coe�cients. This also leads to a C

2;�

estimate for solutions of fully nonlinear elliptic

equations in two variables of the form

F (D

2

u;Du; u; x) = 0;

depending only on ellipticity and bounds on the �rst derivatives of F . In contrast, in

dimensions three and higher, the known C

2;�

estimates for fully nonlinear equations (due

to Evans and Krylov) require that F be concave (or convex) in the �rst argument, and the

estimates depend on second derivatives of F in the other arguments.

In the parabolic case, a correspondingly simple result is known for the case of one space

variable (due to Kruzhkov), but there has not been any analogous result for the case of

two space variables. I �ll this gap by proving C

2;�

estimates for solutions of fully nonlinear

uniformly parabolic equations in two space variables,

du=dt = F (D

2

u;Du; u; x; t)

with estimates depending only on the ellipticity constants and �rst derivatives of F .

Repulsion between holomorphic and antiholomorphic bubbles in

almost-harmonic maps, and asymptotics of the harmonic map 
ow

(Peter Topping)

We present an analysis of bounded-energy low-tension maps between 2-spheres. By deriving

sharp estimates for the ratio of length scales on which bubbles of opposite orientation

develop, we show that we can establish a `quantization estimate' which constrains the

energy of the map to lie near to a discrete energy spectrum. One application is to the

asymptotics of the harmonic map 
ow; we �nd uniform exponential convergence in time,

in the case under consideration.

Crystals in a Cone: Equilibrium Shapes in the Plane

(Robert McCann)

A crystal in equilibrium with its melt will have minimum free energy among all shapes of its

size. In our case, this energy consists of a surface term measuring the crystal-
uid interface

along each direction, plus a potential energy re
ecting the e�ect of a background �eld

such as gravity (or hysteresis in some dynamical growth models). When the gravitational

potential is convex, as for crystals on a table or in a cone, these energies are minimized

separately by convex sets (given by Wul�'s construction in the case of surface energy).

However, the total energy may not be. In this talk we discuss recent work with Felix Otto

showing why equilibrium shapes in the plane consist of disjoint unions of at most two
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convex components. The possibility of disconnected equilibria in the physically relevant

case of three-dimensions remains an open question...

Regularity of Lipschitz free boundaries for two-phase

problems for fully nonlinear elliptic equations

(Mikhail Feldman)

We consider a 2-phase free boundary problem, in which the positive and negative parts

of a solution satisfy elliptic equations, and a condition, involving normal derivatives from

positive and negative sides holds on the free boundary in a weak sense. The equations are

assumed to be fully nonlinear, uniformly elliptic, not necessarily convex. We prove that

if the free boundary is locally a graph of Lipschitz function, then it is C

1

�

smooth. This

is an extension of a part of the regularity theory developed by L. Ca�arelli for two-phase

problems for the Laplacian equation, and of the result by P. Wang for fully nonlinear

convex equations.

On the Discontinuity Set of Minimizers of

Mumford{Shah Functional

(Nicola Fusco)

Let us consider the following functional

G(K; u) =

Z


nK

�

jruj

2

+ �(u� g)

2

�

dx+ �H

N�1

(
 \K)

where �; � > 0, 
 is a bounded open set in R

N

, K is a closed set, g 2 L

1

(
), u 2 C

1

(
nK)

and H

N�1

denotes the (N � 1)-dimensional Hausdor� measure.

The existence of minimizers for this functional is now well understood, but there are still

open problems concerning the regularity of the discontinuity set.

Recently Ambrosio, Fusco and Pallara proved that if (K; u) is a minimizing pair, then there

exists a closed set � � K such that H

N�1

(�) = 0 and K n� is locally a C

1;�

hypersurface

for some � > 0. Other regularity results have been obtained in two dimensions by Bonnet,

David and Semmes. However, more precise conjectures have been made by Mumford and

Shah and by De Giorgi concerning the dimension of the singular set �.

In the talk we have presented a result by Ambrosio, Fusco and Hutchinson concerning

the reduction of the dimension of the set �. More precisely we prove that if (K; u) is a

minimizing pair and jruj 2 L

p

loc

(
), then the Hausdor� dimension of � is less than or equal

to maxfN � p=2; N � 2g. In the talk we have discussed in particular the two dimensional

case, where this result is related to a well known conjecture on the summability of the

gradient of conformal maps.

Uniqueness of Equilibrium Con�gurations in Solid Crystals
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(Wilfrid Gangbo)

Despite thatM ! h(detM) is not coercive, we prove that the functionalE[u] :=

R




(detDu)�

F � u) dx admits a unique minimizer over the set U

�

of all orientation-preserving defor-

mations u 2 C

1

(
)

d

that are homeomorphisms from 
 onto � provided that detDF is

positive, h is strictly convex, smooth and satis�es suitable growth conditions at 0

+

and

+1 and F (
), � are convex. This is done by introducing a relaxation of inf

U

�

E and

identifying a problem dual to the relaxed problem. Next, given u

0

2 U

�

we study the

pure displacement boundary value problem that consists of minimizing E over U

0

the set

of maps u 2 U

�

with prescribed boundary values u

0

. We show that the in�mum of E over

U

�

and U

0

coincide and conclude that in general the pure displacement boundary value

problem does not admit a minimizer.

Semilinear wave equations with critical data

(Patrick G�erard)

The purpose of this talk is the qualitative study of solutions to critical semilinear equa-

tions of the type �u + juj

m�1

u = 0, (u; u

t

)j

t=0

2

_

H

s

�

_

H

s�1

, assuming global existence

for the Cauchy problem. We use a special decomposition of waves describing defects of

compactness for Strichartz inequalities. In a �rst part, some emphasis is made on the

applications of this decomposition to the 3D quintic wave equation

�

. Then we sketch

more recent generalizations: equations outside a convex obstacle

�

or with lower regularity

s < 1 { including the critical case s =

1

2

, where new phenomena occur.

On the Bernstein Problem for maximal a�ne Hypersurfaces

(Neil Trudinger)

The Bernstein problem for maximal a�ne hypersurfaces, as posed by Chern and Calabi,

asks whether a locally uniformly convex function in Euclidean n-space, whose graph locally

maximizes a�ne area in (n+1)-space, must be a quadratic polynomial. The Euler equation

is a nonlinear elliptic equation of fourth order. In this talk, I report on research with

X. J.Wang,which provides the a�rmative answer in the case of two dimensions, thereby

con�rming the original conjecture of Chern. For higher dimensions, the result is established

under a \uniform strict convexity" condition.

On the p-Poisson Equation and an Unconventional Moving Boundary

Problem

(Gunnar Aronsson)

Flows of non-newtonian 
uids give rise to a variety of interesting mathematical problems.

The talk will focus on so-called Hele-Shaw 
ows of power-law 
uids. This roughly means a

�

jw. w/ H. Bahouri

�

jw. w/ I-Gallagher
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laminar 
ow in a narrow gap between parallel plates, and the 
uid without any elasticity,

but having variable viscosity. The 
uid is here supposed to be strongly shear-thinning.It

then makes sense to consider a limit case, where the mathematical description turns out

to have interesting properties. The speaker will brea
y describe two cases:

1. An injection problem, where a formal solution can be given to the corresponding

moving boundary problem. This, in turn leads to geometric considerations. A nice

application exists: injection molding of plastic objects.

2. A compression problem. Here, the 
uid is contained between two plates, slowly

approaching each other. Strictly speaking, this 
ow is called a generalized Hele-Shaw


ow. Before passing to the limit, the 
ow is supposed to be governed by the p-

Poisson equation. This is the problem referred to in the title. After passage to the

limit, one �nds a moving boundary problem in two dimensions, where the expansion

of the crucial domain is governed by the curvature of the boundary, combined with

a certain global variable. The ridge (skeleton) of the domain turns out to be an

important concept here.

A common feature for the two problems is that by passing to the limit in a nonlinear PDE

problem, one arrives at a purely geometric evolution problem. Thus, by sacri�cing some

accuracy in passing to the limit, one avoids solving any �eld equations. This leads to an

enormous simpli�cation of computations, at least in the �rst problems.

Singular integrals and the porous medium equation

(Herbert Koch)

The theory of singular integrals, which was developed by Calder�on and Zygmund around

1950 in R

n

, had a profound impact on various areas of analysis. That theory relies on few

properties of the Euclidean geometry and can be adapted to di�erent geometric structures.

Examples are the Kolmogorov equation of a particle in a random �eld, subelliptic operators

on the boundary of strongly pseudo-convex domains in C

n

and left invariant subelliptic

operators on nilpotent Lie groups.

Other examples are operators which occur in homogenization, in the study of elliptic

equations with strong drift, as well as those which come from linearizing the porous medium

equation

�

t

���

m

= 0 in U � R

n

� R; m > 1:

The main result, analyticity of the free boundary for large times under weak assumptions

on initial data, follows from modi�ed Gaussian estimates of the fundamental solution of

degenerate parabolic equations, which imply Harnack inequalities and �t into the theory

of singular integrals.

Line energies for gradient vector �elds in the plane

(Luigi Ambrosio)

5



We study the singular perturbation of

R

(1�jruj

2

)

2

by "

2

jr

2

uj

2

. This problem, �rst raised

by Aviles and Giga in connection with the theory of smectic liquid crystals, has received

in the last years considerable attention, due to potential applications to the theory of thin

�lms and micromagnetics. The problem can also be thought as the natural second order

version of the classical singular perturbation of the potential energy

R

(1� u

2

)

2

by "

2

jruj

2

and leads, as in the �rst order case, to energy concentration e�ects on hypersurfaces. In

the two dimensional case we study the natural domain for the limiting energy, showing

that it is strictly larger than the space of BV gradients satisfying the eikonal equation.

Moreover we prove a compactness theorem in the natural domain for the limit energy.

Semilinear elliptic equations with critical exponential growth

(Michael Struwe)

In joint work with Adimurthi we characterize the blow-up pro�le and blow-up energy of

solutions u

k

!

* 0 inH

1

0

(
) of

��u

k

= f

k

(u

k

) in 
; u

k

> 0 in 
; u

k

= 0 on @


for nonlinerities f

k

(s) = s e

'

k

(s)

�! f(s) = s e

'(s)

locally uniformly of critical exponential

growth (e.g. '(s) = 4�s

2

) on a domain 
 �� R

2

.

The behavior of (u

k

) is similar to the behavior of Palais-Smale sequences for critical

equations in dimensions n � 3, like

��u = u

n+2

n�2

in 
; u > 0 in 
; u = 0 on @
:

In contrast to the latter case, however, in n = 2 dimensions the blow-up pro�le emerges

after the nonlinear transformation

u

k

7! �

k

(x) = '

k

(u

k

(x

k

+ r

k

x)) + �

k

and suitable change of scale with r

k

! o; � ! �1.

Hypersurfaces with mean curvature given by a trace

(Reiner Sch�atzle)

We consider smooth, oriented n-hypersurfaces �

j

= @E

j

with interior E

j

whose mean

curvature is given by the trace of a function in the ambient space u

j

2 W

1;p

(R

n+1

)

~

H

�

j

= u

j

�E

j

on �

j

;(1)

where �E

j

denotes the inner normal of �

j

. We investigate (??) when �

j

! � weakly as

varifolds and prove that � is an integral n-varifold with bounded �rst variation which still

satis�es (??) for u

j

! u;E

j

! E. p has to satisfy

p >

1

2

(n + 1)

and p �

4

3

if n = 1. The di�culty is that in the limit several layers can meet at � which

creates cancellations of the mean curvature.
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The geometry of dissipative evolution equations:

the porous medium equation

(Felix Otto)

We show that the porous medium equation

@

t

��4�

m

= 0 in (0;1)� R

N

;

which describes the 
ow of a gas of variable density �(t; x) � 0 through a porous medium,

is a gradient 
ow of

E(�) =

�

R

1

m�1

�

m

for m 6= 1

R

� log � for m = 1

�

on the manifold M of density functions of given mass, endowed with a speci�c metric

tensor g, making (M; g) a Riemannian manifold (actually non{
at for N > 1).

We argue that this gradient 
ow interpretation (there are others) is both physically and

mathematically natural. It is physically natural: The functional E has the meaning of the

free energy and the metric tensor g encodes the dissipation mechanism. It is mathematically

natural: The time asymptotics, that is, the convergence of a rescaled solution �̂ to the

Barenblatt pro�le �̂

�

, can be easily understood and quanti�ed in this framework:

� �̂ evolves according to the gradient 
ow of F = E + �M , where

M(�) =

Z

R

N

1

2

jyj

2

�(y) dy and � =

1

(m� 1)N + 2

:

� �̂

�

is the unique minimizer of F on M.

� F is strictly convex with respect to the geometry of (M; g) in the sense of

HessF

j

� � � id for all � 2 M:

These three observations imply by basic Riemannian calculus that �̂ converges to �̂

�

with

rate �, for instance in the induced metric of (M; g), which we indentify with the Wasserstein

metric. Please consult http://www.math. ucsb.edu / otto/publications.html for details.
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Aubry-Mather Theory and Periodic Solutions

of the Forced Burgers Equation

(Weinan E)

Consider a Hamiltonian system with Hamiltonian of the form H(x; t; p) where H is convex

in p, and periodic in x and t; x 2 R

1

. It is well-known that its smooth invariant curves

correspond to smooth Z

2

-periodic solutions of the PDE

u

t

+H(x; t; u)

x

= 0:

In this paper, we establish a connection between the Aubry-Mather theory of invariant

sets of the Hamiltonain system and Z

2

-periodic weak solutions of this PDE by realizing

the Aubry-Mather sets as closed subsets of the graphs of these weak solutions. We show

that the complement of the Aubry-Mather set on the graph can be viewed as a subset of

the generalized unstable manifold of the Aubry-Mather set. The graph itself is a backward

invariant set of the Hamiltonian system.

The basic idea is to embed the globally minimizing orbits used in the Aubry-Mather

theory into the characteristic �elds of the above PDE. This is done by making use of

one and two-sides minimizers, a notion introduced in [?] inspired by the work of Morse

on geodesics of type A [?]. The asymptotic slope of the minimizers, also known as the

rotation number, is given by the derivative of the homogenizes Hamiltonian, de�ned in [?].

As an application, we prove that Z

2

-periodic weak solution of the above PDE with given

irrational asymptotic slope is unique. A similar connection also exists in multi-dimensional

problems with convex Hamiltonian, except that in higher dimensions, two-sided minimizers

with speci�ed asymptotic slope may not exist.

References

[1] E, W., Khanin, K., Mazel, A., Sinai, Ya,Invariant measures for the random forced Burgers equation,

preprint, 1997.
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Closed hypersurfaces of prescribed Gaussian curvature

in Lorentzian manifolds

(Claus Gerhardt)

Let N be a globally hyperbolic Lorentzian manifold with compact Cauchy hypersurface,


 � N open and 0 < f 2 C

l;�

(
). Then, we prove the existence of a closed, space-like

hypersurface M � 
 whose Gaussian curvature equals f , provided @
 consists of two

advanced hypersurfaces acting as barriers and provided these is a strictly convex function

in 
.
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Dynamics of a quantum particle in a potential

(Robert L. Jerrard)

We consider solutions of the equation

i u

2

t

+

"

2

�u

2

+

1

"

(ju

"

j

p�1

u

"

� V (x) u

"

) = 0; x 2 R

n

; t > 0

u

"

(x; 0) = �

"

(x) �

�

x� x

0

"

�

e

iv

0

�x

"

in the limit " ! 0, where s is a grand state solution of an associated elliptic equation.

The data may be thought of as corresponding to a quantum particle at position x

0

with

velocity v

0

(although this is arguably not completely correct, physically). We show that

at later times there exist y

"

such that

1

"

n

kju

"

( � ; t)j � s

�

� � y

"

(t)

"

�

k

2

L

2

! 0 8t > 0:

and y

"

(t)! x(t), where x solves x

00

= �DV (x), x(0) = x

0

, x

0

(0) = v

0

.
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Moser-Trudinger Inequalities and Liouville Systems

(Guofang Wang)

Let � be a closed surface and A = (a

ij

) an n � n matrix with non-negative entries. We

consider the following system.

��u

i

=M

i

e

�

j

a

ij

u

j

R

e

�

j

a

ij

u

j

for any i 2 I = f1; 2; : : : ; ng:(1)

To �nd solutions of (1), we consider the corresponding variational problem. For simplicity,

we assume that A is positive de�nite. In this case, we consider

F

M

=

1

2

n

X

i=1

Z

a

ij

ru

i

ru

j

�

n

X

i=1

M

i

log

Z




exp(

n

X

i=1

a

ij

u

j

)

for u = (u

i

; u

2

; : : : ; u

n

) with u 2 H

1;2

0

(
) and M = (M

1

;M

2

; : : : ;M

n

) 2 (R

+

)

n

.

For any subset J � I, de�ne

�

J

= 8�

X

j2J

M

j

�

X

i;j2J

a

ij

M

i

M

j

:

Generalizing a result of Chipot, Shafrir and Wolansky, we obtain

Theorem 1. If �

J

(M) > 0 for any subset J � I, then F

M

has a lower bound.

We propose a conjecture.

Conjecture 2. �

M

has a lower bound, if

�

J

� 0 for any J � I:

Theorem 3. Let A be a symmetric nonnegative row-stochastic matrix, i. e.

a

ij

� 0 for all i; j and

X

j2I

a

ij

= 1 for all i 2 I:

Assume, in addition, that A is invertible. Then Conjecture 2 holds.

Lagrangian immersions with prescribed Maslov form

(Knut Smoczyk)

We investigate the following problem: Assume L is an initial Lagrangian immersion with

Maslov form H. Let m be a closed one-form on L representing the same cohomology class

as H. Can one deform L into a new Lagrangian immersion such that the new maslov form

coincides with m?

We use a modi�ed mean curvature 
ow to attack this problem and derive longtime exis-

tence results for Lagrangian graphs over the Cli�ord torus and for Lagrangian immersions

in the cotangent bundle of 
at manifolds. The proof is based on a Harnack principle and

an energy estimate.
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Uniqueness properties for Ginzburg-Landau vortices

(Tristan Rivi�ere)

We are considering the solutions of the complex Ginzburg-Landau Equation

�u+ �u(1� juj

2

) = 0(1)

on a bounded 2-dimensional domain for large coupling constants � (the strongly repul-

sive case) and for a given Dirichlet boundary condition into the circle. In collaboration

with Frank Pacard, we prove that, in the generic case, when the limiting con�guration has

vorticity of order + or - 1 (e.g. [?]), the following property holds: if two solutions are su�-

ciently close to this limit and if they cancel at the same points with the same multiplicities

then the two solutions coincide. By the mean of this property

zero of u = zero of v ) u = v

and a perturbation argument, we describe how to deduce a complete picture of the set of

solutions of (??) in the generic case for limiting vortices of degree �1.

References

[1] F. Bethuel, H. Brezis and F. H�elein "Ginzburg-Landau vortices" Birkha�user 1994.

Minimizing Volume among Lagrangian Cycles

(Jon G. Wolfson)

Let (N;!) be a symplectic 2n-manifold equipped with symplectic form !. Let g be the

metric g(�;�) = !(J�;�), where J is a compatible almost complex structure. De�ne

the Lagrangian homology H

L

n

(N ;Z) to consist of the classes � 2 H

n

(N ;Z) that can be

represented by Lagrangian immersions. We consider the problem of �nding a canonical

representative of � 2 H

L

n

(N ;Z) by minimizing volume (with respect to g) over Lagrangian

cycles representing �. The most geometrically interesting result is obtained when the

metric g is K�ahler-Einstein.

If H denotes the mean curvature vector along an immersed Lagrangian set, then �

H

=

H !.

Theorem 1. Let (N; g; !) be a compact symplectic 4-manifold. Then H

L

n

(N ;Z) is gener-

ated by (branched) Lagrangian immersions � whose mean curvature 1-form �

H

satis�es a

Hodge-type system of the form

d�

H

= Ric

j

�

+ �

j

�

;

��

H

= 0:

where Ric denotes the Ricci curvature and � is a 2-form that vanishes if N is K�ahler.

In the case that (N; g; !) is a compact K�ahler-Einstein surface, H

L

n

(N ;Z) is generated by

(branched) Lagrangian immersions that are classical minimal surfaces.
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This talk reported on joint work with R. Schoen.

A Harnack Inequality for the Inverse Mean Curvature Flow

(Gerhard Huisken)

In this joint work with T. Ilmanen (ETH Z�urich) we study families F : M

n

� [0; T ) !

(N

n+1

; g) of closed embedded hypersurfaces in a Riemannian manifold, which move in

direction of their inverse mean curvature, i. e.

d

dt

F (p; t) =

1

H

�(p; t); p 2M

n

; t 2 [0; T ):

Here H > 0 is the mean curvature and � the exterior unit normal of the evolving surfaces.

In previous work we established the existence of weak solutions M

n

t

= @fx 2 N

n+1

ju(x) <

tg arising as level sets of a scalar function u : N

n+1

�! R satisfying

div

�

Du

jDuj

�

= jDuj

together with a minimization principle, if N

n+1

is asymptotically Euclidean in an appro-

proate sense. The new result provides a lower bound for the mean curvature in the class of

starshaped surfaces, showing that in this case the weak solution coincides with a smooth

classical solution. One particular result is the following:

Theorem 1. If M

n

t

� R

n+1

is a weak solution of mean curvature 
ow such that for some

t

0

> 0 M

n

t

is starshaped, i. e. hF (p; t

0

); �(p; t

0

)i > 0 8p 2 M

n

. Then M

n

t

is smooth for all

t > t

0

and the mean curvature satis�es a lower bound of the form

H(p; t) � c(t� t

0

)

1

2

� exp(�ct):
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