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The meeting was organized by J. Alperin (Chicago), R. Dipper (Stuttgart), B. K�ulshammer (Jena)

and G. Robinson (Birmingham). In nine lectures of 45 minutes each and 30 short contributions of

20 minutes each, the participants reported on recent progress in di�erent parts of the subject and

outlined challenges for the future. This special format was chosen because of the great activity

and connectivity of the various areas in representation theory. It meant that there were many

talks, but the total number of hours of lectures was low, so that there was plenty of free time

left for discussions. It was generally felt that 20 minutes are su�cient to communicate the most

important ideas, and that this special format was adequate for this particular meeting.

One of the highlights of the conference was de�nitely M. Hertweck's talk. He reported on his

construction of a counterexample to the isomorphism problem for integral group rings, a 60 year

old question of G. Higman. The essential result is the existence of two nonisomorphic groups of

order 2

21

� 97

28

with isomorphic integral group rings. In Hertweck's talk it became apparent that

the counterexample should give rise to new questions about inner and outer automorphisms of

integral group rings. This point of view was reinforced by a further short lecture by W. Kimmerle

who reported on recent progress connected with the so-called F

�

-theorem.

Another highlight of the meeting was the report by J. Th�evenaz on his joint work with S. Bouc

on the structure of the Dade group of endo-permutation modules. These modules arise as sources

of simple modules, in nilpotent blocks and in the study of equivalences between block algebras.

The Dade group is a Grothendieck-type construction which gives an abelian group classifying

endo-permutation modules. Bouc and Th�evenaz have determined the rank of this group and thus

answered a question open for about 20 years. Bouc reported on another approach heavily using

tensor induction.

In his main talk L. Puig introduced a new concept into local representation theory, the hyper-

focal subalgebra of a block. His de�nition is motivated by the transfer, an important tool in local

group theory, and its use yields a vast generalization of Puig's celebrated theorem on the structure

of nilpotent blocks. In a short contribution, R. Kessar reported on her joint work with M. Linck-

elmann which applied K. Erdmann's analysis of tame blocks and culminated in a generalization

of the Brauer-Suzuki theorem to arbitrary blocks with quaternion defect groups.

In her talk "On representations of the symmetric groups and related groups", C. Bessenrodt

reported on a number of interesting developments. One of these concerned the question of when a

product of spin characters of a symmetric group S

n

is homogeneous (that is, a multiple of a single

irreducible character). A precise answer was obtained; we omit details here, but such a situation

can only arise when n is a triangular number. The theme of irreducibility of products of characters

and related questions also occurred in shorter talks, by G. James and I.M. Isaacs.

In Bessenrodt's talk, further arithmetical properties of spin characters and their blocks were

obtained which have considerable interest, and suggest possible analogues for general �nite groups;

for example, the highest power of 2 dividing spin character values on elements of odd order was

determined, as well as the elementary divisors of the "spin part" of the decomposition matrix of

a general 2-block of a double cover of S

n

.
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In shorter related lectures, A. Mathas gave a combinatorial description of the irreducible Specht

modules in characteristic two, reporting on joint work with James, and Kleshchev gave a classi�-

cation of all pairs (G;M), where G is some subgroup of some symmetric group S

n

and M is an

irreducible representation of S

n

which remains irreducible upon restriction to G.

The representation theory of �nite reductive groups is a very active area. Accordingly, a

substantial part of the lectures presented recent results in this �eld, and once more it became

apparent that methods and results from many areas converge here.

Three major developments of the past few years were discussed in three main talks by Brundan,

Geck and Brou�e. First J. Brundan gave a survey on recent developments tying together representa-

tion theory of quantum groups and representations of general linear groups in cross characteristic,

based on ideas of Dipper-James, Cline-Parshall-Scott and Takeuchi. He reported on new results

which he obtained in collaboration with Kleshchev and Dipper. Based on an extension of the

main results on general linear groups to a�ne general linear groups, formulas for generic modular

character degrees were obtained similar to those which are known in the characteristic 0 case.

Hecke algebras associated with Coxeter groups have become a major tool for the representations

of groups of Lie type but also have many applications in other �elds (for example, knot theory,

operator algebras, and mathematical physics). Of particular interest are their representations at

roots of unity and their decomposition matrices describing composition multiplicities in standard

modules. These matrices are of central importance for �nite reductive groups because they are,

by a theorem of Dipper, part of the `-modular decomposition matrices of reductive groups in non-

describing characteristic `. M. Geck reported in his main talk about his recent theorem, based

on deep results of Lusztig. He showed that these decomposition matrices are unitriangular in all

cases, generalizing an old result of Dipper-James in the type A case. He surveyed connections

with the Kazhdan-Lusztig basis and the conjecture of Lascoux-Leclerc-Thibon, which has recently

been extended to Ariki-Koike algebras and proved by Ariki. In a short lecture Ariki gave some

details on how one obtains a classi�cation of the irreducible modules of Ariki-Koike algebras from

his result, con�rming conjectures of Dipper-James-Murphy and Graham-Lehrer.

There were several short lectures on recent results in representations of Hecke algebras (Green,

Cox, Ariki, Kim) and representations of �nite reductive groups (Srinivasan, Nebe, Tiep, Hiss,

Cabanes, Gruber). Tiep's lecture dealt with the describing characteristic case, Nebe's with integral

representations.

In work of Brou�e, Malle and Michel the application of Hecke algebras associated with Coxeter

groups is extended in two ways to include cyclotomic Hecke algebras which are associated with

complex re
ection groups. First these are conjectured to come up as endomorphism algebras of the

Deligne-Lusztig complex (considered as an element of the derived category). Moreover, they allow

one to formulate a long list of combinatorial data such as generic degrees, character formulas and

block invariants, which in the classical case determine representations of �nite reductive groups.

One may consider these data to represent numerical invariants of representations of some unknown

objects, called spetses. M. Brou�e gave a main lecture on these emphasizing connections with braid

groups and his conjectures regarding derived equivalences in blocks of arbitrary �nite groups with

abelian defect groups.

Brou�e's conjecture has become a very active topic with tremendous progress. The conjecture

is a structural one but would solve classical problems of Brauer about the degrees of complex

representations in particular. R. Rouquier lectured on a program which should yield, and already

does in important cases, a major reduction in the problem, relating it to stable equivalences

of algebras and making work of J. Rickard applicable (which uses algebraic ideas from stable

homotopy theory). J. Chuang and T. Okuyama reported on solutions of Brou�e's conjectures for

classes of groups that tie in with the work of Rouquier and Rickard.

In one of the short contributions, W. Wheeler outlined a local description of the stable module

category, based on Rickard's theory of idempotent modules. This theory uses in�nite-dimensional

modules in an essential way to obtain results on �nite-dimensional ones. Another application

of this theory was given in D. Benson's talk who reported on his joint work with H. Krause on

generic modules. This is a concept �rst introduced by W. Crawley-Boevey in order to investigate

the �nite/tame/wild trichotomy in representation theory of algebras.
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Another key idea from the representation theory of algebras, the almost split sequences of

Auslander-Reiten, have long been applied to the representation theory of �nite groups. In his

main talk, S. Donkin reported on generalizations to in�nite groups, pro�nite groups, Lie algebras

and p-Lie algebras. Using Hopf algebras, he reduced the questions to a�ne algebraic groups,

another topic with close ties to �nite groups.

In addition to the lectures, private discussions constituted an important part of the meeting.

New teams of cooperation emerged, and will surely lead to future progress in the area.

Abstracts:

Specht modules and Kleshchev multipartitions

Susumu Ariki

My recent research is mainly concerned with Hecke algebras of type G(m; 1; n). It was introduced

as a deformation of group algebras of a series of complex re
ection groups, and is a generalization

of Hecke algebras of type A and B. The study of modular representations over these algebras

turns out to be very fruitful. A starting point was a conjecture made by A.Lascoux, B.Leclerc

and J.Y.Thibon [6, LLT]. They computed Kashiwara's global basis on the basic module of the

quantum algebra of type A

(1)

r�1

, and found that the coe�cients evaluated at 1 coincide with the

decomposition numbers of non-semisimple Hecke algebras of type A over C . Its proof is given for

the Hecke algebras of type G(m; 1; n) [1, A1].

If we consider the �elds of positive characteristics, we can not say much about the decomposition

numbers, but we can give classi�cation of simple modules [4, AM]. Combined with Specht module

theory developed by Dipper, James and Mathas, we can prove that D

�

:= S

�

= rad S

�

is non-zero

i� � is a Kleshchev multipartition [2, A2]. Thus we have a satisfactory classi�cation of simple

modules, and the generating function for the number of simple modules. The result is also useful

for verifying a conjecture of Vigneras [7, Vig].
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p-Subgroup complexes and Brauer pair complexes

Laurence Barker

The results below are already published, but we append some questions. Recall that a G-object

is an object upon which our �nite group G acts as automorphisms. Even if one is ultimately

concerned only with G-modules and G-algebras, other G-objects may be pertinent. Consider a

�nite G-simplicial complex S (for instance, S may be a �nite G-poset, and then the simplexes are

the totally ordered subsets). From the underlying G-space jSj, we form the space jSj=G consisting

of the orbits of G on S. One motive for considering jSj=G is that it has reduced Euler characteristic

e�(jSj=G) =

X

S

(�1)

`(S)

where S runs over representatives of the G-orbits of the set of simplexes in S. By contriving S

appropriately, one can obtain alternating sums as in conjectures and theorems of Alperin, Dade,
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K�ulshammer, Robinson, and others. Symonds, in Comment. Math. Helv. 73 (1998), proved (this

is what his argument shows in general): Theorem 1: (Symonds) Suppose that the vertices of S

comprise a conjugacy-closed upwardly-closed set of p-subgroups of G. Suppose that the simplexes

in S are the normal chains P

0

� P

1

� ::: � P

`

; each P

i

� P

`

. Then jSj=G is contractible.

A special case was a conjecture of Webb (1987).

Theorem 2: As in Theorem 1, (with the same vertices) but allowing all chains of the form

P

0

< P

1

< ::: < P

`

as simplexes.

Theorem 3: Suppose that the vertices of S comprise a conjugacy-closed upwardly-closed set of

Brauer pairs (Alperin{Brou�e subpairs) associated with a given p-block of G. Suppose that the

simplexes in S are the normal chains (P

0

; e

0

) � (P

1

; e

1

) � :: � (P

`

; e

`

); each (P

i

; e

i

) � (P

`

; e

`

).

Then jSj=G is contractible.

Theorem 1 is Theorem 3 in the special case of the principal block.

Question 4: As in Theorem 3, but allowing all chains of the form (P

0

; e

0

) < (P

1

; e

1

) < ::: <

(P

`

; e

`

) as simplexes?

In all cases above, including Question 4, Alperin's Fusion Theorem shows that jSj=G is simply

connected; see J. Group Theory 1 (1998) for details. In all cases above, except for Question 4, a

spectral sequence argument shows that jSj=G is acyclic; see J. Algebra 212 (1999) for details. In

an attempt to adapt these arguments and thereby to con�rm an a�rmative answer to Question

4, it would not be necessary to tangle with spectral sequences. The spectral sequence has already

ful�lled its purpose in leading to the Lemma on page 463. That Lemma concerns three G-simplicial

complexes X;Y; Z such that the join X � Y contains Z, also Z contains X and Y . The idea is

to compare a given G-simplicial complex X = S with a smaller complex Y . The comparision is

e�ected by weaving X and Y together to form another G-simplicial complex Z. The very strong

hypothesis of the Lemma ensures that X and Y have the same homology. Each of the three above

Theorems may be proved in half a page, starting from the Lemma. The technique is to contrive a

suitable Z satisfying the hypothesis of the Lemma. It seems possible that Question 4 may succumb

similarly.

Glance at the only equation above. Since spectral sequences belong to magic, not science, it might

not be entirely idle to pose:

Fantasy 5: There exists an S such that: (1) Alperin's Weight Conjecture, in some form or

another, is equivalent to the condition that e�(jSj=G) = 0.

(2) Some conjecture of Dade or Robinson is equivalent to the condition that jSj=G is acyclic.

(3) A spectral sequence argument yields (2).

Generic modules over �nite group algebras

Dave Benson

In this talk, I report on joint work with Henning Krause. Over any ring �, a module M is said

to be endo�nite if it has �nite length as a module over End

�

(M). It is said to be generic if it

is endo�nite, indecomposable, and not of �nite length over �. Crawley{Boevey introduced this

concept in order to investigate the �nite/tame/wild trichotomy.

Let V

G

denote the maximal ideal spectrum of the cohomology ringH

�

(G; k) of a �nite groupG over

a �eld k of characteristic p. Quillen has proved that the irreducible components V

1

; : : : ; V

t

of V

G

are

in one-one correspondence with the conjugacy classes of maximal elementary abelian p-subgroups

of G. Let U denote the set of closed homogeneous subvarieties of V

G

which do not contain any

irreducible components of V

G

, and let F be the Rickard idempotent module corresponding to

localization with respect to U . Then our main theorem states that F is an endo�nite module. The

stable endomorphism ring End

kG

(F

i

)

�

=

E

i

. The module F

i

is a generic module for the irreducible

component V

i

, and E

i

=J(E

i

) is the �eld of rational functions on V

i

. It should be remarked that

most Rickard idempotent modules are not endo�nite.
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On representations of the symmetric groups and related groups

C. Bessenrodt

Some interesting connections between representations of the symmetric group S

n

and spin repre-

sentations of its double covers

~

S

n

were presented.

In the �rst part of the talk, the focus was on the question: when is a tensor product of two rep-

resentations of S

n

resp.

~

S

n

irreducible resp. homogeneous? Here recent work was described which

was largely joint work with A. Kleshchev.

At characteristic 0, our work led to a complete classi�cation of the tensor-reducible irreducible

representations of S

n

resp.

~

S

n

. In fact, all homogeneous products of irreducible characters of S

n

resp. of spin characters of

~

S

n

have been determined.

At characteristic p > 0, Gow and Kleshchev have recently conjectured a classi�cation of the irre-

ducible tensor products of S

n

-representations of dimension > 1. Taking a big step towards this

conjecture, we have shown that such products can occur only if p = 2 and n is even, and one of

the modules has a Jantzen-Seitz partition label. A second conjecture of Gow and Kleshchev on a

family of homogeneous tensor products of irreducible representations of S

n

at characteristic 2 was

con�rmed (together with Gow) by considering the reduction modulo 2 of the homogeneous spin

character products mentioned above.

In the second part of the talk, connections between 2-divisibility properties of spin character val-

ues and representations of S

n

at characteristic 2 were discussed that have been obtained in recent

joint work with J. Olsson.

Generalizing a result by Wagner on spin character degrees to all 2-regular classes, the minimal

2-power in the spin character values on any given class of odd type has been found. Using this,

the elementary divisors of the `reduced' spin decomposition matrix of a 2-block

~

B of

~

S

n

were

determined; they are roughly the square roots of the elementary divisors of the Cartan matrix of

the 2-block of S

n

contained in

~

B.

The generalized Brauer construction,

Brauer sheaves, and monomial resolutions

R. Boltje

joint work with Burkhard K�ulshammer

Let F be an algebraically closed �eld of positive characteristic p and let G be a �nite group.

The classical Brauer construction associates to an FG-module V for every p-subgroup P of G an

FN

G

(P )-module V (P ). This construction can be extended from p-subgroups to pairs (H;') with

H � G and ' 2 Hom(H;F

�

). We denote the corresponding F [N

G

(H;')]-module by

�

V (H;').

The collection of these modules form a rigid object by the existence of various natural maps

between them. There are obvious conjugation maps, but also restriction maps

�

V (H;') !

�

V (I;  )

whenever (I;  ) � (H;') and [H : I ] is not divisible by p. Moreover, there are (what we call)

translations

tl

(H;')

(I; )

:

�

V (H;') !

�

�

V (I;  )(H;')

whenever (I;  ) / (H; ) (i.e. (I;  ) � (H;') and H � N

G

(I;  )). These maps satisfy a list

of natural compatibilities. The translations have been introduced by R. Rouquier in the case of

p-subgroups.

It is natural to axiomatize these data and structure maps to obtain a category B

FG

whose objects

we call Brauer sheaves. There are close connections between R. Rouquier's \sheaves" and a

relative version of Brauer sheaves. One can show that the above construction induces a fully

faithful embedding I :

FG

mod ! B

FG

. Moreover, the category

FG

mon of �nite G-equivariant

line bundles over F can be embedded fully and faithfully into the category of Brauer sheaves via

a functor J :

FG

mon ! B

FG

. Now we can de�ne the notion of a monomial resolution of an

FG-module V . This is a chain complex M

�

= (� � � ! M

1

! M

0

) of objects in

FG

mon together

with an FG-linear map " : M

0

! V such that J (M

�

) ! I(V ) ! 0 is an exact sequence in the

category of Brauer sheaves.
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Theorem (a) For each FG-module V there exists a monomial resolutionM

�

! V . The resulting

functor V 7! M

�

induces a fully faithful embedding from

FG

mod to the homotopy category of

FG

mon.

(b) For each trivial source FG-module V there exists a �nite monomial resolution M

�

! V .

The Lefschetz element of M

�

in the Grothendieck group of

FG

mon coincides with the canonical

induction formula for V .

Tensor induction of relative syzygies

Serge Bouc

Let k be a �eld of characteristic p > 0, let P be a �nite p-group, and X be a non-empty �nite

P -set. The relative Heller translate (or relative syzygy) 


X

of k relative to X is de�ned as the

kernel of the augmentation morphism from kX to k. In other words, there is an exact sequence

0 ! 


X

! kX ! k ! 0

It has been observed by J. Alperin that this module 


X

is an endo-permutation kP -module, which

is capped if P has no �xed points on X . One can consider its image in the Dade group, which is

still denoted by 


X

.

A natural question is then to try to express the e�ect of the functorial operations on the Dade

group (restriction, in
ation, de
ation, tensor induction, isomorphisms) on these elements 


X

. The

only hard case is actually tensor induction, and in this case one can state a formula expressing

the tensor induced relative syzygies as a linear combination of relative syzygies corresponding to

transitive sets for the bigger group.

This formula has various consequences: �rst it gives relations in the Dade group between relative

syzygies. It is also a tool to describe the structure of the Dade group. In particular, the relative

syzygies generate a functorial subgroup of the Dade group, with �nite index equal to a power of p.

One can also describe exactly the relative syzygies which are torsion elements in the Dade group.

Finally, these formulas can be interpreted to explain (in some sense) the strange short exact

sequence of functors stated in our work with J. Th�evenaz, connecting the Dade group, the Burnside

ring, and the rational representation ring.

Abelian Defect, Re
ection Groups, Braid Groups

Michel Brou�e

Let G be a connected reductive algebraic group de�ned over an algebraic closure of the prime

�eld with p elements, and let F : G ! G be a Frobenius endomorphism de�ning a rational

structure over F

q

. Let (B; T ) be a rational Borus (also called Torel) of (G;F ).

The Spets G associated with (G;F ) is de�ned by G := (V;W�) ; where

� V := C 


Z

Y (T ) ;

� � is the element of N

GL(V )

(W ) de�ned by the Frobenius endomorphim F .

Many data associated with (G;F ) depend only on G , and so, in particular, do not depend on

q :

� The Spets G de�nes a polynomial jG j := x

N

Q

d

�

d

(x)

a(d)

such that jG j

x=q

= jG

F

j :

� The G

F

{conjugacy classes of rational tori in G, as well as the G

F

{conjugacy classes of

rational Levi subgroups of G, are parametrized by W{orbits on sets depending only on G .

� The set of irreducible unipotent complex characters of G

F

is naturally parametrized by a set

Un(G ) which depends only on G .

Jordan decomposition of Blocks

Assume for simplicity that the center of G is connected.

Let ` be a prime di�erent from p and let (K;O; k) be an `{modular system. Then one has a

decomposition of the group algebra OG

F

into a sum of twosided ideals

OG

F

=

M

(M;�)

(OG

F

)

(M;�)
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where (M; �) runs over a set of representatives of G

F

{conjugacy classes of pairs such that M is a

(rational) reductive subgroup of G of maximal rank and � is a linear character of M

F

, of order

prime to ` and in general position. Let us denote by Un(OG

F

) := (OG

F

)

(G;1)

the \unipotent part

of the group algebra".

Conjecture. For all (M; �), the algebra (OG

F

)

(M;�)

is Morita equivalent to the unipotent part

Un(OM

F

).

The case of unipotent blocks

Decomposition of the unipotent part into blocks.

Assume now that ` does not divide jW h� !ij, which insures that all `{subgroups of G

F

are

abelian. Assume that ` divides jG

F

j. Then there exists a unique integer d such that

` divides �

d

(q) and �

d

(x) divides G :

Then we have

Un(OG

F

) =

M

(L;�)

Un

(L;�)

(OG

F

) ;

where (L; �) runs over the G

F

{conjugacy classes of pairs such that

� L is a (rational) d{split Levi subgroup of G,

� � is a d{cuspidal unipotent irreducible character of L

F

,

and where each Un

(L;�)

(OG

F

) is a block with defect group the Sylow `{subgroup of ZL

F

.

Note that the G

F

{conjugacy classes of pairs (L; �) are \spetsial" : they are parametrized by

data depending only on G .

Towards the structure of a block Un

(L;�)

(OG

F

).

1. Let (L; �) be as above. Then the \relative Weyl group" N

G

F (L; �)=L

F

is spetsial and has a

natural representation as a (complex) re
ection group.

2. Assume for simplicity that (G;F ) is split (namely, � = 1), that � = 1 and that L is a torus T :

it corresponds to the case of the principal block, and of a regular number d.

The G

F

{conjugacy class of T corresponds to a W{conjugacy class C of regular elements of W .

The relative Weyl group N

G

F (T )=T

F

is then isomorphic to C

W

(w) for w 2 C.

For each element w 2 C, there is a Deligne{Lusztig variety

~

X

w

acted on from the left by G

F

and from the right by T

F

. By a theorem of Rickard, there is a splendid bounded complex R(

~

X

w

)

of Z

`

G

F

{modules{Z

`

T

F

, which induces the Deligne{Lusztig generalized induction map R

G

T

at the

level of ordinary characters.

It is conjectured that there exists w 2 C such that

� the action of T

F

on R(

~

X

w

) may be extended to an action of N

G

F (T ),

� so that R(

~

X

w

) induces a Rickard equivalence between the principal block of N

G

F (T ) and

the principal block of G

F

.

3. A program is given to solve the preceding conjecture.

� The center of pure braid group B

W

associated with W is in�nite cyclic and generated by the

element � = w

2

0

(where w

0

is the element of the braid monoid B

+

W

corresponding to any reduced

expression of the longest element w

0

of W ). Then w may be chosen as the image of any element

w 2 B

+

W

which is a d{th root of �.

� Let X

w

:=

~

X

w

=T

F

. The action of C

W

(w) on R(X

w

) should be induced by an action of

the generalized braid group associated with the re
ection group C

W

(w) on the variety X

w

: This

action should factorizes on the cohomology of X

w

through a �nite rank O{algebra, a \cyclotomic

Hecke algebra" which is a deformation of the group algebra of C

W

(w).

Branching rules for the �nite general linear group

Jonathan Brundan

In recent joint work with R. Dipper and A. Kleshchev, we have obtained generalizations to positive,

non-de�ning characteristic of the branching rules of Thoma and Zelevinsky. Our results describe
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the restriction of an irreducible GL

n

(F

q

)-module to the naturally embedded subgroup GL

n�1

(F

q

)

in terms of the restriction to quantum GL

n�1

of a corresponding irreducible high-weight module

over quantum GL

n

(i.e. the divided power version of the quantized enveloping algebra U

q

(gl

n

)

specialized over F

p

at parameter q).

As an application, we obtain a \generic" formula for the degrees of the irreducible p-modular

Brauer characters of GL

n

(F

q

) (where pjq) in terms of the weight space dimensions m

�;�

of irre-

ducible high-weight modules of quantum GL

n

. For instance, for each partition � of n, there is an

irreducible unipotent p-modular Brauer character �

p

�

. Our formula in this case shows that

�

p

�

0

(1) =

X

���

m

�;�

S

�

(q)

where �

0

denotes the transpose partition and S

�

(q) is some explicitly determined non-negative

polynomial in q depending on the partition � but independent of p.

This formula, combined with the Premet-Suprunenko theorem describing exactly when m

�;�

is

non-zero, leads to a useful lower bound for the irreducible Brauer character degrees of GL

n

(F

q

);

for instance in the unipotent case for restricted �, it turns out that the leading term of Green's

hook formula for the degree of the corresponding ordinary irreducible unipotent character gives a

lower bound for �

p

�

(1) too.
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Alvis-Curtis duality: The modular version

Marc Cabanes

I would like to report on a theorem of J.Rickard stating that Alvis-Curtis duality induces a self-

equivalence of the derived category D

b

(RG) when G is a �nite reductive group in characteristic

p, and R is a commutative ring where p is invertible; thus establishing a conjecture of M.Brou�e.

I describe a 'local coe�cient system' version of Rickard's arguments and of the additional theorem

that this duality commutes with Harish-Chandra induction in D

b

(RG � RL) where L is a Levi

subgroup of G.

Cohomology of HS, 2M

12

and other computer calculations

Jon Carlson

In this report we calculate the mod two cohomology of the double cover of the Mathieu group

M

12

and HS-Sylowsubgroup. The latter being calculated in joint work with Adem, Karagueuzian

and Milgram. The starting point is the calculation by Adem, Maginnis and Milgram of the mod

two cohomology of M

12

. We use a hypercohomology spectral sequence to determine a di�erential

in the Lyndon{Hochschild{Serre spectral sequence of the central extension, and this gets us as far

as the E

1

page. Ungrading requires restriction to the Sylow 2-subgroup, and here some computer

calculations come to our rescue.

The derived categories of some blocks of symmetric groups

and a conjecture of Brou�e

Joseph Chuang

A guiding principle in the modular representation theory of �nite groups is the belief that

the representation theory of a �nite group G in prime characteristic p should in some sense be

determined by that of its p-local subgroups (normalizers of non-identity p-subgroups). This belief

takes a numerical form in Alperin's weight conjecture: the number of isomorphism classes of simple

modules for G is equal to the sum of the numbers of isomorphism classes of certain kinds of simple

modules for p-local subgroups.

Brou�e has suggested that in certain situations there should even be a structural relationship

between modules for G and modules for local subgroups, a relationship which involves derived

categories. More precisely, he conjectures that if B is a p-block of G with abelian defect group

D, and b is the block of the p-local subgroup N

G

(D) which is paired with B under the Brauer

correspondence, then B and b are splendidly Rickard equivalent (in particular they have equivalent

derived module categories).

I will outline a proof of this conjecture for all blocks of symmetric groups whose defect groups

have order p

2

. Using the work of Scopes, Rickard, and Marcus, the problem is reduced to demon-

strating a Morita equivalence (originally conjectured by Rouquier) between one of these defect 2

blocks and the principal p-block of the wreath product S

p

oS

2

. The proof of this equivalence relies

on a rule for computing decomposition numbers due to Richards, a description of the principal

p-block of S

2p

provided by Erdmann and Martin, and a theorem of Linckelmann on the images of

irreducible modules under certain functors.

On calculating Ext for Weyl modules and Specht modules

Anton Cox

joint work with Karin Erdmann.

In the study of a highest weight category, it is natural to consider the class of Weyl modules �(�)

and their duals r(�). Rather than considering the whole module category, we may then restrict

our attention to the category F(�), whose objects have a �ltration 0 = M

0

�M

1

� � � � �M

i�1

�

M

i

= M , with quotients isomorphic to �(�) for various �. Clearly, knowing Ext

r

(�(�);�(�)) is

essential in the understanding of this category.
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Probably the simplest non-trivial example of such a setup occurs in the study of modules for

SL(2; k) over a �eld k of characteristic p > 0. In this case Erdmann was able to completely

determine Ext

1

between pairs of Weyl modules. Recently, we have extended this argument to

calculate Ext

2

in an analogous way. Moreover, this also gives Ext

2

between any pair of Weyl

modules �(�), �(�) for GL(n; k) (where n � 2) such that both � and � have at most two rows

or columns, or where they di�er by some multiple of a simple root.

It is a basic general problem to characterise algebras of �nite representation type. For the

ordinary Schur algebras this was determined by Erdmann. Using the cohomology calculations for

SL(2; k), we obtain the following necessary condition for Schur algebras to be of �-�nite type;

that is to only have �nitely many indecomposable objects in F(�). (For simplicity, we here only

consider the case when p is odd.)

Theorem Suppose that p > 2. If d � 2p

2

+ p � 2, then for all n � 2 the algebra S(n; d) is

�-in�nite.

We may also consider analogous problems for Specht modules for the symmetric group. When

p > 2 we can translate our Ext

1

calculations over to determine all extensions between Specht

modules corresponding to two part partitions, but for Ext

2

this method only gives a submodule

of the corresponding Ext

2

space in general. In this way we obtain a corresponding `�nite type'

result for the category of modules for the symmetric group having a �ltration by Specht modules

corresponding to partitions with at most n parts.

Finally we note that the above results all extend, with appropriate modi�cations, to the corre-

sponding quantum groups and Hecke algebras at roots of unity.

Odd M-groups

Everett C. Dade

An M-group is a �nite group G each of whose complex irreducible characters is induced from

a linear character of some subgroup of G. A well known theorem of Taketa (1930) tells us that

any such G is solvable. In 1967 Dornho� asked if every normal subgroup of an M-group was itself

an M-group. In 1973 van der Waall and I independently found that the answer was no. But our

examples had even order. So this left the

Question 1 If G is an M-group of odd order, must any normal subgroup N of G be an M-group?

This question turned out to be one of the most di�cult in the character theory of �nite solvable

groups. During the 1980's both Isaacs and I tried very hard to resolve it. While we discovered

several interesting theorems related to this problem, we were forced to give up on the main question.

It was simply not approachable by any method we could think up. As far as I know, everyone else

who thought about it at all reached the same conclusion.

My student Maria Loukaki has taken up this problem. After several years' e�ort she has been

able to prove

Theorem 1 The answer to Question 1 is yes if G is an odd p; q-group.

Here an odd p; q-group is a �nite group G whose order has the form p

a

q

b

for some odd primes

p; q and some non-negative integers a; b.

Loukaki's proof of her theorem is very long and complicated. It depends on her ability to

construct new irreducible characters of G having certain prescribed properties. Ultimately her

constructions can be reduced to

Theorem 2 Suppose that an odd p; q-group H has a normal p

0

-subgroup K and a Sylow p-

subgroup P such that PK is a normal subgroup of H . Suppose also that K has an irreducible

complex character � whose stabilizer H

�

in H is a complement to P in H . Then K has some

complex irreducible character �

0

, having the same stabilizer H

�

0

= H

�

as � in H , such that �

0

can

be extended to a character of H

�

0

.
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I have stated the above theorem in a curious way, using a normal p

0

-subgroup K and a p-

complement H

p

0

in H , instead of a normal q-subgroup and a Sylow q-subgroup, respectively, in

order to point out a possible generalization. It turns out that this theorem is the only place in

Loukaki's proof where she really uses the fact that her G is an odd p; q-group. This raises the

interesting

Question 2 Does Theorem 2 hold if its hypothesis that H be an odd p; q-group is replaced by

the assumptions that H is a �nite group of odd order and that p is an odd prime?

If, by any miracle, the answer to this question is yes, then Loukaki's arguments show that the

answer to Question 1 is also yes. On the other hand, a negative answer to Question 2 might give

us some hints about how to answer Question 1 in a negative manner. At any event, this gives us

a completely di�erent way to approach the problem.

On the existence of Auslander-Reiten sequences

of group representations

Stephen Donkin

We consider the problem of the existence of Auslander-Reiten (or almost split) sequences of

�nite dimensional modules in the following cases: (i) modules over an abstract group; (ii) discrete

modules for a pro�nite group: (iii) �nite dimensional modules for a Lie algebra; (iv) restricted

modules for a p-Lie algebra. We approach these via the representation theory of group schemes.

The main result is that a group scheme G has an almost split sequence if and only if either G is

virtually linearly reductive but not linearly reductive or G is linearly reductive by in�nite uniserial

unipotent by linearly reductive.

Kazhdan{Lusztig cells and decomposition numbers

of Hecke algebras

Meinolf Geck

Our aim is to explain the idea that decomposition numbers (of �nite groups of Lie type in non-

de�ning characteristic or of Hecke algebras) are related to properties of Kazhdan{Lusztig bases

or, in a wider sense, to the concept of \canonical bases" of Lie algebras (via the Lascoux{Leclerc{

Thibon conjecture).

In his work on cells in a�ne Weyl groups, Lusztig has constructed the so-called asymptotic

Hecke algebra. We have shown that problems about decomposition numbers of Hecke algebras

can be translated to similar problems about that asymptotic algebra. Using that translation we

obtain, for example, a uniform proof for the fact that the decomposition matrix of a Hecke algebra

has a lower unitriangular shape. (For example, in type A, this was proved much earlier by Dipper

and James using completely di�erent methods.)

The Lascoux{Leclerc{Thibon conjecture (now a theorem of Ariki's) states something much

more precise: the decomposition numbers of a Hecke algebra of type A (specialized at a root of

unity in characteristic 0) are completely determined by the base change from a PBW-type basis

to the \canonical basis" (in the sense of Lusztig and Kashiwara) of a certain a�ne Kac{Moody

algebra. We explain this result and its consequences to the modular representation theory of the

�nite general linear groups in non-de�ning characteristic.

Special properties of blocks for the prime 2

Rod Gow and John Murray

Suppose that G is a �nite group and k is a �eld of characteristic 2. Let B $ e$ � be a 2-block

of G with associated primitive central idempotent e and central character �. A conjugacy class K

of G is called a defect class for B if K

+

appears with non-zero multiplicity in e and �(K

+

) 6= 0

(where K

+

is the sum in kG of all the elements in K). A defect class always exists and consists of



12 MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

2-regular elements, and the defect groups of a defect class coincide with the defect groups of B.

We prove that B always has a real defect class, which gives a necessary condition for the existence

of a 2-block that does not appear to have been observed before.

As a partial converse, we show that if G has a real 2-regular class with 2-defect group D and

if N

G

(D)=D has no dihedral subgroup of order 8, then G has a real 2-block with defect group

D (if G has a non-real 2-block with defect group D then by the previous paragraph it has a real

2-regular class with 2-defect group D and hence a real 2-block with defect group D). Here, a

block B is real if whenever a given complex irreducible character is in B, so also is its complex

conjugate.

We give a number of applications of these results which do not rely on any classi�cation theo-

rems. For example, if D is a maximal Sylow 2-intersection in G, then G has a 2-block with defect

group D if and only if it has a real 2-regular class with 2-defect group D. Also, if G has an abelian

Sylow 2-subgroup S, then S is normal in G if and only if all 2-blocks of G have maximal defect.

Along similar lines, if G has a quaternion Sylow 2-subgroup, then G either has a unique involution

or it has a real 2-block of defect 0. Finally, if N is a normal subgroup of G of odd order which

contains a class of G with 2-defect group D, then N contains a real class of G with 2-defect group

D. This result, proved using block theory, does not seem to be amenable to purely group-theoretic

proof.

Canonical bases for Hecke algebra quotients

R.M. Green

joint work with J. Losonczy

We consider quotients of Hecke algebras associated to arbitrary Coxeter systems which generalize

Jones' construction of the Temperley{Lieb algebra from the Hecke algebra of type A. We show

that such a quotient, which we call a generalized Temperley{Lieb algebra, admits a particularly

nice basis which we call the canonical basis. This basis, which is de�ned in terms of a known basis

found by J.J. Graham, is formally analogous in a manner which we make explicit to the Kazhdan{

Lusztig basis of the corresponding Hecke algebra. However, the precise relationship between the

two bases is not completely obvious. We discuss brie
y some natural questions concerning our

bases, in particular, whether the structure constants are positive.

Modular representation theory of �nite groups of Lie type

Jochen Gruber

The �nite groups of Lie type are investigated within the setting of �nite groups with split

BN -pairs. Their representation theory over the complex numbers is known to great detail. The

knowledge of the irreducible cuspidal representations and the irreducible representations of Hecke

algebras give many of the informations one is interested in. In the modular representation theory

in non-de�ning characteristics one has to investigate larger algebras. They are called (generalized

parabolic) q-Schur algebras.

This talk is a survey of the results of a research project by R. Dipper at the University of Stuttgart

and the speaker. It generalizes older results by various researchers on classical groups.

The main result is a partial description of the decomposition matrices of �nite groups of Lie type

in terms of decomposition matrices of suitable (generalized parabolic) q-Schur algebras.

Embedding of group bases in integral group rings

Martin Hertweck

The \isomorphism problem for integral group rings" asks whether for �nite groups X and Y ,

an isomorphism ZX

�

=

ZY of their integral group rings implies that the groups are isomorphic,

X

�

=

Y . (We might also consider X-adapted coe�cient rings, like the semilocalisation Z

�(X)

of Z

at the primes dividing the order of X .)

In 1997, a counterexample was constructed: there are non-isomorphic groups X and Y , of order

2

21

� 97

28

, such that ZX

�

=

ZY .
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The construction involves a subgroup G � X which has a non-inner automorphism which

becomes inner in ZG. Therefore the groups are necessarily of even order.

Analyzing the counterexample shows that the projections of X and Y to any block of the

rational group algebra QX are conjugate (in the units of the block). This leads to a version of a

conjecture of Zassenhaus for blocks, for which no counterexamples are known.

We show how to prove (with di�erent methods as in the global case) that the group rings are

semilocally isomorphic, Z

�(X)

X

�

=

Z

�(X)

Y . This leads to more insight into the structure of the

groups, and indicates how counterexamples of odd order (at least in the semilocal case) might be

constructed.

Morita equivalence classes of blocks of classical groups

Gerhard Hiss

joint work with R.Kessar

Let l be a prime number. In a seminal paper of 1991 Joanna Scopes proved that there are only

�nitely many Morita equivalence classes of l-blocks of symmetric groups of a given defect. This has

later been extended by Thomas Jost to the case of unipotent l-blocks of the groups GL

n

(q), where

q is �xed. Using elementary results on the decomposition numbers of GL

n

(q) one can remove this

latter condition. Here we consider the case of the other classical groups.

THEOREM 1. Let q be a prime power not divisible by l such that the multiplicative order of

�q modulo l is odd. Then the unipotent l-blocks of a given defect of the groups GU

n

(q), n 2 N,

fall into �nitely many Morita equivalence classes.

A similar result holds for the other classical groups. To formulate it, let G

n

(q) denote a clas-

sical group (distinct from GL

n

(q) and GU

n

(q)) of dimension n over the �eld with q elements.

THEOREM 2. Let q be a prime power not divisible by l such that the multiplicative order of

q modulo l is even. Then the unipotent l-blocks of a given defect of the groups G

n

(q), n 2 N, fall

into �nitely many Morita equivalence classes.

The condition on q and l in the theorems correspond to the so-called unitary prime case. The

complementary conditions are known as the linear prime case. Although the representation theory

of the classical groups in the linear prime case is much more advanced than in the unitary case,

our methods do not work in the linear prime case.

To prove our theorems, we make essential use of the following results. Firstly, the combinatorial

description of the l-blocks of the classical groups by Fong and Srinivasan. This allows us to follow

Joanna Scopes' approach in the �rst part of our proof, although the combinatorics involved is con-

siderably more complicated. Secondly, we use a result of Brou�e giving a purely character theoretic

su�cient condition for Morita equivalence. This replaces the original argument of Scopes.

Irreducible products of characters:

Two open problems

I.M. Isaacs

When is a product of two irreducible characters irreducible? If �; � 2 Irr (G), then a condition

that guarantees that �� is irreducible is that the restriction of � to the kernel of � is irreducible

(or vice versa). In order to avoid these 'uninteresting' cases, assume that both � and � are faithful

characters of G.

If either � or � is a linear character, then �� is certainly irreducible, but since we are assuming

that � and � are faithful, this situation can only occur if G is cyclic. We ask therefore, which

noncyclic groups can have two faithful characters whose product is irreducible? This happens,

for example, if G = SL(2; 5) or G = A

9

. But can there be a noncyclic solvable group in which a

product of two faithful characters is irreducible?
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I believe that this is probably impossible, but I have not found a complete proof. I can show, how-

ever, that if a solvable noncyclic group G has two faithful characters whose product is irreducible,

then G must have a fairly complex structure. In particular, there must be some prime p dividing

both character degrees such that some minimal normal subgroup of G has order equal to a power

of p

p

. Also, a Sylow p-subgroup of G must have nilpotence class at least p.

The irreducible-product problem reduces to an interesting question in module theory. Suppose

that some (not necessarily solvable) group G factors as G = HK, and consider a simple G-module

V over some �eld F . If each of H and K has a nonzero �xed point in F , we ask if this implies

that V is the trivial FG-module? If the answer is 'yes' for all solvable groups G, this would imply

that a product of faithful characters of a noncyclic solvable group can never be irreducible.

Suppose, as before, that G = HK, where H and K have nontrivial �xed points on the simple

FG-module V . If V is nontrivial, I can show that the characteristic of F must divide both jH j and

jKj. If G is solvable, then more is true: the characteristic divides both jG : H j and jG : Kj, and

the module V must be imprimitive and of dimension divisible by the characteristic. I have been

unable to show, however, that this situation cannot actually occur, although I do have additional

information about a minimal counterexample.

Symmetric group representations

Gordon James

joint work with John Graham

We give \On a conjecture of Gow and Kleshchev" as a subtitle to our talk and we emphasize

that the material is joint work with John Graham.

It has been observed that if U and V are FG{modules with dimensions bigger than 1, then

U 
 V is usually reducible. For G = S

n

, the symmetric group of degree n, Bessenrodt and

Kleshchev have shown that the only exceptions occur when charF = 2 and n is even. Assume

hereafter that charF = 2. The irreducible FS

n

{modules D

�

are indexed by partitions of n into

distinct parts.

Gow and Kleshchev have conjectured that if n = 4l+ 2 then

D

(2l+2;2l)


D

(4l�2j+1;2j+1)

�

=

D

(2l+1�j;2l�j;j+1;j)

:

In our talk we illustrate how this conjecture is proved. The dimension of D

�

when � has two

parts is known (but dimD

�

is not known when � has three or more parts). Gow and Kleshchev

have proved that D

(2l+1�j;2l�j;j+1;j)

is a composition factor of the tensor product, so to settle

the conjecture it is su�cient to �nd dimD

(2l+1�j;2l�j;j+1;j)

. It turns out that for precisely the

four part partitions of this form there is a method for determining dimD

�

; we show how this is

done and state that we have proved that this dimension equals that of the tensor product, thereby

verifying the conjecture.
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A generalization of the Brauer-Suzuki theorem

R. Kessar

joint work with M. Linckelmann

Suppose that b is a 2-block of a �nite groupG with defect groupD which is a generalized quaternion

group. Let z be the unique element of order 2 of D and let H = C

G

(z). Let c be the Brauer

correspondent of b in H . The Brauer-Suzuki theorem states that if b is the principal block of G,

then the block algebras of b and c are isomorphic.

We are interested in exploring the relationship between these block algebras in the general case,

i.e. when b is no longer assumed to be principal. Using results of Cabanes, Picaronny, Erdmann

and Olsson, we are able to show that if jDj = 8, then in general the block algebras kG

�

b and kH�c

are Morita equivalent.

Elements of minimal length in twisted

conjugacy classes of �nite Coxeter groups

Sungsoon Kim

Let (W;S) be a �nite Coxeter system where S is the set of generators.

In [1, 2] it is established that elements of minimal length in the conjugacy classes of W play a

quite special role. This allowed us, in particular, to de�ne a `character table' of the Iwahori{Hecke

algebra associated to (W;S). These tables have now been determined for all types of (W;S), by

work of Starkey, Solomon, Kilmoyer, Alvis, Lusztig, Ram, Halverson, Geck, Pfei�er and Michel;

see [1, 2] and the references there.

The aim of this article is to extend the results of [1] to elements of minimal lengths in the

F -conjugacy classes of W , where F is any group automorphism F : W !W such that F (S) = S.

It will turn out that, for example, groups of type A

n

(the symmetric groups) were quite simple to

handle in [1] (compared to other types of groups), but now this will actually be the most di�cult

case when we consider non-trivial automorphisms F . Indeed, elements of minimal length in the

conjugacy classes of S

n

have a quite simple description (they are Coxeter elements in parabolic

subgroups) but if we consider a non-trivial automorphism, then the description becomes more

complicated ([3]).

For the symmetric group S

n

, the automorphism F is given by conjugation with the longest

element of W , and we reduced to the study of elements of maximal length in the (usual) conjugacy

classes of W . In the talk, there was given a method of �nding some elements of maximal length

in the conjugacy class corresponding to a given partition � of n.
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Permutation lattices and automorphisms of integral group rings

Wolfgang Kimmerle

joint work with M. Hertweck

1987 Roggenkamp and Scott discovered the following [6], [5], [4] .

F

�

- Theorem. Let G be a �nite group. Assume that the generalized Fitting subgroup F

�

(G)

is a p - group. Then ZG= ZH implies that H is conjugate to G within QG:

With respect to automorphisms the F

�

- theorem says that a normalized (i.e augmentation

preserving) automorphism of ZG is the composition of one induced from a group automorphism

followed by a central automorphism. Thus it establishes for such groups a conjecture of Zassen-

haus and provides a strong positive answer to the isomorphism problem. Thus each soluble group

may be written as a subdirect product of groups whose integral group rings satisfy the conjecture

of Zassenhaus and therefore the F

�

- theorem permits an obstruction theory to the isomorphism

problem in

�

Cech - style cohomology [3]. The negative solution of the isomorphism problem by

M. Hertweck [1] makes such an obstruction theory even more interesting. This stresses the impor-

tance of the F

�

- theorem.

However one of the main ingredients of the proof [4, Theorem 26] is wrong. It a�ects the proof

of the F

�

- theorem in the case when p = 2: Using A. Weiss' theorems on generalized permutation

lattices [7] we could close together with the following observation the gap in the proof.

Proposition 1. Let G be a p - group. Let A be an integral domain of characteristic zero and

let m be a maximal ideal which contains p. Put k = A=m and denote the quotient �eld of A by

K:

Suppose that M is an AG - permutation lattice and that N is a generalized AG - permutation

lattice such that kM

�

=

kN andKM

�

=

KN: Then M

�

=

N andN is therefore an AG - permutation

lattice.

Not necessary for the F

�

- theorem but related to its context is the following.

Proposition 2. Let G be a �nite group. Let A =

^

Z

p

. Put k = A=pA and denote the quotient

�eld of A by K:

(i) Suppose that � is a normalized A - algebra automorphism of AG which induces on kG the

identity. Assume that p is odd or that � permutes the class sums of 2 - elements of G. Then

� is conjugation with a unit in AG.

(ii) Let Q be a p - subgroup of G. Suppose that � : AQ �! AG is an A - algebra homomorphism

which induces mod p the inclusion of kQ into kG. Assume that p is odd or that � �xes for

the irreducible characters of G the values of the elements of Q. Then � is conjugation with

a unit in AG of the form 1 + pu:

Finally it should be remarked that the proof of the F

�

- theorem as stated above is now

complete. However a stronger statement of Roggenkamp and Scott [4, Theorem 19] classi�ying in

particular the automorphisms of

^

Z

p

G remains open for p = 2.
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Representations of �

n

irreducible on subgroups
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A. Kleshchev

We spoke on the recent results of Kleshchev-Sheth and Brundan-Kleshchev. Let F be an alge-

braically closed �eld of characteristic p, and �

n

be the symmetric group on n letters. We classify

all pairs (G;D), where D is an irreducible F�

n

-module of dimension greater than 1 and G is a

proper subgroup of �

n

such that the restriction D#

G

is irreducible, provided p > 3.

Irreducible Specht modules

Andrew Mathas

Let S

n

be the symmetric group on f1; 2; : : : ; ng. For each partition � there exists a ZS

n

{

module S

�

, called a Specht module. For any �eld k let S

�

k

:= S

�




Z

k be the Specht module

over k; so, S

�

k

is a kS

n

{module. In particular, when k is a �eld of characteristic zero then S

�

k

is

absolutely irreducible and all irreducible kS

n

{modules arise uniquely in this way. In general, the

irreducible kS

n

{modules arise as quotients of the S

�

k

.

In this talk we ask, and partially answer, the following question.

When is the Specht module S

�

k

irreducible?

When k is a �eld of characteristic 2 we can answer this question in full. For the general case

we can only give a conjecture. Similar statements can be made for the Iwahori{Hecke algebra of

S

n

.

The Modular Atlas Project:

Techniques for �nding decomposition matrices

J�urgen M�uller

The aim of the Modular Atlas Project, begun by R. Parker 15 years ago, is to compute the

Brauer character tables of all the almost quasi-simple groups whose ordinary character tables can

be found in the Atlas Of Finite Groups. Work of di�erent people has so far led to the following

results:

Almost everything is known for 16 of the 26 sporadic groups, i. e., up to the second Conway

group Co

2

, which is of order � 4 � 10

13

, including the alternating and Lie type groups occurring

in the Atlas and having order less than that.

For the symmetric groups S

n

everything is known up to n = 16, even everything for n = 17

except the case p = 3, which currently is under progress.

Techniques involved encompass, e. g., computations with characters, LLL lattice base reduction

within Grothendieck groups; for the symmetric groups: Scopes reduction and the Jantzen-Schaper

formula; explicit construction of matrix representations, and condensation, i. e., explicit compu-

tation of images of modules under a certain Schur functor.

Zeros of characters

Gabriel Navarro

(A) If G is a �nite group and p is a prime number, it is a standard fact that every character

of G of degree not divisible by p never vanishes on any element of order a power of p. In some

sense, it is natural to study to what extent we can replace p by not divisible by p. Can irreducible

characters of G of p-power degree vanish on elements of p

0

-order?

The answer to this question is \yes", although it seems that not very often. In fact, more is

going on in solvable groups.

THEOREM A. Let G be a solvable group and let � 2 Irr(G) be primitive. Suppose that �(1)

is a �-number. Let x 2 G. Then �(x) = 0 if and only if �(x

�

) = 0.

(B) Burnside's theorem assures that for every nonlinear � 2 Irr(G), there is x 2 G such that

�(x) = 0. I would like to prove the following result.
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CONJECTURE B. Suppose that � 2 Irr(G) is nonlinear. Then there exists x 2 G of order a

power of prime such that �(x) = 0.

I can prove conjecture B for prime power degree characters.

THEOREM C. Let � 2 Irr(G) with �(1) > 1. If �(1) is a power of p, then �(x) = 0 for some

p-element x of G.

In general, I can prove the following reduction theorem (which uses twice the classi�cation).

THEOREM D. Conjecture B is true if it is true for all simple groups.

(C) (Joint work with M. Isaacs and T. Wolf.)

Which columns of a character table can fail to contain zero? In other words, which are the

nonvanishing elements of our group G, by which we mean the elements x 2 G such that �(x) 6= 0

for all characters � 2 Irr(G). In general, nonvanishing elements need not to lie in any abelian

normal subgroup of G (even for solvable groups).

It appears to be true, however, that such an element must always lie in a nilpotent normal

subgroup. Unfortunately, we have been unable to establish this in general, but we do provide a

proof for elements of odd order.

THEOREM E. Let x be a nonvanishing element of the solvable group G. If x has odd order,

then x lies in the Fitting subgroup of G .

(D) Suppose that G is a simple group such that all of its p-Brauer characters never vanish on any

p-regular element. Is p = 2?
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The group ring of SL

2

(p

f

) over p-adic integers

Gabriele Nebe

Using the description of kSL

2

(p

f

) over a �eld k of characteristic p by Koshita, the group ring

RSL

2

(p

f

) over a ring of p-adic integers can be described nearly up to Morita equivalence. For

simplicity only the results for p = 2 are stated here:

Let 3 � f 2 N, R be the ring of integers in the unrami�ed extension K of degree f of Q

2

and

k := R=2R

�

=

F

2

f the residue class �eld. Let G := SL

2

(2

f

) denote the group of 2 � 2-matrices

over k of determinant 1. Then (K;R; k) is a 2-modular splitting system for G.

The simple kG-modules S

I

are indexed with the subsets I of N := f1; : : : ; fg, such that dim(S

I

) =

2

jIj

.

Theorem. Let V be a simple KG-module of dimension n with corresponding representation

�

V

and fI

1

; : : : ; I

r

g be the set of indices of the 2-modular constituents of V and put n

j

:= 2

jI

j

j

1 � j � r. Then there is a basis of V such that

�

V

(RG) = f(X

ij

)

1�i;j�r

2 R

n�n

j X

ij

2 2

jI

i

nI

j

j

R

n

i

�n

j

g:

The endomorphism rings and homomorphism bimodules of the projective indecomposable RG-

lattices can be described explicitly. In particular one �nds

Corollary. The endomorphism ring of the projective cover of the trivial RG-module is isomorphic

to the group ring of the Sylow 2-subgroup of G.

A construction of tilting complex

Tetsuro Okuyama

We shall discuss some method to construct tilting complexes for symmetric algebras and some

applications of it.

Let A and B be symmetric algebras over an algebraically closed �eld k which are stably equivalent

of Morita type given by a (B;A)-module

B

M

A

. We assume that A, B are connected, nonsimple,

and

B

M

A

has no projective summand. Let T

i

; i 2 I be the set of simple B-modules and

Q

i

! T

i

be a projective cover of T

i

. Let P

i

�

i

! T

i




B

M

A

be a projective cover of the A-module

T

i




B

M

A

. By a result of Rouquier, a projective cover of the (B;A)-module M has the form

L

Q

�

i




k

P

i

�

!M ! 0. Take a subset I

0

of I and set P =

L

i2I

0

Q

�

i


P

i

and � = �j

P

. Now de�ne

the complex M

�

= M

�

(I

0

) by M

�

: � � � ! 0 ! P

�

!M ! 0 ! 0 ! � � � . We consider the condition

(C): For all i 2 I

0

and l 62 I

0

(1) ker Hom

A

(T

l




B

M;�

i

) = 0 and (2) coker Hom

A

(�

i

; T

l




B

M) = 0.

THEOREM As a complex of projective A-modules, M

�

A

is a tilting complex for A i� condition

(C) holds.

If M

�

A

is a tilting complex for A, the left action on

B

M

�

A

gives an algebra monomorphism from B

to C and we see that

B

C

C

gives a stable equivalence of Morita type between B and C.

COROLLARY Suppose that (1) for i; l 2 I

0

, dim Hom

A

(
(T

i




B

M

A

);
(T

l




B

M

A

)) = �

il

and

(2) for j;m 62 I

0

, dim Hom

A

(T

j




B

M

A

; T

m




B

M

A

) = �

jm

. Then B = C and

B

M

�

A

is a two sided

tilting complex for (B;A).
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The hyperfocal algebra of a block

Lluis Puig

It is well-known that the intersection of a Sylow p�subgroup S of G with O

p

(G) coincides with

< [O

p

�

N

G

(Q)

�

; Q] j Q � S > . We prove an analogous statement in any block b of G : let P




be

a defect pointed group of b and set

Q = < [O

p

�

N

G

(R

"

)

�

; R] j R

"

local ; R

"

� P




>

Theorem. There is a P -stable O-subalgebra D of (OG)




, unique up to

�

(OG)

P




�

�

conjugation,

containing the image of Q and ful�lling (OG)




= �

u2U

Du , where U is a set of representatives

for P=Q in P .

Now, the structure of the source algebra of a nilpotent block is an easy consequence of this

result.

Gluing modules and Rickard equivalences

Rapha�el Rouquier

We explain how various categories of modules, permutation modules, G-sets are determined locally

(as 'G-equivariant sheaves' over the poset of non-trivial p-subgroups).

Then, we apply these construction to construct stable equivalences, given (good systems of)

Rickard equivalences for local subgroups.

As an application, we can show that a block with defect group (Z=p)

2

is stably equivalent to its

Brauer correspondent.

Symmetric functions associated with �nite general linear groups

Bhama Srinivasan

The Kostka polynomials K

��

(q), when suitably normalized, give the values of the unipotent

characters of GL(n; q) at unipotent classes. Given a semistandard tableau T of shape � and

weight �, one can associate a power t

c(T )

to T such that K

��

(t) =

P

t

c(T )

, the sum being over

all such T . Macdonald [Hall polynomials and symmetric functions, 2nd edition, Oxford] has

introduced two variable polynomials K

��

(q; t) and asked whether to any standard tableau T of

shape � a power a(T ) of q and a power b(T ) of t (depending on �) can be attached such that

P

q

a(T )

t

c(T )

= K

��

(q; t).

In this talk we describe a possible approach to this problem. Lynne Butler has observed a

pattern of how, for �xed �, K

��

(q; t) appears to change when we replace � by �, a neighbor of

� in the dominance ordering of partitions. Thus if we can explain this pattern we can use it to

de�ne K

��

(q; t) starting from K

�1

n

(q; t) which is known. Work is in progress regarding this.

The two-variable Macdonald polynomials, suitably specialized, occur in the work of Bannai,

Kawanaka and Song on the Hecke algebra of a representation induced from Sp(2n; q) to GL(2n; q).

The group of endo-permutation modules

Jacques Th�evenaz

joint work with Serge Bouc

Let k be a �eld of characteristic p and let P be a �nite p-group. Let D(P ) be the set of iso-

morphism classes of endo-permutation modules which are indecomposable with vertex P . Tensor

product induces a structure of abelian group on D(P ) (called the Dade group of P ). When P is

abelian, the structure of D(P ) was determined by Dade in 1978. In the general case, Puig proved

in 1981 that D(P ) is �nitely generated, but its structure remained unknown.
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Theorem 1. The torsion-free rank of D(P ) is equal to the number of conjugacy classes of non-

cyclic subgroups of P .

The proof of this result is rather involved and is based on an analysis of D(�) as a functor

with respect to the following �ve morphisms: restriction to a subgroup, tensor induction from a

subgroup, in
ation from a quotient group, de
ation to a quotient group, and group isomorphisms.

Let QD(P ) denote the Q-vector space obtained by tensoring D(P ) with Q.

Theorem 2. The functor QD(�) is a simple functor, isomorphic to the simple functor S

E;Q

,

where E is elementary abelian of rank 2 (and Q is the value of the functor at the minimal group

E).

It is a remarkable coincidence that S

E;Q

is also a subfunctor of the Burnside functor B(�)

tensored with Q, with quotient isomorphic to QR

Q

(�), where R

Q

(P ) is the Grothendieck group

of QP -modules (i.e. the ring of rational characters of P ). Thus we obtain the following rather

strange exact sequence.

Theorem 3. There is an exact sequence of functors 0 ! QD ! QB ! QR

Q

! 0.

When p is odd, we have analogous results for a suitable quotient of the torsion subgroup of

D(P ). In fact, this quotient is conjecturally equal to the torsion subgroup of D(P ).

Reduction modulo p of unrami�ed representations

of �nite groups of Lie type

Pham Huu Tiep

(joint work with A. E. Zalesskii)

We would like to study the following problem:

Problem. Let G be a �nite group, p a prime. Determine the complex representations of a �nite

group G which remain irreducible under the reduction modulo some prime p dividing the order of

G.

Two particular cases when one has a complete answer are the cases where G = Sym

n

, p = 2,

and where G = GL

n

(q), p coprime to q, both due to G. James and A. Mathas. Our main

theorem solves the problem for �nite groups of Lie type and p the de�ning characteristic (and the

representations in question are unrami�ed above p, i.e. they can be realized over an unrami�ed

extension of Q

p

).

Theorem. Let G be a connected reductive �nite group of Lie type in characteristic p > 3,

with no component of type A

1

, G

2

, F

4

. Suppose � is an unrami�ed complex representation of G

such that Ker(�) is solvable. Then �(modp) is irreducible if and only if � = St
 �, where St is

the Steinberg representation and � is any representation of degree 1.

In the case of simple groups of Lie type over prime �elds we obtain a stronger result, classifying

all unrami�ed complex representations with a semisimple reduction modulo p. Our next result

shows that for many �nite groups of Lie type, all complex representations are unrami�ed. We also

give a criterion for (non-) lifting representations from Z=p to Z=p

k

for k > 1.

Simple modules in the Auslander-Reiten quivers of �nite groups

Katsuhiro Uno

Let G be a �nite group, and let B be a block algebra of G over an algebraically closed �eld k

of characteristic p, where p is a prime. It is proved by Erdmann that, if B is wild, then any AR

component has tree class A

1

. In this case, we say that a module X lies at the end if there is

only one arrow which goes into (or goes from ) X . Concerning the positions of simple modules,

we have the following.

Theorem Assume that B is wild. Then every simple module lies at the end of its AR compo-

nent, if B, G and p satisfy one of the following.

(i) ([2]) G is a �nite group of Lie type de�ned over a �eld of characteristic p.

(ii) ([1]) G is a symmetric group, an alternating group, or their covering groups. For covering

groups, we assume also that the weight of B is at least 3.
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(iii) ([3]) G has an abelian Sylow 2-subgroup, and B is the principal 2-block.

Remark 1. The principal 5-block of F

4

(2) has a simple module with dimension 875823 which

does not lie at the end of its AR component.

Remark 2. In most cases given in Theorem, every non-periodic AR component has at most

one simple module.

Remark 3. In case of (iii) of Theorem, every periodic simple module has period 2

m

�1, where

m is the rank of a Sylow 2-subgroup of G.
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A local description of the stable category

Wayne W. Wheeler

One of the common themes of modular representation theory is the idea that the representations

of a �nite group are closely related to those of its local subgroups. Suppose that G is a �nite

group and k is an algebraically closed �eld of characteristic p. The stable category kG-Mod is

the category in which the objects consist of all left kG-modules, and morphisms are equivalence

classes of kG-homomorphisms; two homomorphisms from M to M

0

are de�ned to be equivalent if

their di�erence factors through a projective kG-module. This report gives a brief description of a

category  L(G; k) that is equivalent to kG-Mod and is de�ned in terms of local subgroups.

The de�nition of  L(G; k) depends upon two main ingredients: Rickard's work on idempotent

modules and Benson, Carlson, and Rickard's theory of varieties for in�nitely generated modules.

Let ProjH

�

(G; k) denote the collection of all homogeneous prime ideals in H

�

(G; k) that do not

contain

L

1

n=1

H

n

(G; k). Associated to any kG-module M is a subset

�

V

G

(M) � ProjH

�

(G; k). If

M is �nitely generated, then

�

V

G

(M) is closed in ProjH

�

(G; k), so it de�nes a projective variety.

For an arbitrary module M the set

�

V

G

(M) is again called the variety of M , even though it may

fail to be closed when M is in�nitely generated. Now suppose that V is a closed subset of

�

V

G

(k).

Then Rickard has constructed modules e

V

and f

V

such that e

V


 e

V

�

=

e

V

and f

V


 f

V

�

=

f

V

in

kG-Mod. If P is a p-subgroup of G, set

V

G;P

= res

�

G;P

�

�

V

P

(k)

�

and e

G;P

= e

V

G;P

.

Let {(G) denote the collection of all p-subgroups of G, and let M be any kG-module. Suppose

that P 2 {(G), and set N = N

G

(P ). Then there is an object e

N;P


M #

N

in kN -Mod, and

�

V

N

(e

N;P


M #

N

) � V

N;P

. The modules in the collection fe

N;P


M #

N

j P 2 {(G)g clearly satisfy

certain compatibility conditions under conjugation and restriction. The objects of the category

 L(G; k) are essentially de�ned to be the collections L = fL(P ) j P 2 {(G)g, where L(P ) is an

object of kN

G

(P )-Mod with

�

V

N

G

(P )

�

L(P )

�

� V

N

G

(P );P

for all P 2 {(G) and the modules satisfy

appropriate compatibility conditions under conjugation and restriction. Using the properties of

varieties and idempotent modules, one can show that kG-Mod is equivalent to  L(G; k).

On the complexity of modules

Jiping Zhang

Let k be a �eld of characteristic p > 0 and G a �nite group. For a �nitely generated kG-module

M , the complexity c

G

(M) of M is de�ned to be the least integer s � 0 such that lim

n!1

dim(P

n

)

n

s

=



MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH 23

0, where ::::::! P

n

! P

n�1

! ::: ! P

0

!M ! 0 is a minimal projective resolution of M . As is

well-known, c

G

(M) is equal to the dimension of the variety V

G

(M) associated with M .

We prove the following theorem which generalizes the related results by Erdmann, Bessenrodt

and Ma.

Theorem . Let G be a �nite p-soluble group and B a p-block of G with defect group D. Let

M be a simple kG-module in B with an abelian vertex V . If c

G

(M) � p� 1 then V is conjugate

in G to D unless c

G

(M) = p � 1 = 2

n

with D

G

=L

�

=

p

p�1

: (2

1+2n

: p) where D

G

is the normal

closure of D in G and L is a normal subgroup of D

G

.
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