
Tagungsbericht: 27/1999

Explicit Methods in Number Theory

4.7. - 10.7.1999

The conference was organized by H. Cohen (Talence), H. Lenstra (Berkeley, Leiden) and

D. Zagier (Bonn, Utrecht). The goal was to present new methods and results on concrete

aspects of number theory. In many cases this included computational and experimental

work, but with the primary emphasis being on the implications for number theory rather

than on the computaional methods used.

There were two \mini-series" of two 1-hour lectures each, one by B. Poonen on methods

for �nding rational points on curves of higher genus and one by F. Rodriguez-Villegas on

Mahler measures and their interpretation as periods of motives. Some of the other main

themes included:

� rational points on curves and higher dimensional varieties

� classical algebraic number theory (class groups, discriminants, Galois groups, : : : )

� class number formulas, Stark's conjecture, algebraic K-theory

� analytic algebraic number theory

� points on curves over �nite �elds

As always in Oberwolfach, the atmosphere was ideal for exchanging ideas and conduct-

ing lively discussions.

Abstracts

Karim Belabas:

Computing K

2

O

F

for imaginary quadratic �elds

(joint work together with Herbert Gangl)

Tate has given a strategy for computing K

2

O

F

for rings of integers in a number �eld.

He and subsequent authors (Ska lba, Qin, Browkin) have re�ned the method and were

able to completely determine the structure of K

2

O

F

for a handful of imaginary quadratic

�elds. Using Tate's construction and ideas coming from the Hafner-Mc Curley algorithm

to compute (K

0

O

F

)

tor

together with K

1

O

F

(canonically isomorphic to Cl(O

F

) and O

�

F

respectively), we are able to compute K

2

O

F

in a systematic way. The algorithm produces
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explicit generators for the tame kernel and an exponent for each of them. In all cases

computed so far, the results agree with the predictions made assuming Lichtenbaum's

conjecture, hence we expect the generators to be independent and the exponent to be the

true order. For example:

Theorem: Let F = Q(

p

�163), then K

2

O

F

= f1g

Theorem: Let F = Q(

p

�303), then K

2

O

F

= hf2

10

;

37

2

+

3

2

p

�303gi and this symbol is

11-torsion. [We conjecture it is non trivial.]

Pilar Bayer:

Some computations on a family of curves of genus three

In the context or Arithmetic Algebraic Geometry, some invariants, like Green functions,

Faltings �, heights, etc. are attached to curves de�ned over number �elds. They are rather

intrincated and have been calculated in very few cases. We provided the J. Gu�ardia

approach to the explicit determination of these invariants for the curves

C

n

: y

4

= x

4

� 2(2n� 1)x

2

z

2

+ z

4

;

where n 2 N (n 6� 0; 1 mod 2

5

).

The projective non-singular curves C

n

are of genus three and their Jacobians, J(C

n

),

split completely. Some of the arithmetical invariants of the curves C

n

and those of the

elliptic quotients of J(C

n

) are related in a simple way, so that a stable model of C

n

and the

modular height of J(C

n

) can be calculated. Others, as Green functions are more involved.

The dualizing sheaf (in the sense of Arakelov theory) was presented, as well as a nu-

merical lower bound for the self-intersection in the case n = 3.

The curves C

n

are a particular case of a family of curves that had been cosidered

previously by Cassels.

Daniel J. Bernstein:

Counting rational points by brute force

There are exactly 42 rational points of height up to 21000000 with positive coordinates

on the Fermat quartic surface. I explained in detail how to carry out such a computation.

The same techniques apply in generality; my programs have been used to numerically check

the Brauer-Manin-type conjectures for some cubic surfaces.
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Frits Beukers:

Cyclotomic points on curves

Let 
 be the set of roots of unity. Let f 2 Z[x

1

; x

�1

1

; : : : ; x

n

; x

�1

n

] be a Laurent-

polynomial, irreducible over Q. Consider the diophantine equation

f(x

1

; : : : ; x

n

) = 0 in x

1

; x

2

; : : : ; x

n
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Let N

f

be the Newton polytope corresponding to f and suppose it has positive n-

dimensional volume. We show that the number of solutions to our equations in the case

n = 2 is bounded by 22V ol(N

f

). At the same time there is an e�cient algorithm to �nd

these points. We discuss an application to Lie-symmetries of a class of partial evolution

equations.

Nils Bruin:

Chabauty using elliptic curves applied to generalised Fermat equations

When considering pairwise prime solutions x; y; z 2 Z of the equation

x

r

+ y

s

= z

t

for �xed r; s; t 2 Z

>1

with

1

r

+

1

s

+

1

t

< 1, one is led to consider the rational points of

curves of genus > 1, as is proved in a paper by Darmon and Granville. In some cases (if

r = s and for some r and s that have a factor in common), it is possible to determine these

curves explicitly. To determine the rational points on the curve, the following method is

proposed.

Suppose we have a cover of curves � : D ! P

1

over Q that factors through an elliptic

curve E over a number �eld K. Thus, we have D

�

! E

�

! P

1

with ��� = �. Consequently,

we have that �(D(Q)) � �(E(K))\P

1

(Q ). Now suppose that the rank r of E(K) is smaller

than the degree m of K and that we have a prime p that splits completely in K and that

all involved objects have su�ciently nice reduction properties at p. The m embeddings

K ,! Q

p

agree on Q � K and induce maps �

i

: E(K) ! P

1

(Q

p

) for i = 1; : : : ; m. If

G = G

0

+ n

1

G

1

+ � � �+ n

r

G

r

2 E(K) has �(G) 2 P

1

(Q ), then we have that

�

i

(G

0

+ n

1

G

1

+ � � �+ n

r

G

r

) = �

j

(G

0

+ n

1

G

1

+ � � �+ n

r

G

r

)

for all i; j. If the G

k

are su�ciently close (p-adically) to the identity element of E, then

these equations can be expressed as power series in n

1

; : : : ; n

r

with coe�cients in Z

p

.

Integral solutions to such power series equations can usually be bounded in number if

r < m. Since E is compact in p-adic topologies, we can cover E(K) with �nitely many

neighbourhoods of this form and thus get an upper bound on #(�(E(K))\P

1

(Q )). Often,

we can even get a sharp bound and thus determine the set exactly. We then just have to

check for �nitely many points whether they lift to rational points through �

�1

.
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If we have a curve C that does not cover an elliptic curve, then we can still try to

determine the rational points by covering C(Q ) by the rational points of �nitely many

unrami�ed covers D of C, that might cover elliptic curves. A nice example of this exists

for curves of genus 2. If we embed such a curve in its jacobian and pull it back along the

multiplication-by-2 homomorphism, we get a genus 17, degree 16 unrami�ed cover D of C.

Apart from C, such a curve covers 15 elliptic curves, correspondig to the 2-torsion points

of the jacobian of C.

Algebraically, if C is Y

2

= F (X), where F is a square-free degree 6 polynomial, this

method boils down to choosing a factorisation of F in a quadratic part Q and a quartic

part R over a �eld extension K. Then there is a �nite set of values � in K such that for

each (x; y) 2 C(Q ), there is such a � and y

1

; y

2

2 K such that

�y

2

1

= R(x);

�y

2

2

= Q(x);

�y = �y

1

y

2

holds. The elliptic curve E corresponds to the genus 1 curve Y

2

1

= �R(X) and � corresponds

to X.

This method yielded the following results

Theorem: If x; y; z 2 Z satisfy x

2

� y

4

= �z

6

and gcd(x; y; z) = 1 then xyz = 0.

Theorem: The only integer, pairwise prime, solutions to x

2

+ y

8

= z

3

are

(x; y; z) 2 f(�1; 0; 1); (0;�1; 1); (�1549034;�33; 15613)g

Theorem: The only integer, pairwise prime, solutions to x

8

+ y

3

= z

2

are

(x; y; z) 2 f(�1; 0;�1); (0; 1;�1); (�1; 2;�3); (�43; 96222;�30042907)g:

Theorem: If x; y; z 2 Z satisfy x

2

+ y

4

= z

5

and gcd(x; y; z) = 1 then xyz = 0.

Theorem: The only integer, pairwise prime solutions to x

2

� y

4

= z

5

are

(x; y; z) 2 f(�1; 0; 1); (0;�1;�1); (�122;�11; 3); (�7;�3;�2)g:

These methods and results are described in detail in the PhD-thesis \Chabauty methods

and covering techniques applied to generalised Fermat equations" by the author.

Dongho Byeon:

Class number 1 criteria for totally real algebraic number �elds

Let K be a totally real algebraic number �eld. Using Siegel's formula for the special

values of Dedekind zeta function, we will give class number 1 criteria for K.
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Herni Cohen:

Density of discriminants of number �elds

Let G be a �nite transitive subgroup of S

n

, K be a number �eld, and

N

K;n

(G; x) = #fL=K; of degree n j Gal(L

gal

=K)

�

=

G;N(�(L=K)) � xg

(up to ismorphisms) We want to estimate N

K;n

(G; x) as x!1. This is known for G = C

2

,

C

3

, and, up to a multiplicative constant, for any Abelian group G. For example,

N

K;2

(C

2

; x) �

1

2

r

2

Res

s=1

�

K

(s)

�

K

(2)

x

This is in fact rather hard.

We give methods using Kummer theory that allow us to attack the problem for solvable

G. Explicit computations have been made for G = C

l

, G = D

4

, G = C

2

� C

2

and are in

progress for G = A

4

and S

4

.

Wright and Yukie obtain similar results using adelic integrals, which are not easy to

compute explicitly.

In particular, it is now known that

N

K;4

(D

4

; x) � c

K

x explicit c

K

and

N

K;4

(S

4

; x) � d

K

x explicit d

K

(the preceding best result for S

4

was O(x

3=2

)). It is conjectured that

N

Q;n

(x) � cx

for all n, perhaps with c =

1

�(n)

if one counts �elds and �etale algebras with appropriate

multiplicities.

Claus Fieker:

On Knots and Norm Equations

Starting with an explicit example of a number �eld of relatve degree 20 over the 5

ths

cyclotomic �eld, I briey recalled methods to solve norm equations (the geometric method

and the S-unit method) and sketched a procedure to compute norm groups of abelian

extensions.

Using two independent methods due to Scholz and Tate, I showed how to compute the

number knot

�

K=k

:= flocal norms everywhereg=fglobal normsg
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measuring the amount of failure of the Hasse-Norm-Theorem. Scholz gave a despription

of �

K=k

as the Galois group of a certain central ray class �eld over a ray genus �eld.

Furthermore he provides explicit construtions for the ideal groups involved.

Tate on the other hand gave the exact sequence

1 ! �

K=k

! H

2

(G;Q=Z) ! �H

2

(G

p

;Q=Z)

By using the explicit isomorphism H

2

(

Q

i

C

n

i

;Q=Z)

�

=

Q

i<j

C

(n

i

;n

j

)

and using the ideal

groups to compute the decomposition groups G

p

, I computed �

K=k

to be of order 2 in this

case. Using S-units, I provided a generator.

By using a splitting argument, it was possible to produce a solution to the initial

equation.

Eduardo Friedman:

Improving the unconditional discriminant bounds for number �elds of small

degree

Matias Atria has obtained improvements in the lower bound for the discriminant of a

small degree number �eld by exploiting hypothetical violations of the Generalized Riemann

Hypothesis. Indeed, if GRH holds, we have reasonably adequate lower bounds. So if we

assume such a bound fails, we can assure the existence of a zero in the region D where a

certain auxiliary function used by Odlyzko is negative.

Be varying this auxiliary function slightly, one can show that this zero �

0

lies in a small

region at height approximately 2.2 above the real axis. One then exploits this zero by

�nding auxiliary functions that yield good bounds (unconditionally) given the existence of

a zero in the region D.

The case n = 8, r

1

= 6 (n = degree, r

1

= number of real places) has been completely

determined by Atria, checking all computer calculations rigorously. He obtained for this

signature

jdiscj > 9:05

8

:

Compare this with the unconditional (previous) jdiscj > 8:97

8

and the unconditional

jdiscj > 9:27

8

:

Herbert Gangl:

Towards a higher class number formula

Dirichlet's class number formula for a number �eld F ,

�

�

F

(0) =

�h

F

R

F

w

F

;
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where h

F

= class number, w

F

= #froots of 1g and R

F

= Regulator of F , has been

conjecturally generalized by Lichtenbaum in the famous Lichtenbaum Conjecture (LC):

For m > 1:

�

(m�1)d

m

�

�

F

(1�m)

?

= 2

?

#K

2m�2

O

F

#(K

ind

2m�1

O

F

)

tors

R

m;F

where d

m

=

(

r

1

+ r

2

; m odd

r

2

; m even

, K

n

O

F

denotes Quillen's K-groups, and R

m;F

is the Borel

regulator (the covolume of a certain lattice generated by K

2m�1

O

F

via the Borel regulator

map) (The superscript \ind" denotes the indecomposable part.)

By making the pair (K

2m�1

O

F

; Borel regulator map) explicit via Zagier's conjecture,

namely replacing it by (m

th

Bloch group, m-logarithm), we can numerically not only

verify the plausibility of (LC), but also deduce conjectural orders (or at least divisibilities

by larger primes, i.e. > 5) of #K

2m�2

O

F

, for which very little is known. Furthermore, the

incompatibility with an alleged proof of a modi�ed version of (LC) in the abelian case led

to the discovery of a mistake in this proof, giving the experiments even a theoretical value.

Perhaps a mere coincidence is the following instance (suggested by the experiments):

1301j#K

4

Z[�

11

] and 1301jh

�

11�12�1

37 � 61j#K

4

Z[�

13

] and 37 � 61jh

�

13�14�1

where h

�

n

denotes the relative class number for the n

th

cyclotomic �eld over Q .

J

�

urgen Kl

�

uners:

Recent Developments in Constructive Galois Theory.

(joint work together with Gunter Malle)

Until now, the inverse problem of Galois theory, i.e., the question whether every �nite

group occurs as the Galois group of a �eld extension of Q , has not been solved. Even

less is known in the direction of explicit results. Complete results for permutation groups

of small degree were until now only known in degrees up to eleven. We encounter two

types of problems. First, as mentioned above, not all the groups up to degree 15 were

even theoretically known to occur as Galois groups over Q . Secondly, there arises the

practical problem how to come from theoretical existence results to explicit polynomials.

An important tool in the constructions is a Galois group program which also yields the

correct ordering of the roots, as provided by the computer algebra system Kant.

For nearly all transitive groups up to degree 15 we give methods to construct polyno-

mials over Q and Q(t). We discuss the remaining cases and prove that there exist regular

extensions of Q (t) for these groups. Altogether we prove that for all transitive groups G up

to degree 15 there exists a polynomial f 2 Q(t)[x] such that Gal(f) = G and the extension

is regular.

We have created a database with about 50000 polynomials over Q covering all transitive

groups up to degree 15.
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Kristin Lauter:

Improvements on the Weil-Serre-Oesterl�e Upper Bounds for N

q

(g)

Currently, the best known bounds on the number of rational points on an absolutely

irreducible, smooth, projective algebraic curve of genus g de�ned over a �nite �eld F

q

generally come either from Serre's re�nement of the Weil bound if the genus is small

compared to q, or from the optimization of the explicit formulae if the genus is large.

This talk presented three methods for improving these bounds in both cases. The

arguments used are the indecomposability of the theta divisor of a curve, Galois descent,

and Honda-Tate theory. Examples of improvements on the bounds include lowering them

for a wide range of small genus when q = 8; 32; 2

13

; 27; 243; 125, and when q = 2

2s

, s > 1.

For large genera, isolated improvements are obtained for q = 3; 8; 9.

Franz Lemmermeyer:

Capitulation of Tate-Shafarevich groups

Let k denote a number �eld, let E : y

2

= x(x

2

+ax+ b) be an elliptic curve de�ned over

k, and assume that the coe�cients a; b are elements of a unique factorization domain R

whose quotient �eld is k. Let � : E �!

b

E denote the 2-isogeny associated to the subgroup

of E(k) of order 2 generated by (0; 0), and let  :

b

E �! E be its dual.

Realizing elements of qq(E=k)[�] as torsors T (b

1

) : N

2

= b

1

M

4

�2aM

2

e

2

+b

2

e

4

that are

everywhere locally solvable but do not have a nontrivial rational point (where b

1

; b

2

2 R

are such that b

1

b

2

= a

2

� 4b) we say that the class of T (b

1

) in qq(E=k)[�] capitulates in

an extension K=k if T (b

1

) has a K-rational point. Heegner's Lemma states that there is

no capitulation of qq(E=k)[�] in extensions K=k of odd degree. For quadratic extensions

K = k(

p

d ) with d 2 k we show that the capitulation of qq(E=k)[�] or qq(

b

E=k)[ ] is

related to the Mordell-Weil rank of the quadratic twist E

d

(k) : dy

2

= x(x

2

+ ax + b).

Franck Lepr

�

evost:

A tower of abelian surfaces related to the Kowalewski top

(joint work together with D. Markushevich)

Several curves of genus 2 are known, such that the equations of motion of the Kowalewski

top are linearized on their Jacobians. One can expect from transcendental approaches

via solutions of equations of motion in theta-functions, that their Jacobians are isoge-

neous. The paper focuses on two such curves: Kowalewski's and that of Bobenko{Reyman{

Semenov-Tian-Shansky, the latter arising from the solution of the problem by the method

of spectral curves. An isogeny is established between the Jacobians of these curves by

purely algebraic means, using Richelot's transformation of a genus 2 curve. It is shown

that this isogeny respects the Hamiltonian ows. The two curves are completed into an
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in�nite tower of genus 2 curves with isogeneous Jacobians.

Christian Maire:

Bound discriminants for number �elds

(joint work together with Farshid Hajir)

For a number �eld k of degree n over Q, we de�ne its root discriminant r

k

as followed:

r

k

= d

1=n

k

;

where d

k

is the absolute value of the discriminant of k.

Now let �

n

be the minimum of r

k

for all totally imaginary �elds of degree n over Q.

Then, we put:

� = lim inf

n

�

n

:

In 1978, Martinet proved that � < 92:4. Using Hilbert Tamely rami�ed Class �eld

tower, we improve Martinet's estimate by showing that � < 82:2.

Bjorn Poonen:

The method of Chabauty and Coleman

Chabauty proved around 1940(!) that if X is a curve of genus g over a number �eld

k such that rank(JacX)(k) < g, then X(k) is �nite. Coleman in 1985 showed that

Chabauty's argument yields an explicit upper bound for #X(k). This method of Chabauty

and Coleman, in conjunction with the Chevalley-Weil method of unrami�ed covers, seems

to be the best hope today for determining rational points on explicitly given curves of

genus � 2. In these two lectures, we give a survey of the method, explaining some recent

improvements, and some of the di�culties in making it e�ective.

Fernando Rodriguez-Villegas:

Mahler Measures and L-functions

The Mahler Measure M(p) = e

m(p)

of a non zero Laurent polynomial p 2 C [x

1

; x

�1

1

; : : : ; x

N

; x

�1

N

]

is

m(p) =

1

(2�i)

N

Z

T

log jp(x

1

; : : : ; x

N

)j

dx

1

x

1

: : :

dx

N

x

N

where T = f(x

1

; : : : ; x

N

) 2 C

N

j jx

1

j = � � � = jx

N

j = 1g. In the 80's Smyth proved that

m(x + y + 1) = L

0

(�;�1)
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where � is the quadratic character of conductor 3. Recently Deninger showed how to view

m(p) as a Deligne period of a mixed motive for p non vanishing on T and Boyd made a

number of numerical experiments like the following. For k > 4, k 2 Z

(�) m(x +

1

x

+ y +

1

y

� k)

?

�

Q

�

L

0

(E

k

; 0)

(�

Q

�

:= Sides di�er by a non zero rational factor) where E

k

is the elliptic curve determined

by

x+

1

x

+ y +

1

y

� k = 0

The purpose of this talk was to explain how Boyd's construction of polynomials of this

type provides an element in K

2

(E

k

), where E

k

is a N�eron model of E

k

, and how (�) is in

fact a special case of the conjectures of Bloch and Beilinson.

Bart de Smit:

Permutation modules and Class Number Relations

(joint work together with Wieb Bosma)

M

Q

G

X, X

0

�nite G-sets. K = Map(X;M), K

0

= Map(X

0

;M). If 8g 2 G : #X

g

=

#X

0

g

then K and K

0

are products of number�elds with equal � functions:

�

K

= �

K

0

. We give an algorihm to compute bounds on the class number quotient

h=h

0

, and to produce formulas relating h=h

0

to a certain unit index.

Applications:

h(Q(

8

p

a))

h(Q (

8

p

16a))

2 f

1

2

; 1; 2g

@

@

�

�

M

Q

A

4

d

K

d

h(K

6

)

h(K

3

)h(K

4

)

2 f

1

4

;

1

2

; 1g

In both examples all possibilities occur.

Chris Smyth:

Remak's height

(joint work together with Arturas Dubickas)

We study the height

R(�

1

) = ja

0

jj�

1

jj�

2

j

d�2

d�1

j�

3

j

d�3

d�1

: : : j�

d�1

j

1

d�1

\Remak's height", for an algebriac number �

1

with minimal polynomial a

0

z

d

+ � � �+ a

d

=

Q

d

i=1

(z � �

i

): This height essentially appears in an inequality of Remak(1952). We �nd
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sharp upper and lower bounds for R(�

1

) in terms of the Mahler measure M(�

1

). Analysis

of the cases when these inequalities are equalities leads to the study of algebraic numbers

lying with their conjugates on two circles. A full description of such numbers is given.

We also discussed a variant of the Mahler measure, the "Metric Mahler measure"

mmm(�) of an algebraic number �, de�ned by

mmm(�) = inf

�=�

1

�

2

:::�

k

d

X

i=1

m(�

i

):

Here m = logM: This gives rise to a metric D on

�

Q

�

=
, 
 being the group of all roots

of unity, de�ned by D(�; �

0

) = mmm(�=�

0

). This metric gives the discrete topology on

�

Q

�

=
 i� the answer to Lehmer's question is \yes", i.e. i� there is a c > 0 such that

m(�) > 0 =) m(�) � c.

David Solomon:

A p-adic Stark Conjecture at s = 1: Theory and Computations

Let

Z(s; d) :=

1

X

n=1

�

n

n

s

where � = e

2�id=f

, f; d 2 Z (d; f) = 1 and f > 1. Then

Z(1; d) = � log(1� �) and Z(1; d) + Z(1;�d) = � log j(1� �)(1� �

�1

)j

Notice that (1��)(1��

�1

) is a cyclotomic unit (or f -unit) in Q(�)

+

= Q(fZ), the ray-class

�eld to Q modulo the cycle fZ.

Let K=k be an abelian extension of number �elds and � a character in Gal(K=k)

�

.

The Stark Conjectures for the complex L-functions L

K=k

(s; �) at s = 0 can be seen as

conjectural generalisations of this fact (via the functional equation). To see this, one �rst

rewrites L

K=k

(s; �) in terms of certain generalisations of Z(s; d) over k, which we call

`twisted zeta functions'. In the talk, we concentrated on the case where k is totally real

and K = k(f) or k(f+) for some ideal f /O

k

, f 6= O

k

. Rather than stating the full complex

conjecture, we wrote down a strictly analogous conjecture at s = 1 2 Z

p

for the p-adic

twisted zeta functions that can be obtained by p-adic interpolation of the complex versions

on the set f1�m : m 2 Z

>0

; (p� 1)jmg (p 6= 2). Roughly speaking, their values at s = 1,

suitably combined, should be given by a p-adic regulator of f-units in k(f), with values in

C

p

[Gal(k(f)=k)].

Further, for k real quadratic, we gave an explicit formula for computing these values to

any p-adic precision by a geometrically-converging series. Finaly, an example was presented

with p = 3, k = Q (

p

37) and f = 2(O)

k

, so that Gal(k(f)=Q) = S

3

. We determined f-

units u

1

, u

2

in k(f) which satisfy the conjecture to 34 3-adic places in each coe�cient of the

11



group-ring element. Moreover, u

1

and u

2

turn out to be free generators over Z[Gal(k(f)=k)]

of the appropriate group of f-units. (This essentially determines their regulator). This and

several more complicated examples, were calculated in joint work with Xavier-Fran�cois

Roblot.

Harold Stark:

The uniform abc-conjecture

(joint work together with Andrew Granville)

We investigate a variant of the abc conjecture wich is uniform over number �elds.

Notation: if �

1

; : : : �

n

are in an algebraic number �eld K, not all zero, we set

H(�

1

; : : : ; �

n

) = [

Y

v

(max

j

k�

j

k

v

)]

1=[K:Q]

;

N(�

1

; : : : ; �

n

) = [

Y

p2I

N(p)]

1=[K:Q]

;

where I := fp j pdoes not divide all �

i

to the same powerg. We also set �

K

= jdisc(K)j

1=[K:Q]

.

uniform abc conjecture. There is a number A > 0 such that for any � > 0, if a + b = c

holds for non zero numbers in a �eld K, we have

(�) H(a; b; c) <<

�

�

A+�

K

N(a; b; c)

1+�

and the implied constant depends only on � and not on a, b, c or even K. Simple examples

show that we require A � 1 in (�). This leads to the strong uniform abc conjecture. We may

take A = 1 in the uniform abc conjecture. Let k = Q (

p

�d) where �d is the discriminant of

k and let k(N) be the ray class �eld of k mod N . We apply the uniform abc conjecture to

the modular function j(z) and the relation (j(w)�1728) + (1728) = (j(w)) with K = k(6)

and �

K

< 6d

1=2

. The result implies the class number of K grows fast enough that there

are no Siegel zeros (for large d) and further, the result precisely matches what GRH says

when A = 1. Thus we get an ininite family of �elds of growing degree in which the strong

uniform abc conjecture is precisely the right answer. In this application N comes out of

the order of H

5=6

in (�), since j(w)�1728 is a square in k(6) and j(w) is a cube in in k(6).

We also investigate the relation (�(w)) + (1 � �(w)) = 1 in k(2) using the modular

function �(w). Since �(w) and 1� �(w) are 2-units we have N = O(1) in this case and so

there is the possibility that this would furnish examples pushing A above 1. It turns out

not to be the case. Using the explicit reciprocity law of complex multiplication, we �nd

H(�(w); 1� �(w)) � H(j(w)� 1728; 1728; j(w))

1=6

and so the strong uniform abc conjecture is again at the exact boundary of our exam-

ples.

12



Michael Stoll:

Explicit p-decent for elliptic curves

Let p be an odd prime, and let E be an elliptic curve over a number �eld K. There

is an explicit method for computing the p-Selmer group Sel

(p)

(K;E), which is feasible if

p = 3 and K = Q and should become feasible if p = 5 and K = Q with the availability of

good relative class group and unit algorithms.

This method is based on the general despription given by Ed Schaefer of descent meth-

ods `using functions on the curve' (Math. Ann. 1998) and on work by Djabri, Schaefer

and Smart (Trans. AMS, to appear). The new part here (worked out jointly with Ed

Schaefer) is to guarantee that what one computes is really the Selmer group and not just

a supergroup of it.

Here is how it works. Let

�

A = Map(E[p] n f0g;

�

K); this is a

�

K-algebra with a Galois

action (induced from the actions on E[p] and on

�

K), and let A = H

0

(K;

�

A). This is an �etale

algebra over K of degree p

2

� 1. Similarily, let E[p]

_

n f0g be the set of a�ne lines in the

F

p

-vector space E[p] that do not contain the origin, and de�ne

�

B = Map(E[p]

_

n f0g;

�

K)

and B = H

0

(K;

�

B). There is an exact sequence of Galois modules,

0 �! E[p]

w

�! �

p

(

�

A)

(1)

u

�! �

p

(

�

B)

(1)

�! E[p] �! 0 ;

with w : P 7! (Q 7! e

p

(P;Q)) and u : � 7! (` 7!

Q

P2`

�(P )). (Here the superscript (1)

means that we are only considering maps � from E[p] n f0g or E[p]

_

n f0g to �

p

satisfying

�(a�P ) = �(P )

a

for a 2 F

�

p

.) Let K be K or a completionK

v

of K, and write A

K

= A


K

K,

B

K

= B


K

K. Then from the exact sequence above we can deduce an explicit description

H

1

(K; E[p])

�

=

ker(�) \ ker(u

�

) � (A

K

)

�

=((A

K

)

�

)

p

where

� : (A

K

)

�

=((A

K

)

�

)

p

�! (A

K

)

�

=((A

K

)

�

)

p

and

u

�

: (A

K

)

�

=((A

K

)

�

)

p

�! (B

K

)

�

=((B

K

)

�

)

p

are explicit homomorphisms, and the coboundary map

E(K) �! (A

K

)

�

=((A

K

)

�

)

p

is also explicit. This �nally leads to a description of the Selmer group which is explicitly

computable as long as we can do the usual kind of class group and unit computations in

the various number �elds that make up A and B.

Peter Swinnerton-Dyer:

Explicit calculation of the Brauer-Manin obstruction

Let V be for example a smooth rational surface de�ned over a number �eld k. It

is conjectured (and in particular cases known) that the Brauer-Manin obstruction is the

13



only obstruction to the Hasse principle and to Weak Approximation on V . This makes it

desirable to have an e�cient method of computing the Brauer-Manin obstruction and (as

a intermediate step) of computing Br(V )=Br(k).

Take for example V to be a cubic surface, and let K be the least �eld of de�nition of

the 27 lines on V - and hence also of Pic(

�

V ). There is an isomorphism

Br(V )=Br(k) ~!H

0

(Gal(K=k);Pic(

�

V );

where the right hand side is computable with some e�ort; but one would have to consider a

large number of cases because Gal(K=k) can be any subgroup of the group of order 71840

of permutations of the 27 lines which preserve incidence relations. Instead we proceed

as follows. Let n := [Gal(K=k)] and let ' : Gal(K=k) ! Pic(

�

V ) be a cocycle; then

n'(g) = �

0

�g�

0

where �

0

=

P

'(g

0

). Conversely if we choose � in Pic(

�

V ) and an integer

m > 0 then '(G) = m

�1

(�� g�) is an element of order exactly m in H

0

i�

1. g� � � mod mPic(

�

V ) for all g 2 G, and

2. there is no m

0

with 0 < m

0

< m and m

0

� 2 Pic(

�

V ) + Q 
 Pic(V ).

The �rst condition can be more conveniently rewritten as follows. For 0 � r < m let

S

r

be the set of lines � which satisfy (� � �) � r mod m; then Gal(K=k) �xes each S

r

.

For given m and � this condition tells one a great deal about Gal(K=k); and using

symmetry one does not have to look at many values of �. For cubic surfaces, it turns

out that the only possible values of m are 1, 2, 3, 4 and 9, and for m > 1 we get very

straightforward neccessary and su�cient conditions on Gal(K=k). For example [H

0

] is even

if and only if V contains a double-six de�ned over k whose individual sixes are not de�ned

over k. Thus if [Br(V )=Br(k)] is even the Hasse Principle must hold!

Provided that k contains the m

th

roots of unity, one can now construct an Azumaya

algebra of order m as a cyclic algebra (X; f), and inv

v

(X; f)(P

v

) is equal to the norm

residue symbol (f(P

v

); X)

v

for any v-adic point P

v

on V .

Helena Verrill:

The L-series and Picard-Fuchs equation of some varieties

If X

�

! P

1

is a �bred variety, de�ned over Q , what is the relationship between the

L-series of the middle cohomology of X and the period of the �bres?

A result of Stiensha says that for X given by y

2

= f(x

1

; : : : ; x

N

) a double cover of P

N

,

then if P

N

(T ) = det(1� T Frob

p

H

N

cris

(X)
 Q ) for p a prime, and �

n

a certain coe�cient

in (f(x

1

; : : : ; x

N

))

(n�1)=2

, then �

n

+ a

1

�

n=p

+ a

2

�

n=p

2

+ � � �+ a

k

�n=p

k

� 0 mod p

�(n)

where

�(n) is the power of p in n, and �

n

= 0 if n =2 Z. In our examples, the �

n

are the coe�cients

of a solution of the Picard-Fuhs di�erential equation of the �bration.

� Now take X to be a rigid Calabi-Yau 3-fold, so H

3

(X;Q

e

) is 2-dimensional
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� take �bres X

t

:= �

�1

(t) to be smooth K3 surfaces, or products of elliptic curves, for

almost all t

� take P

1

� � n � � some congruence subgroup, and t, the parameter of P

1

given by

t(�) for t some modular function of weight 0 for M .

The Picard-Fuchs equation is a di�erential equation F satis�ed by the periods,

R



t

!

t

,

!

t

2 H

0

(X

t

;


t

), 

t

2 H

2

(X

t

;Z). In the examples, F has a solution space f(�)(C 
 C 


�

2

(C )), where f(�) is a weight 2 modular form for �, and the Mellin transforn of the

L-series is a weight 4 Hecke eigenform for �.

I have made calculations for 8 examples, and in each case found the relation

f

q

t

dt

dq

= g(q) + Aq(q

B

)

(for some A, B - in most cases these were zero). This relationship enables one to nu-

merically compute the intermediate Jacobians of X. It turns out this relationship implies

the congruence relation. We can prove more generally a kind of Atkin-Swinnerton-Dyer

congruence result:

Theorem If

� t is a weight 0 modular function for a congruence subgroup � of level N ,

� f is a weight k modular form for �, locally f =

P

b

n

t

n

� g is a weight k+2 modular form for �, g =

P

a

n

q

n

, with

P

a

n

n

s

=

Q

p good

1

1�a

n

p

�s

+�

p

p

n+1�3s

Q

p bad

E

p

and

� if f

q

t

dt

dq

=

P

djM

m

d

g(d�) (some M 2 Z)

then for p 6 jMN , b

n

p

r

� a

n

b

n

p

r�1

+ �

p

pk � 1b

n

p

r�2

� 0 mod p

r

(if m 62 Z, b

n

:= 0)

8r; n 2 Z.

We can consider to what extend this result determines the L-series of X if the solution

of the Picard-Fuchs equation is known.

Joseph L. Wetherell:

Curves with many points in every genus

(joint work together with A. Kresch and M. Zieve)

Let F

q

be a �nite �eld of characteristic p > 0. De�ne N

q

(g) to be the maximal number

of F

q

points on any curve over F

q

of genus g. In this talk we discuss lower bounds on N

q

(g);

that is, we exhibit curves in every genus with many points.

A simple construction in characteristics 2 and 3 shows that if g

2

� (2p � 1)g

1

then

N

q

(g

2

) � N

q

(g

1

). From this we show that lim inf

N

q

(g)

g

> 0. The proof of this latter result

makes use of the families of good curves provided by Serre, Ihara, etc. It seems likely that
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this result can be extended to other characteristics. In the mean time, we show that there

are abelian covers of P

1

with O(

g

log g

) points in every genus.

Chaoping Xing:

Constructions of maximal function �elds

Maximal function �elds over �nite �elds show some interesting applications to coding

theory and other subjects. Constructing maximal function �elds has not only mathematical

nature but also application importance. One way to construct maximal function �elds is

to look at the sub�elds of the Hermitian function �eld that is a well known function �eld.

By studying the automorphism group of the Hermitian function �eld, we obtain a class of

maximal function �elds. In fact, all known maximal function �elds so far are sub�elds of

the Hermitian function �eld.

Reports and abstracts edited by: Claus Fieker, Berlin
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