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Topics Covered

The last two decades have seen much progress on the mathematical structures underlying

mechanics, such as multibody, robotic and nonholonomic systems, and its applications to

engineering problems. The progress has been in the foundational geometric structures,

stability and bifurcation theory, computation and visualization. All of these issues are

interacting in a very healthy way to produce a rich research output.

This meeting had the aim of allowing workers in the area to exchange ideas and

to report on recent advances. The meeting had a healthy mix of senior and established

researchers, postdoctoral and graduate students.

The conference focussed on systems typi�ed by multibody mechanics, but was not be

limited to this. Elastic and 
uid systems as well as relevant theoretical aspects of geometric

mechanics were also treated. The speci�c themes of the conference were as follows:

� GEOMETRIC AND ANALYTIC FOUNDATIONS. Including systems with

symmetry, bifurcation of mechanical systems with symmetry, nonholonomic systems

and multibody systems of engineering interest. Variational principles and their ap-

plications, geometric phases.
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� CONTROL THEORY. Locomotion generation, stabilization of mechanical sys-

tems, optimal control, tracking. Gyroscopic systems, including navigation systems.

� ENERGY-MOMENTUM METHOD. The energy momentum method in the

presence of symmetries and singularities, extensions to nonholonomic systems, appli-

cations to speci�c mechanical systems.

� MECHANICAL INTEGRATORS. Symplectic-momentum and energy-momentum

integrators, integration of constrained systems, sti� systems, long time integrations.

Adaptation to control systems.

Structure of the Meeting

Our philosophy, consistent with the general approach advocated by Oberwolfach was to

select about 20{25 senior people and to invite each of them to give a lecture. We also en-

couraged them to suggest students, postdoctoral fellows and junior faculty to the meeting.

In their lecture, they were to also include whoever in their group they felt was appropri-

ate. In addition, there was a poster session for these accompanying persons, which we felt

worked out very well. It gave, for example, students a chance to share and discuss their

ideas with the entire conference without using up a lecture slot. A number of opportunities

in this regard would have been missed had there been only unstructured discussion time.

The two together seem to be quite e�ective.

Abstracts (talks and posters)

Dynamics and Control of Jet Engine Flow

Bjorn Birnir

The basic attractor of nonlinear partial di�erential equations (PDEs) is the part of

the global attractor that attracts a prevalent set in phase space. We give a qualitative

description of the basic attractor of a model for axial compression systems and show that

it consists of three types of components, uniform (design) 
ow, surge and stall. The basic

attractor can contain more than one stall component. The existence of these components is

proven and their stability explored. Numerical results are presented, showing the shape and

evolution of stall cells over large parameter regions. Then notions of basic controllablity

and basic control are defined for nonlinear PDEs. A quadratic optimal control of the

linearized viscous Moore-Greitzer equation is presented and it is confirmed that stall is

uncontrollable in this model. A basic control is constructed for the nonlinear viscous Moore-

Greitzer equation which can control surge and stall. Some extensions of this construction
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are discussed. Numerical simulations of the basic control are presented and its performance

is compared to the performance of a backstepping control constructed by Banazuk et al.

It is shown that the viscous Moore-Greitzer equations with throttle control is not basically

controllable, but under certain conditions, adding air injection or bleeding control will

make the equations basically controllable.

Symmetry and Reduction in Implicit Generalized Hamiltonian Systems

Guido Blankenstein

In the classical symplectic, or Poisson, reduction theory one considers a symplectic, or

Poisson, manifold and a symmetry Lie group G acting on it by symplectic (Poisson) maps.

Furthermore, one assumes the existence of an equivariant momentum map J . Then it can

be proved that the Hamiltonian system on the original manifold restricts to a Hamiltonian

system on the reduced manifold J

�1

(�)=G

�

.

In this work, we generalize the theory to Dirac structures. A Dirac structure D on a

manifold X is a 2n-dimensional (n = dimX ) vector subbundle of TX � T

?

X , such that

D = D

?

, where D

?

is the orthogonal of D with respect to some bilinear symmetric form

on TX � T

?

X . Dirac structures are the underlying geometric structures for which we

de�ne implicit generalized Hamiltonian systems. Implicit generalized Hamiltonian systems

are DAE's, which generalize the classically known Hamiltonian systems. For instance, a

mechanical system with (nonholonomic) constraints is an example of an implicit generalized

Hamiltonian system. The classical reduction theory can be generalized to these systems,

resulting basically in the same reduction scheme.

Optimization of Motion of a Multilink Walking Robot

Nikolai N. Bolotnik

A multilink walking robot consisting of conservatively connected rigid bodies is con-

sidered. The bodies are connected by two-degree-of-freedom joints so that the adjacent

bodies can rotate with respect to each other about two perpendicular axes. Each rotation

is controlled by a geared electric drive. To the terminal links of the chain feet with vac-

uum cups are attached to enable the robot to move over a surface arbitrarily inclined with

respect to the horizontal. In particular, such a surface can be a wall or ceiling. The robot

of this design with �ve links was constructed and tested at the Institute for Problems in

Mechanics of the Russian Academy of Sciences. A number of problems of optimal motion

planning for this robot have been solved. We have developed an algorithm for planning

the time-optimal motion of the robot travelling along a prescribed track. By track we

understand here a set of positions on the supporting surface through which the robot must
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consecutively pass with its feet. Also, we constructed optimal periodic gaits of this robot

providing the maximum average speed when moving in a prescribed direction.

Optimal distribution of torques at the joints of a two-body leg of a walking machine

were found to provide the maximum friction force between the foot of the leg and the

supporting rough surface. This friction force is the propelling force of the robot.
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We also have investigated the behaviors of the maximum friction force depending on

the position of the foot on the supporting surface and the ratio of the links of the leg. The

results of this analysis can be used when designing the leg and planning motions of legged

mobile robots.

Visualization of Optimal Trajectories: Robotics, Vehicle Dynamics, Interplan-

etary Space Probe etc.

Roland Bulirsch

Films are presented showing the solutions of various ordinary and partial di�erential

equations.

� the 
ow of the current in a transistor (3-dimensional solution of a system of elliptic

PDEs of order 6)

� optimal paths of a robot hand (solution of a 2-point boundary value problem of a

system of ODEs of order 6)

� car on a road with wet and icy spots and many other \dirty" situations (initial value

problem for a system of ODEs of order 56)

� optimal design and optimal 
ight path of a space probe to the asteroid 4386 L�ust

(multipoint boundary value problem for a system of ODEs of order 92)

� the evolution of the sun: life cycle and its end as a red giant (system of PDEs of

parabolic type of order 7)

A Series Expansion Describing the Evolution of Mechanical Control Systems

Francesco Bullo

This talk presents a series expansion that describes the evolution of a mechanical

system starting at rest and subject to a time-varying external force. Mechanical systems

are described via a�ine connections as second order systems on a con�guration manifold.

The goal is to exploit this structure and reduce the dimensionality of the problem. Instead

of a series on the full 2n dimensional space, the evolution is described as a 
ow on the

con�guration space (n dimensional). The treatment relies on some Chronological Calculus

tool, see the seminal Agra�cev and Gamkrelidze (\The exponential representation of 
ows

and chronological calculus", Math. USSR Sbornik, 1978, 35-6, pages 727-785). This

expansion generalizes previous results, provides a rigorous mean of analyzing locomotion
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gaits in robotics, and lays the foundation for the design of motion control algorithms for a

large class of mechanical systems.

Bounded Control of Mechanical Systems with Unknown Parameters

Igor M. Cenanievski

The lecture is devoted to designing a control for Lagrangian mechanical systems under

uncertainty. We seek the desired control in the form of linear feedback with piecewise

constant gains. A linear feedback control (PD-controller) is usually applied for stabilizing

mechanical systems, that is, for attaining the terminal state in in�nite time. This control

law is very simple and does not depend on the parameters of the system. However, the

control forces generated by a PD-controller turn out to be unbounded and can violate

constraints if they are present. On the other hand, the control forces become too small when

the system approaches the terminal state. This implies in�nite time of motion. To preserve

the advantages of the PD-controller, to meet constraints, and to use control possibilities

to full extent we design an algorithm for varying the gains which enables us to steer a

mechanical system with unknown parameters to a terminal state in a �nite time. The gains

tend to in�nity; however, the control is bounded and meets the constraints imposed. To

illustrate the work of the proposed algorithm a computer simulation of various mechanical

systems, including underactuated ones, controlled by this algorithm was performed.

Geometric and Multibody Mechanics: Nonlinear Dynamics and Control

Felix L. Chernousko

Linear and nonlinear mechanical systems subject to unknown but bounded distur-

bances and bounded control forces are considered. First, various systems with one degree

of freedom are examined under di�erent sets of assumptions concerning the bounds im-

posed on the control force, its rate of change, and disturbances acting on the system.

Time-optimal control laws are obtained in an explicit form for these systems. The results

are the generalization of the well-known optimal control law for the simplest system with

one degree of freedom. The obtained results are used in the frames of the decomposition

approach for the design of control for nonlinear Lagrangian systems with many degrees of

freedom. For such systems subject to bounded disturbances, the control is also obtained

in an explicit form. This feedback control is based on the decoupling of di�erent degrees of

freedom (which is achieved under certain assumptions) and on the application of optimal

control for each subsystem with one degree of freedom. Su�cient controllability conditions

and upper estimates on the time of control are presented.
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An Approximation of Dynamical Systems in Banach Spaces with an Applica-

tion to Shells Dynamics.

Ivica Djurdjevic

In this talk I intend to present a natural approach to an approximation of 
ows in

Banach spaces. In particular, the concept of an Almost-Poisson-mapping (for Hamiltonian

structure of elasticity introduced by Ge, Kruse & Marsden in 1996) will be made rigorous.

It will be shown that within the class of semilinear problems the above mentioned concept

constitutes a special case of the general approach, where no Poisson-structure is needed.

Finally, an application to shell dynamics within the framework of linear elastodynamics

will be presented. It will turn out that for any shape of the middle surface a dynamical

version of Koiters model is asymptotically correct when the thickness parameter tends to

zero.

Control of Con�guration Variables in Mechanical Systems for Applications to

Multibody Systems

Marco Favretti

In this talk we consider a mechanical system where the time evolution of some of the

d.o.f. (i.e. con�guration variables) is prescribed by a given function u. We suppose that this

is realized by suitable active constraints. The dynamic equations for this system are derived

in a coordinate-free form. If some conditions on the kinetic energy metric are fulfilled, the

case of u discontinuous can be considered. This allows to introduce a notion of 'hyper-

impulsive' motion where con�gurations can su�er �rst order discontinuities. Applications

to control theory are discussed.

References:

1. F. Cardin and M. Favretti, 'Hyper-impulsive Motion on Manifolds',

Dynamics of Continuous, Discrete and Impulsive Systems, 4 (1998) 1-21.

2. M. Favretti, 'On the use of con�guration variables as control variables in mechanical

systems', Proc. 36-th CDC Conference, San Diego, Dec '97, 4210-4215.

Dynamically Controlled Generalized Cell Mapping

Julia Fischer, Rabbijah Guder, Edwin Kreuzer

The introduction of cell to cell mapping techniques has made the study of the global

behavior of technical systems feasible. They provide an easy method of �nding (all) the

di�erent solutions (attractors) belonging to initial conditions everywhere in the phase space.
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Moreover, domains of attraction, invariant densities, global measures and other per-

formance characteristics are provided. We discuss recent developments for the generalized

cell mapping (gcm). The mathematical description of an autonomous gcm leads to a �-

nite discrete stationary Markov chain where the transition probability matrix completely

determines system's behavior. For higher dimensional systems the computational e�ort

is enormous, therefore, adaptive re�nement schemes are introduced to compute both the

attractors and the domains of attraction with the associated boundaries. The transition

probabilities are computed by a discretization of the Frobenius-Perron operator; the algo-

rithm is controlled by a deterministic a priori estimate. Furthermore, perturbations of de-

terministic models are introduced. There are perturbed systems where the Markov operator

(corresponding to the Frobenius-Perron operator in the unperturbed case) is known. Then

gcm can be employed to calculate the invariant density of the perturbed system. With

examples the e�ciency of the approach is demonstrated and the results are visualized. The

two posters titled \Generalized Cell Mapping on Di�erent Cell Grids " and \Stability in

Dynamical Systems with Perturbations" are related to the lecture.

A Direct Solver for Multi-contact Friction Problems Based on a Generalised

Linear Complementarity Formulation

Kilian Funk, Friedrich Pfei�er

This contribution discusses a solving method for multi-contact problems including

Coulomb friction in multi-body systems. Due to couplings between di�erent contacts state

transitions from slipping to sticking or from separation to contact in one contact can induce

state transitions in other contacts. A systematic approach is made to solve multi-contact

friction problems including linear dependencies between di�erent contacts. The method

can either be applied to planar problems or three dimensional problems with a polygonal

friction cone. A combined friction law for normal and tangential directions is established

using the contact accelerations. A linear equation system of the dimension 2n�3n for pla-

nar problems can be derived which correlates the contact accelerations with contact forces

(n denotes the number of friction contacts). The introduction of suitable complementarity

conditions results in a linear complementarity problem (LCP) in nonstandard formulation.

For LCPs in standard formulation the Lemke-algorithm is a direct pivoting solver. The

main feature of the algorithm is the base exchange step. Using �nite state machines for

the base exchange step the algorithm can be applied to a much more general set of LCP

fomulations. Introducing a �nite state machine for each subproblem (in the above case: for

each contact) the above described complementarity conditions can be modeled as states

and transition conditions.
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Numerical Computation of Lyapunov Exponents in Discontinuous Maps Im-

plicitly Defined

Ugo Galvanetto

In the �eld of stick-slip systems the introduction of low-dimensional implicitly defined

maps has often proven very useful in the understanding of the system dynamics. The

successive iterates of the maps are computed by means of the integration, in continuous

time, of a discontinuous, structurally variable system. The explicit equation of these maps

are not known and in general no expression for their Jacobian matrix is therefore available.

The dynamics of a three block mechanical system can be characterised by the values

of two variables, the relative displacements d21, d31. The values of these variables are

constant when both blocks are simultaneously sticking on the driving belt. The dynamics

of the system generates a two-dimensional map of the variables d21 and d31. This map is

piece-wise continuous and the aim of this note is to discuss some numerical techniques to

compute its Lyapunov exponents, basins of attraction, and bifurcation paths. The methods

presented in this work can be applied to wider classes of maps since there is no apparent

reason to restrict our considerations to maps generated by stick-slip mechanical systems.

On the Structure of Di�erential Inclusions in Multibody Mechanics

Christoph Glocker

Non-smooth dynamics requires the formulation of the equations of motion as di�eren-

tial inclusions, i.e. as di�erential equations with set-valued right-hand side. Due to their

general character, these set-valued maps have to be further speci�ed to make them suitable

for applications. The structure of set-valued force laws that are met in multibody dynamics

is thus investigated and discussed with respect to a representation which is suitable for ex-

pressing second order ordinary di�erential inclusions. By writing down the Newton-Euler

equations as an equality of measures one may even cover impulsive behavior besides the

non-smooth impact-free motion which is also included. However, the measure equation

itself is not a complete description of the dynamic problem.It has to be completed by cer-

tain force laws, which are here taken asthe ge neralized gradient mappings of (non-smooth,

non-convex) displacement potentials and dissipation functions. Unilateral and bilateral

constraints on displacement or velocity level, as well as more general set-valued force laws

such as dry friction and pre-stressed springs may be treated in this way.
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�-Models: Geometric Turbulence Closures

Darryl D. Holm

We discuss analytical, numerical and experimental results for a regularization of the

Navier-Stokes equations given by @

t

v+ u � r v+r u � v+r p = �4 v+ f; where u = g ? v

is the incompressible (r � u = 0) mean, or �ltered 
uid velocity in three dimensions. The

NS-� model results when g is chosen to be Helmholtz smoothing by v = (1 � �

2

4) u.

The NS-� system has global existence and uniqueness of strong solutions. It has a global

attractor with �nite fractal dimension. The key idea in the proofs of these claims is that

the coe�cient r u in the vortex stretching term in the vorticity equation @

t

q + u � r q =

q � r u + �4 q + curl f for q = curl v is bounded in L

2

, since the kinetic energy for the

NS-� model is the H

1

norm. Note that � is a length scale.

Comparisons with turbulence data for 
ows in channels and pipes at high Reynolds

numbers con�rm the physical interpretation of u as the Eulerian mean turbulent 
uid

velocity. Direct numerical simulations show that the forward cascade of kinetic energy

slows and the wavenumber spectrum changes from k

�5=3

for k � < 1 to k

�3

for k � > 1.

The result is a signi�cant increase in computational speed, by a factor of (�=l

k

0

)

4=3

, where

l

k

0

is the Kolmogorov dissipation length.

Waves in Lattices of Coupled Nonlinear Oscillators

Klaus Kirchg�assner (This is joint work with Gerard Iooss from Nice.)

In a 1d lattice of nonlinear oscillators, coupled to their nearest neighbors, all travelling

waves of moderate amplitude can be found as solutions of a �nite dimensional reversible

dynamical system. The coupling constant and the inverse wave-speed form the parameter-

space. The groundstate consists of a one-parameter family of periodic waves. It is realized

in a certain parameter region containing all cases of light coupling. Beyond the border of

this region the complexity of wave-forms increases via a succession of bifurcations. An ap-

propriate formulation of this problem is given, the necessary proof of reduction is indicated,

together with a normal-form analysis leading to the result on the groundstate and the clas-

si�cation of the �rst bifurcation. In particular, the existence of socalled nanopterons is

shown, i.e. of spatially localized wave-forms with an exponentially small periodic tail at

in�nity (phonons). Moreover, an application of this analysis to multiple scale problems,

where the smooth and slowly variable part of the solution of an elliptic equation is dis-

cretized and the fast varying part treated continously, is analysed and error-bounds are

given.
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Travelling Waves in Nonlinear Chains

Thomas Kriecherbauer

We study the existence of travelling waves in in�nite nonlinear chains with nearest

neighbor interaction, described by the system

�x

n

(t) = F (x

n�1

(t)� x

n

(t))� F (x

n

(t)� x

n+1

(t)); n 2 Z; (1)

where F describes the (nonlinear) force law and x

n

denotes the position of the n-th particle.

More precisely, we construct solutions of (1) of the type

x

n

(t) = nd+ �(kn� 
t); (2)

where � : T

�

! R is a function on the �-dimensional torus and k; 
 2 R

�

denote the

frequency vectors. For the construction we expand the function � in a Fourier series and

use a Lyapunov-Schmidt reduction argument to obtain families of solutions of type (2). In

the multi-phase case, � � 2, we encounter a small divisor problem which we overcome by

a Nash-Moser iteration scheme.

Magnetostrictive Actuation: Models for Control

Perinkulam S. Krishnaprasad

In this talk, we discuss joint work with R. Venkataraman, on low-dimensional, energy-

based models for ferromagnetic hysteresis and for magnetostrictive hysteresis. This work is

based on a set of reasonable hypotheses to account for magnetization losses, �rst presented

in the work of Jiles and Atherton (J. Magn. Matl. 61 : 48-66, 1986). In contrast with

the Preisach formalism for hysteresis, our models are based on local memory. Viewed

as state equations for an actuator, our models employ average magnetization M in the

material and applied uniform external �eld H as states and n =

_

H as the input. We

have used these models for Terfenol-D (a giant magnetostrictive alloy). We have obtained

results on the qualitative behaviors of our models, including a result on convergence to a

major hysteresis loop. We employ the notion of a Caratheodory solution to accomodate

discontinuous changes in

dM

dH

during reversals.

Some Results on the Hamiltonian Dynamics of Ideal Liquid Bridges

Hans-Peter Kruse

The dynamics of an incompressible, inviscid liquid bridge moving under the in
uence

of surface tension, is studied. It turns out that this problem has a Hamiltonian structure,
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i.e. there exist a) a phase space P, b) a class F of admissible functions F : P ! R, c) a

Poisson bracket F �F ! fP ! Rg, d) a Hamiltonian H 2 F , such that the equations of

motion can be written as

_

F = fF;Hg for all F 2 F :
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The Hamiltonian structure of the problem can be used to study stability and bifur-

cation behaviour of rigidly rotating 
uid cylinders connecting two plates, which represent

solutions to the equations of motion of the liquid bridge for any value of the angular velocity

! 2 R. As an example of the kind of result we get we cite the following theorem: Rotating

cylinders with base radius d and height h are stable with respect to volume-preserving

pertubations with �xed contact lines if

�

2

d�

h

2

> max

�

�

4d

+

!

2

d

2

4

; !

2

d

2

�

:

Let !

0

solve

h

2

4�

2

d

2

+

!

2

0

h

2

d

4��

2

= 1 ;

and let !

1

solve

!

2

1

=

�

2

�

dh

2

:

If !

1

< !

0

, then at ! = !

1

, a branch of Z

2

-symmetric, non-cylindrical rotating liquid

bridges emanates from the family of rigidly rotating cylinders.

Simulation Approaches to Multibody Dynamics

Ralf K�ubler, Subir Saha, Werner Schiehlen

The �rst part of the lecture is devoted to theoretical aspects of simulator coupling for

multibody systems. The modular description is introduced on the mathematical model

description level which is the basis for modular simulation. Each subsystem is set up by

a general state-space formulation. Time discretization of the subsystems including input

and output variables is described. The global system is then formed by interconnections

between the inputs and the outputs of these subsystems. On this basis an analysis of zero-

stability of the modular numerical integration is presented. It is shown that convergence

is only guaranteed if algebraic loops do not exist between the subsystems. Two methods

of simulator coupling are proposed, an iterative scheme and the introduction of �lters.

The theoretical results are illustrated by examples from multibody system dynamics and

the numerical results are used to compare the e�ciency of both methods, showing the

preference of the iterative scheme.

The second part of the lecture deals with recursive simulation of multibody systems.

The focus is how to obtain an e�cient forward dynamics algorithm for the simulation of

multibody systems with large degrees-of-freedom (n), e.g., a free-
ying space robot where

n = 12. It is shown how the Gaussian Elimination technique can be used to obtain an

order

0

n

0

forward dynamics algorithm for serial-chain systems. It is highlighted that the

extension of the algorithm to closed-loop systems is possible if it is accompanied with a

suitable velocity constraint relation for the loops that allow one to compute the dependent

speeds recursively.
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Nonsmooth Dynamical Systems

Tassilo Kuepper

The incorporation of e�ects like dry friction, state dependent switches or impacts in

systems modelled by di�erential equations leads to Dynamical Systems involving nons-

mooth components. Examples widely used for investigations include the friction oscillator

with one or several masses, electrical circuits or neural networks. This lecture is concerned

with the dynamics of such systems, in particular with respect to bifurcations. While ex-

periments and simulations show the standard scenario of bifurcations including transitions

from steady states to periodic orbits and chaotic motions basic techniques of bifurcation

theory cannot be applied in a straiightforward way due to the lack of smoothness. We

show that the following concepts can be extended to nonsmooth systems:

1. The existence of Lyapunov exponents is established as well as results implying the

stability of periodic orbits.

2. The onset of periodic orbits in planar systems is studied with geometrical methods.

Controlled Lagrangians and Mechanical System Stabilization

Naomi Ehrich Leonard

In this talk I describe joint work with A. M. Bloch and J. E. Marsden on a constructive

approach to the derivation of stabilizing control laws for Lagrangian mechanical systems

with symmetry. Central to our \method of controlled Lagrangians" is the choice of a

feedback control law from a family of control laws that produce Lagrangian closed-loop

dynamics. By making structured modi�cations to the Lagrangian for the uncontrolled

system, we define the closed-loop (controlled) Lagrangian, and the associated Euler-La-

grangian equations give the closed-loop dynamics and the control law. This method has

the advantage of making the stabilization problem a matter of energy shaping, and energy

methods can be used to produce a Lyapunov function and to �nd control gains that pro-

vide closed-loop stability. Our approach involves both kinetic shaping to stabilize otherwise

unstable dynamics and symmetry-breaking potential shaping to provide stability in direc-

tions that were originally symmetry directions. Control forces that emulate dissipation are

added for asymptotic stability. Our method can be demonstrated for stabilizing balance

systems such as an inverted pendulum on a cart as well as for stabilizing steady motions

of systems with gyroscopic forces such as a satellite or an underwater vehicle with internal

rotors.
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The Geometry of Optimal Control for A�ine Connection Control Systems

Andrew D. Lewis

The Maximum Principle of Pontryagin is applied to a system, a�ine in controls, whose

drift vector �eld is the geodesic spray for an a�ine connection on a manifold � and whose

control vector �elds are vertical lifts to T� of vector �elds on �. It results that one

is interested in the Hamiltonian vector �eld on T*T� which is the cotangent lift of Z,

the geodesic spray. We describe the geometry of this vector �eld, giving the relationship

between its Hamiltonian structure and the structure associated with the a�ine connection.

The key to this is the \adjoint Jacobi equation" which is a one-form version of the Jacobi

equation which describes the variation of geodesics.

Variational Integrators, Newmark and Collision Algorithms

Jerry Marsden, Couro Kane

This lecture was motivated by the study of systems in which complex collision se-

quences can occur, such as the fragmentation and shattering of solids. In these problems,

amongst many others, small fragments with sharp corners are produced which subsequently

undergo complicated collisions leading to extreme dynamical sensitivity.

We make use of integration methods that are based on discretizations of variational

principles and nonsmooth analysis. The Newmark algorithm is shown to be variational in

the sense of Veselov (and hence is symplectic). This algorithm is extended from the smooth

case to the nonsmooth context motivated by collision algorithms. We have included friction

and forcing into the variational framework via discretizations of the Lagrange d'Alembert

principle and Lagrangian product formulas (splitting methods). Several computer simula-

tions illustrate the results.

Antisymmetry, Pseudospectral Methods and Conservative PDSs

Robert McLachlan

\Dual composition", a new method of constructing energy-preserving discretizations of

conservative PDSs, is introduced. It extends the summation-by-parts approach to arbitrary

di�erential operators and conserved quantities. Links to pseudospectral, Galerkin and

Hamiltonian methods are discussed. For the equation _u = D(u)

�H

�u

, where D(u) is a linear

di�erential operator and H is the conserved energy, we �rst compute

�

�u

, then project to

a domain on which D(u) is skew-adjoint, then apply D(u), then project to the chosen

�nite-dimensional function space in which the approximation of u lies.
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The function spaces and (weighted residual) projections can be chosen compatibly so

that the resulting discretization preserves a discrete energy. In some cases (when H or

D are simple enough) the method can coincide with standard Galerkin or pseudospectral

methods. In these cases it sheds new light on the skew-adjoint structure of Chebyshev

spectral di�erentiation and suggest a generalization of the Fourier antialiasing technique

to Chebyshev spectral methods.

Symplectic Reduction by Stages

Gerard Misiolek

This is a follow-up talk to the one given by T. Ratiu and based on the joint work with

J. Marsden, M. Perlmutter and T. Ratiu. I present two results that were obtained recently

as applications of the symplectic reduction by stages. The �rst describes the structure

of coadjoint orbits of semi-direct products and the second gives an interpretation of the

Gelfand-Fuchs cocycle as the curvature of a right-invariant mechanical connection on the

principal S

1

-bundle

^

D(S

1

)! D(S

1

).

Drift of Relative Equilibria of Hamiltonian Systems with Symmetry

George Patrick

In a Hamiltonian system with symmetry, relative equilibria at nongeneric momenta

have weaker stability than those at generic momenta. For example, in mechanical systems

there is in general an absence of orientation stability at zero total angular momentum. This

allows interesting dynamics of orientation for coupled rigid bodies and for point vortices

on the plane or on the sphere.

I present results of numerical simulations which illustrate this e�ect, both for coupled

bodies and for point vortices on the sphere, and I outline how to �nd a Hamiltonian system

for the dynamics of the orientation.

Symplected Reduction by Stages

Matthew Perlmutter

Results on the problem of symplectic reduction by stages for the case of a symmetry

group that is a central extension of a group G, denoted

^

G, are presented. The theory

guarantees that if

^

G acts symplectically on (P;
), and admits an equivariant momentum

map J

^

G

: P !

^

G

?

, then the 2-step reduced spaces obtained by �rst reducing by the R-
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action and then by the G-action are symplectically di�eomorphic to the reduced space

J

�1

^

G

(v)=

^

G

v

; v 2

^

G

?

.
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We specialize to the case P = T

?

Q. To carry out the reduction in this case, we

develop a non-canonical cotangent bundle reduction theory, since after the �rst reduction

we obtain a cotangent bundle with a magnetic term. If we take Q =

^

G we get a systematic

description of the coadjoint orbits and, in certain cases, an interpretation of the Kostant-

Kirillov symplectic forms as curvatures of appropriate connections.

Symplectic Reduction by Stages

Tudor S. Ratiu

In this talk we will present a general theorem for reduction of symplectic manifolds

by stages with special emphasis on semidirect products and central extensions. The ap-

plications are the heavy top and the orbits of the Bott-Virasoro group. Reduction by

stages for the action of a semidirect product of a Lie group with a representation space is

�rst performed by the normal subgroup and then by the isotropy subgroup of an isotropy

subgroup of the contragredient representation. It is shown that the result of these two

successive reductions coincides with the reduction of the entire semidirect product. The

same technique is utilized to deal with general central extensions and this will be presented

in the companion talk by Gerard Misiolek. The poster by Matthew Perlmutter will present

the general theory.

Stability of Relative Equilibria

Mark Roberts

A relative equilibrium p

e

of a Hamiltonian H that is invariant under a proper action

of a Lie group G on a symplectic manifold (M;!) is said to be A-stable, for any subset A

of G, if for every open neighbourhood U of p

e

there exists an open neighbourhood V such

that if p(0) 2 V then p(t) 2 AU for all t. Assume M has an equivariant momentum map J

and let �

e

= J(p

e

). The normal space to Gp

e

at p

e

can be identi�ed with (G

�

e

=G

p

e

)

?

�N

1

,

where N

1

is the symplectic normal space. Let q : G

?

�

e

! G

?

�

e

==G

�

e

denote the Hausdor�

quotient space of the coadjoint action of G

�

e

and de�ne Z

�

e

to be the \tangent space" to

q

�1

(q(0)).

Theorem 1: If d

2

(H�J

�

)(p

e

) is de�nite on (Z

�

e

\(G

�

e

=G

p

e

)

?

)�N

1

; then p

e

is G-stable.

Here � is the \drift velocity" of p

e

.

Theorem 2: If p

e

is G-stable, then (i) p

e

is EG

�

e

-stable for any neighbourhood E of 1

in G; (ii) if G

�

e

= WK, were W and K are subgroups of G

�

e

with K compact, then p

e

is

A

E

(W )K-stable, where A

E

(W ) = fgWg

�1

: g 2 Eg.
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These theorems are proved in joint work with Andrew Lewis and George Patrick using

a local normal form for Hamiltonian vector �elds obtained with Jeroen Lamb and Claudia

Wul�.
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Numerical Integration of Constrained Hamiltonian Systems

Werner M. Seiler

We discuss two underlying Hamiltonian equations for constrained systems. We show

their relations to projection methods as they are often used for numerical integration and

study the stability of the constraint manifold under the corresponding 
ows. This gives

some indications about the behavior of projection methods and explains why momentum

projections are so much more e�ective than position projections. Finally, we brie
y indi-

cate the relation to the impetus striction approach for setting up the equations of motion,

namely that there the momentum projections are already included in the di�erential equa-

tions.

Geometry of Di�eomorphism Groups for Manifolds with Boundary

Steve Shkoller

Let (M; g) be a C

1

compact m-dimensional oriented Riemannian manifold with C

1

boundary @M , and letD

s

= f� 2 H

s

(M;

~

M)j � bijective, �

�1

2 H

s

(M;

~

M); � leaves @M invariantg

denote the group of Hilbert class di�eomorphisms of M (here

~

M denotes the double). Let

D

s

�

= f� 2 D

s

j �

?

(�) = �g where � is a volume form. We prove that for s > m=2 +

1; D

s

�;D

= f� 2 D

s

�

j �

j@M

= eg and D

s

�;N

= f� 2 D

s

�

jT�

j@M

: H

s�1=2

(N) ! H

s�3=2

n

(N)g

are C

1

subgroups of D

s

�

. We then prove that the solution of the partial di�erential equa-

tion @

t

(1 � �

2

4

r

) u + ru (1 � �

2

4

r

) u � �

2

ru

t

� 4

r

u = �grad p, div u = 0; u(0) =

u

0

;4

r

= �(d � + � d) + 2Ric with boundary conditions u = 0 on @M or g(u; n) = 0 and

(r

n

u)

t

+ S

n

(u) = 0 on @M are geodesics of the right invariant metric on D

s

�;D

or D

s

�;N

given at the identity by

< X; Y >

e

=

Z

M

[g(X(x); Y (x)) +

�

2

2

�g (L

X

g;L

Y

g)]�

Namely, there exists an interval I = [�t

0

; t

0

] depending only on ju

0

j

H

s

and a unique

geodesic of < �; � > _� 2 C

1

(I; TJ

s

�

) for J

s

�

= D

s

�;D

or D

s

�;N

such that u(t) = _� � �(t)

�1

is

a solution of the partial di�erential equation.

Stability Analysis of Relative Equilibria of Tethered Satellite Systems

Alois Steindl, Hans Troger

After shortly explaining the concept of tethered satellite systems and giving some

practical applications of this concept, we present two di�erent mathematical models of
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such systems. The �rst and simpler one is a �nite dimensional model consisting of a rigid

massless or massive rod and two point masses. The second more complicated in�nite

dimensional model consists of two endbodies, which either could be point masses or rigid

bodies, which are connected by a massive perfectly 
exible and extensible string.

For both systems relative equilibrium positions for a circular motion around the Earth

are presented. For the simple �nite dimensional model this can be done in great generality.

For the in�nite dimensional model we restrict to planar con�gurations. Besides trivial

con�gurations for which the tether is in a straight position there exist also nontrivial

relative equilibrium con�gurations if the position of one satellite relative to the other is

controlled. By means of the reduced energy momentum method we asses the stability of all

these relative equilibria. In case of the nontrivial equilibrium positions the corresponding

calculations must be performed numerically.

Nonholonomic Robot Stabilization by Vision-based Time-varying Controls

Dimitris P. Tsakiris

The problem of stabilizing a nonholonomic system to a desired pose is considered in

this presentation, which describes joint work with Claude Samson (INRIA). In particular,

the use of time-varying state feedback controls is examined, for which vision data are used

to approximate the state of the nonholonomic mobile manipulator, whose docking or paral-

lel parking maneuvers we attempt to automate. The vision data are provided by a camera

carried by the arm of the mobile manipulator, which tracks a target of reference, as the

robot moves. Two approaches are considered: the �rst involves continuous homogeneous

time-varying controls, where the state information is updated at frame rate from vision.

These controls render, in the presence of ideal state information, the closed-loop system

homogeneous of degree zero with respect to an appropriate dilation and are robust with

respect to additive perturbations of strictly positive degree of homogeneity. However, this

may not be su�cient in cases where the state information is inferred from the sensory data

by approximations or by using a crudely calibrated sensory apparatus. This introduces

errors in the model parameters, which may destabilize the system. Thus, a second ap-

proach is explored, namely hybrid time-varying controls involving a combination of open

and closed-loop phases, where the state information is updated from vision data only at

the beginning of each period of the periodic open-loop controls. Extensive experimental

evaluation was performed using a prototype with real-time vision and control capabilities.

Decomposition of a Finite Rotation

Jens Wittenburg, L�ubomir Lilov
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Given: The axis ~� and the angle � of a rotation and the axes of three consecutive

rotations 1; 2; 3 (all four axes are �xed in the same reference space). To be determined: The

angles �

1

; �

2

; �

3

of the three rotations such that their resultant is the prescribed rotation

(~�; �).

The following problem has the same solution. Given is a body in a two-gimbal sus-

pension. In the null position the outer gimbal axis, the axis common to both gimbals and

the axis common to the body and to the inner gimbal are aligned with the rotation axes

3; 2 and 1, respectively. Starting from this null position the angles �

3

; �

2

; �

1

result in the

prescribed rotation (~�; �) of the body.

Explicit solutions are obtained from a quaternion and arise from a dyad representation

of rotation. The solutions are real for arbitrary (~�; �) if and only if axis 2 is orthogonal

to both, axis 1 and axis 3. In critical cases �

1

and �

3

are indeterminate. Only �

1

+ �

3

or

�

1

� �

3

is determined. Indeterminacy conditions and the associated solutions for �

2

and

�

1

� �

3

are given.

Underwater Vehicle Stabilization

Craig Woolsey

An underwater vehicle may be modeled by a Hamiltonian system by treating the

vehicle as a rigid body in a perfect 
uid. An ellipsoidal vehicle modeled in this way has

an unstable relative equilibrium corresponding to steady translation along the ellipsoids

longest axis. Using internal rotors, this equilibrium can be stabilized through feedback

which shapes the kinetic energy and preserves the Hamiltonian structure. This closed-

loop Hamiltonian then leads to a Lyapunov function for the relative equilibrium via the

energy-Casimir method. The Lyapunov function, in turn, indicates an appropriate choice

of feedback dissipation to render the equilibrium asymptotically stable.

Authors of this Report:

J. E. Marsden, J. Scheurle
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