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Large Coulomb systems is a special interdisciplinary topic in mathematical physics joining the

sciences of mathematics and physics. Indeed, \Coulomb systems" refers to the mathematically

rigorous description of electrons in atoms, molecules, and solids in the absence or presence

of an electromagnetic �eld. These \Coulomb systems" can be \large", which means that the #

electron number N and the number of nuclei K is allowed|and sometimes even desired|

to be large. The limit N ! 1 often corresponds to the limit ~ ! 0, where ~ is Planck's

constant. This correspondence intimately connects large Coulomb systems, as physical models,

with the mathematical disciplines of partial di�erential equations, pseudo-di�erential operators,

semiclassical analysis, spectral theory and the calculus of variations. Speci�cally, the topics of

the workshop included

� Stability of matter (nonrelativistic, relativistic, and with classical electromagnetic �eld),

� Semiclassical Schr�odinger operators with and without magnetic �eld, in particular, Lieb-

Thirring inequalities,

� Nonrelativistic quantum electrodynamics,

� Ground state asymptotics for large, (asymptotically) neutral Coulomb systems, e.g., en-

ergy, density, surplus negative ionization,

� Ground state asymptotics for atoms in homogeneous magnetic �elds.

This meeting was organized by Volker Bach and Heinz Siedentop.
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1. G. Friesecke: The configuration-interaction equations for atoms and

molecules: Charge quantization and existence of solutions

The con�guration-interaction equations of rank K for atoms and molecules are a natural

hierarchy of exacti�cations of the Hartree-Fock equations to which they reduce in the lowest

rank case where K equals the number N of electrons in the system. In the highest rank case,

K = 1; they turn into the full Schr�odinger N -body equation. The ground state energy for

large �niteK approaches the `exact' (non-relativistic, Born-Oppenheimer) quantum mechanical

energy of the system delivered by the Schr�odinger equation.

The CI equations are central to the understanding of electron correlation, which is neglected

by the Hartree-Fock approximation. They have an enormous physics and quantum chemistry

literature, but very little was known rigorously: mathematically, they are a system of K coupled

nonlinear partial integrodi�erential equations.

The new result is that charge in the CI equations is integer-quantized and that ground state

solutions for atoms and molecules exist whenever the total nuclear charge excedds N�1, where

N is the number of electrons. (This is new even for the Helium atom.)

2. T. Weidl: Classical constants in Lieb-Thirring inequalities

Let H = ���V be the Schr�odinger operator on L

2

(R

d

). We consider potentials V for which

the negative spectrum of H is discrete, let fE

j

g be the sequence of these negative eigenvalues.

Consider the Riesz means of these eigenvalues

S


;d

(V ) =

X

(�E

j

)




; 
 � 0:

It is well-known that for d = 1; 
 � 1=2 or d = 2; 
 > 0 or d � 3; 
 � 0 the bound

S


;d

(V ) � R(
; d)

ZZ

fH<0g

(�H(x; �))




dxd�

(2�)

d

= R(
; d)L

cl


;d

Z

fV >0g

V


+d=2

dx;

holds, where

L

cl


;d

=

�(
 + 1)

2

d

�

d=2

�(
 + 1 + d=2)

:

>From the quasi-classical limit it is known that R(
; d) � 1. Moreover, R(
; 1) = 1 for 
 � 3=2.

We prove that R(
; d) = 1 for all 
 � 3=2 and all d 2 N :

Joint work with A. Laptev.

3. M.J.Esteban and E. S�er�e: The Dirac-Fock equations

The Dirac-Fock equations are the relativistic analogue of the well-known Hartree-Fock equa-

tions. They are used in computational chemistry, and yield results on the inner-shell elctrons of

heavy atoms that are in very good agreement with experimental data. By a variational method,

we prove the existence of in�nitely many solutions of the Dirac-Fock equations `without projec-

tor', for Coulomb systems of electrons in atoms, ions or molecules, with Z � 124; N � 41; N �

Z. Here, Z is the sum of the nuclear charges in the molecule, N is the number of electrons.

M.J.Esteban and E. S�er�e (CEREMADE, Universit�e Paris-Dauphine, France).

Solutions of the Dirac-Fock equations for atoms and molecules, Comm. Math. Phys. 203,

499-530 (1999).
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4. J. Yngvason: The ground state of Bosons in a trap

The ground state properties of interacting Bose gases in external potentials, as considered in

recent experiments, are usually described by means of the Gross-Pitaevskii energy functional

E

GP

[�] =

Z

R

3

jr�j

2

� V j�j

2

+ 4�aj�j

4

:

Here V is an external potential (often � jxj

2

) and a is the scattering length of the interaction

potential, v, between the Bosons. The corresponding ground state energy, E

GP

(N; a), is the

minimum of E

GP

under the condition

R

j�j

2

= 1.

We have proved the asymptotic exactness of this approximation for the quantum mechanical

ground state energy E

QM

(N; a) as N !1 with Na �xed:

lim

N!1

E

QM

(N; a)

E

GP

(N; a)

= 1:

A corresponding theorem holds also for the particle density. These results are obtained under

the assumption that v � 0, spherically symmetric, and of short range.

J. Yngvason (Univ. of Vienna): Joint work with E. H. Lieb (Princeton) and R. Seirinzer

(Vienna).

5. M. Salmhofer: Positivity and convergence in fermionic quantum field

theory

I discuss norm bounds that imply the convergence of perturbation theory for the e�ective

action of fermionic quantum �eld theories with cuto�s. These bounds are su�cient for an

application in renormalization group studies. I sketch our proof of these bounds; it clari�es

how the applicability of Gram bounds with uniform constants is related to positivity properties

of matrices associated to the procedure of taking connected parts of Gaussian convolutions.

This positivity is preserved in decouplings that also preserve stability in the case of two-body

interactions. The physical systems to which these techniques apply include the Gross-Neveu

model and many-fermion models with short-range interactions, such as the Hubbard model, at

weak coupling.

M. Salmhofer (ETH Z�urich): Joint work with C. Wieczerkowski (M�unster).

6. J. Fr�ohlich: Open systems

We present a general introduction to the quantum theory of open systems consisting of a

`compact system' coupled to an in�nite dispersive medium. The analysis of such systems is

important in attempting to understand friction and dissipation in unitary quantum dynamics,

the emergence of classical behaviour in quantum systems and a `quantum theory of experiments'.

As typical examples of dissipative behaviour we discuss `relaxation to a groundstate' and `return

to equilibrium'. We then exemplify our general theory on the example of systems consisting of

a �nite number of atoms with static nuclei and non-relativistic quantum-mechanical electrons

coupled to the quantized radiation �eld. The interaction between the electrons and the quantized

electromagnetic vector potential is cuto� at large photon wave vectors.

At zero temperature, we develop a mathematically rigorous theory of the Lamb shift, of the

decay of resonances corresponding to excited states of the atoms and of the existence of ground

states. We also analyse the spectral type of the basic Hamiltonian of the system.

At positive temperature, we construct the KMS (thermal equilibrium) states of these systems

and prove `return to equilibrium'.

J. Fr�ohlich: Joint work with V. Bach, I.M. Sigal (et.al.).
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7. I. Catto: Thermodynamic limit problems for Hartree and Hartree-Fock

type models

We consider a neutral molecular system consisting of a given number of point nuclei located

on a (�nite) set of points of integer coordinates in R

3

, and we let asymptotically this set of

locations �ll in the entire lattice Z

3

. We consider next the behaviour of the ground state energy

per unit volume for various well-known models in Quantum Chemistry. By this process, we wish

to set a limit problem for the ground state energy of a crystal, that is well-posed mathematically,

in particular with a view to give a sound ground to numerical simulations of the condensed

phase.

For the Thomas-Fermi type models, following the ground-breaking work of Lieb and Simon on

Thomas-Fermi models, we have proved that the ground state energy per unit volume converges

to a periodic minimization problem, and that the electronic density also becomes asymptotically

periodic.

For the more complicated Hartree and Hartree-Fock models, we are only able to de�ne

periodic problems which are likely to be the thermodynamic limits, and to prove that they are

mathematically well-posed. Nevertheless, we are able to prove the thermodynamic limit for a

simpli�ed version of the Hartree-Fock model, namely the reduced Hartree-Fock model.

I. Catto (CNRS and CEREMADE, Universit�e Paris-Dauphine): Joint work with C. Le Bris

(ENPC, Marne-la-Vall�ee, France) and P.L. Lions (CEREMADE, Paris).

8. A. Knauf: The n-centre problem for large energies

The motion of a fast comet in the gravitational �eld of n �xed celestial bodies is considered.

Their positions are s

1

; � � � ; s

n

2 R

3

, and their masses Z

1

; � � � ; Z

n

6= 0 (Because of applications

in molecular scattering repelling forces are considered, too). The Hamiltonian

^

H : T

�

^

M ! R

(with

^

M = R

3

n fs

1

; � � � ; s

n

g is of the form

^

H(p; q) =

1

2

p

2

+ V (q); V (q) = �

P

n

l=1

Ze

jq�s

l

j

+W (q)

with W 2 C

1

(R

3

;R) decaying at in�nity. We �rst uniquely complete the Hamiltonian System

(T

�

^

M;

P

dq;

^

H), obtaining (P; !;H), where P is a smooth 6D mainfold, ! a smooth symplectic

form and H : P ! R smooth. Then we study the complete 
ow �

t

: P ! P . For large energies

E we get a complete symbolic dynamics on H

�1

(E), assuming that no three centres s

l

are on

one line (NC condition), whereas

� for n = 1 (Kepler pr.) there is no bounded orbit,

� for n = 2 (Jacobi pr.) there is just one,

� for n � 3 there is a Cantor set of bounded orbits in H

�1

(E).

The Hausdor� and box counting dimension of b

E

are both of the order

dim(b

E

) = 1 + d(E)(1 +O(

1

E lnE

));

where d(E) is explicit.

The topological entropy of �

t

E

� �

t

j

H

�1

(E)

is given by

h

top

(�

1

E

) = h

top

(�

1

E

j

b

E

) = c

1

p

2E(1 + c

2

lnE

E

+O(

1

E

));

with explicit constants c

1

; c

2

.

Although for n � 3 there is a Cantor set of scattering orbits with given incoming and outgoing

directions

^

�

�

;

^

�

+

2 S

2

, the Rutherford cross section (for the Kepler problem with ! = 0) is a

good approximation to the di�erential cross section of the n-centre problem:

d�

d

^

�

+

(E;

^

�

�

;

^

�

+

) =

d�

d

^

�

+

(E;

^

�

�

;

^

�

+

)

Ru

(1 +O(1=E)):
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Finally, we show that most results become wrong if the NC condition is violated.

A. Knauf (Univ. Erlangen-N�urnberg).

9. L. Erd�os: Uniform magnetic Lieb-Thirring inequality for the Pauli

operator with a general potential and strong magnetic field

We estimate the sum of the negative eigenvalues E

i

of the Pauli operator

[~� � (~p+

~

A)]

2

+ V

with a magnetic �eld

~

B = r�

~

A and an external potential V . Based upon the semiclassical

picture, the estimate should have the form

X

i

jE

i

j � (const:)

Z

j

~

Bj[V ]

3=2

�

+ [V ]

5=2

�

: (9.1)

It has been known that such an estimate can only be true for regular magnetic �elds with

constant direction, or else extra terms are needed, which involve derivatives of

~

B or some

molli�ed version of

~

B. In addition, for non-constant direction �eld a new term

R

P (x)j[V (x)]

�

dx

has to be added, where P (x) =

P

i

j 

i

(x)j

2

and the summation is over an orthonormal basis in

ker

�

~� � (~p +

~

A

�

. (These are the famous zero modes, �rst found by Loss-Yau).

Under smoothness assumptions on the magnetic �eld, there have been various bounds similar

to (9.1) but with a j

~

Bj-power higher than 1 (in the strong �eld regime). The essential reason

for these overestimated powers was that P (x) has not been estimated sharply.

Bugliaro-Fe�erman-Graf obtained (9.1) with j

~

Bj

17=12

, an improvement over the earlier results

scaling with the 3=2-power of j

~

Bj. In our earlier work we �rst managed to obtain an estimate

similar to (9.1) that scaled as jBj

5=4

, later we even proved the correct linear behaviour j

~

Bj, but

with an additional unphysical term involving

R

jrV j.

Recently we proved (9.1) with the natural additional term

R

j

~

Bj[V ]

�

(coming from the zero

modes) and with some smoothness assumption on

~

B. No assumption on V is needed and the

j

~

Bj-power is the expected linear one.

L.Erd�os (Georgiatech, Atlanta, USA): Joint work with J.P. Solovej (Univ. of Copenhagen).

10. F. Hiroshima: Effective mass producing ground states

The Pauli-Fierz Hamiltonian (N = 1 spinless) is de�ned by

H =

1

2m

(�i

~

r�

e

c

~

A(x))

2

+ V +H

f

;

where

H

f

=

2

X

r=1

a

�r

(k)!(k)a

r

(k) dk;

!(k) =

p

k

2

+ �

2

; � � 0,

~

A(x) =

1

p

2

2

X

r=1

Z

a

�r

(k)e

�ikx

�(�k)e

r

�

(k) dk + h:c:

`Assumption':

~

A(x)!

~

A(0) (dipole approximation). V 2 C

1

0

(R

3

); V < 0; V 6= 0; a

R

jV (x)j

3=2

dx <

1: Then H

0

=

1

2m

(��) + V +H

f

has no ground states!

Theorem 10.1. 9

e

c

= � 2 R s.t. H has a ground state.
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Proof. We can construct unitary operator U such that

U

�1

HU =

1

2m

�

�

(��) + V +H

f

+R;

(Arai 1982) where R = U

�1

V U � V + �, � a constant. We can see that m

�

�

is su�ciently

large for some � and R << H

f

. Thus by a Lattice Approximation method, we get the desired

results.

F. Hiroshima (Hokkaido Univ. Japan and TU-M�unchen): Joint work with H. Spohn.

11. M. Hirokawa: Some problems on the generalized Spin-Boson model

We consider some problems about the generalized spin-boson model. Namely:

� Characterize the existence or absence of ground states of the Hamiltonian of GSB model in

terms of the ground state and excited state energies, and correlation functions by method

of functional analysis.

� Investigate an expression or estimation of the ground state energy of GSB model without

the infrared cuto�.

� Check whether there is an unusual counter-example, but familiar to us in physics, for our

expectation concerning resonances. And if such an unusual example exists, investigate the

reason why it has the unusual property contrary to our expectation. Then we will know

when our expectation occurs.

For further details, please see our preprints in:

http://www.math.okayama-u.ac.jp/�hirokawa

M. Hirokawa (Okayama Univ.)

12. N. R�ohrl: The sharp bound on the stability of the relativistic

electron-positron field in Hartree-Fock approximation

An operator 
 2 L

2

(R

3

)
 C

4

! L

2

(R

3

)
 C

4

is called a charge density operator if:

� 
 is selfadjoint.

� 
 is trace class.

� �P

�

� 
 � P

+

, where P

+

and P

�

denote the positive and negative energy subspaces of

the free Dirac-Operator D.

The energy of 
 is given by

E

�

(
) = tr(D
) + �D(�




; �




)�

�

2

Z

G�G

dxdy

j
(x; y)j

2

jx� yj

:

Then there is a theorem by V. Bach, J.-M. Barbaroux, B. Hel�er and H. Siedentop, that

E

�

(
) � 0 if � 2 [0;

4

�

]. Here is was shown, that the energy per particle is not bounded from

below, if � >

4

�

.

N. R�ohrl (Regensburg): Joint work with D. Hundertmark and H. Siedentop.

13. D. Hundertmark: New bounds on the Lieb-Thirring constants

Given a one-particle Schr�odinger operatorH = ��+V on L

2

(R

d

) the Lieb-Thirring estimate

is the bound

trH




�

=

X

j

E




j

� L


;d

Z

R

d

V

�

(x)

�+

d

2

dx; (13.1)

for the 
'th moment of negative eigenvalues f�E

j

g

j

of H.
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The inequality (13.1) is known to hold if 
 �

1

2

(d = 1), 
 > 0 (d = 2), 
 � 0 (d � 3). The

Lieb-Thirring constants L


;d

have the natural lower bound

L


;d

� L

cl


;d

�

1

(2�)

d

Z

R

d

(p

2

� 1)




dp =

�(�+ 1)

2

d

�

d=2

�(�+

d

2

+ 1)

;


 � 0. L

cl


;d

is the so-called classical constant.

Lieb and Thirring conjectured that for 
 � 1 and d � 3, L


;d

= L

cl


;d

. This has recently been

shown by A. Laptev and T. Weidl for 
 �

3

2

. For the physically most important case d = 3,


 = 1 the best known bound so far was L

1;3

� 5:129L

cl

1;2

.

Based on the `induction in the dimension' idea of Laptev and Weidl together with the recent

result L

1

2

;1

= 2L

cl

1

2

;1

=

1

2

; we give the bound:

L


;d

� 2L

cl


;d

for 1 � 
 � 3=2; d 2 N

L


;d

� 4L

cl


;d

for

1

2

� 
 � 1; d � 2:

This leads to certain improvements in the stability of matter bound for fermionic N -particle

Coulomb systems.

D. Hundertmark (Princeton): Joint work with T. Weidl and A. Laptev (Royal Institute of

Technology, Stockholm).

14. V. Ivrii: Sharp eigenvalue asymptotics for periodic operators

We recover sharp asymptotic for a number N(�) of eigenvalues of operator A� tW as t runs

from 0 to � , where A is a periodic operator and W is decaying at in�nity potential, crossing

level E which lies either in the spectral gap or on its boundary.

V. Ivrii (Univ. of Toronto).

15. G. Scharf: Quantum gauge theories

Until now these theories in four dimensions can only be understood as formal power series

by means of perturbation theory. In this situation one would like to see the gauge structure

directly in the power series. Considering the S-matrix given by the time-ordered products T

n

,

perturbative gauge invariance to �rst order means:

d

Q

T

1

= @

�

T

�

1=1

; (15.1)

where d

Q

is the in�nitesimal gauge variation (de�ned by a gauge charge Q on free �elds) and

the right side is a divergence, and similarly for T

n

. Making a general ansatz for T

1

and T

�

1=1

,

the theory is strongly constrained by (15.1): In case of massless self-coupled spin-1 �elds one

gets Yang-Mills coupling. In the massive case unphysical and physical (=Higgs) scalar �elds

are required by 1st and 2nd order gauge invariance. For spin-2 there are more solutions: one is

quantum gravity. Whether the others are gauge invariant in higher orders remains to be seen.

Papers can be found under hep-th on the net.

G. Scharf (Z�urich)

16. E. Lieb: The ultraviolet problem in quantum electrodynamics

Various models of charged particles interacting with a quantized radiation �eld (but not

with each other) are discussed. Upper and lower bounds for the self- or ground state-energies

(without mass renormalization) are presented. For N fermions the bounds are proportional to

N (as they should be) but for bosons the bounds are sublinear (which implies binding) and

hence that `free bosons' are never free. Both relativistic and nonrelativistic kinematics are
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considered. The bounds are non-perturbative. Indeed, in the nonrelativistic case they disagree

strongly with ordinary perturbative theory.

E. Lieb (Princeton): Joint work with M. Loss.

17. M. Loss: A simple proof of a theorem of Laptev and Weidl

Consider the Schr�odinger operator

H = �

d

2

dx

2


 I � V (x);

on L

2

(R; C

N

). Here, I is the N � N identity matrix and V (x) is a non-negative hermitean

N �N matrix with smooth, compactly supported matrix elements. This operator has �nitely

many negative eigenvalues, which we denote by

��

1

� ��

2

� � � � � ��

L

:

The following Lieb-Thirring inequality was proved by Laptev and Weidl using scattering theory:

L

X

j=1

�

3=2

j

�

3

16

Z

R

tr[V (x)

2

] dx:

The constant

3

16

is best possible.

We give an elementary proof of this result using the classical commutation method.

M. Loss (Georgia Tech.): Joint work with R. Benguria.

18. J.P. Solovej: The ground state energy of the charged Bose gas

The model studied here is the `Jellium' model in which there is a uniform, �xed background

with charge density � and in which there move charged particles of unit charge | the whole

system being neutral. In 1961 Foldy used Bogolubov's 1947 method to investigate the ground

state energy of this system for bosonic particles in the large � limit. He found that the energy

per particle is �0:803�

1=4

in this limit. Here, we prove that this formula is correct, thereby

validating, for the �rst time, at least one aspect of, Bogolubov's pairing theory of the Bose gas.

J.P. Solovej (Copenhagen): Joint work with E. Lieb.

19. G.M. Graf: Extended edge states in quantum Hall systems

A classical electron in a 2-dimensional domain 
 under the in
uence of a magnetic �eld

moves in a circle about some �xed center - the guiding center - as long as it does not hit

the boundary @
. If it does, the electron follows the boundary by repeatedly bouncing at it.

The quantum mechanical counterpart should be the existence of extended edge states. This

is of some importance in connection with the quantum Hall e�ect. We show the existence of

absolutely continuous edge spectrum of energies away from the Landau levels, �rst for 
 a

half-plane and then for more general domains. The result is stable if some disorder potential

is included. The proof is based on Mourre theory. The conjugate operator, i.e., the observable

increasing in time, is related to the position of the guiding center.

G.M.Graf (Z�urich).
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20. M. Kiessling: 100 years Abraham-Lorentz electron

At the dawn of relativity, Abraham and Lorentz introduced a model of an extended charged

particle coupled to its own electromagnetic �eld. It is this semi-relativistic, pre-quantum model

which lead to our �rst ideas of mass renormalization through the works of Kramers, Dirac and

others, and which in a modern version are implemented in QED. Only recently, however, was

the �rst rigorous study of the semi-relativistic AL-model conducted (Spohn, Kunze, Komerk),

which has �nally clari�ed a number of troubling questions. The extension of the old AL-model

into a fully relativistic theory was achieved most recently only (M.K andW.A), and �rst rigorous

results include the following:

� The Cauchy problem for a purely spinning particle coupled to its radiation �eld has a

unique global solution provided the bare inertia does not vanish.

� With vanishing bare inertia the structure of the Cauchy problem is lost - a fact that has

been overlooked since Abraham-Lorentz's original papers.

� A spin (initially not in a stationary state) with �xed axis (achievable through symmetric

initial conditions) and strictly positive bare inertia exponentially fast approaches a station-

ary state with �nite magnetic moment, giving a fraction of its initial angular momentum

in the radiation �eld.

Future work will address the question of global well-posedness of the full dynamics as Cauchy

problem and the status of Lorentz-Dirac and Barjunan-Michel-Telejoli equations as regards

their relation to the relativistic AL theory.

M. Kiessling (Rutgers Univ. New Brunswick, NJ): Joint work with W. Appel (ENS-Lyon).

21. A. Arai: Spectral analysis for a quantum system of a Dirac particle

coupled to the quantized radiation field

We consider a quantum system of a Dirac particle minimally coupled to the quantized radi-

ation �eld and study mathematical properties of the Hamiltonian of the system.

The Hilbert space of the quantum system is H = [�

4

L

2

(R

3

)]
H

rad

, where H

rad

= �

1

n=0




n

s

(L

2

(R

3

)�L

2

(R

3

)); the boson Fock space over (L

2

(R

3

)�L

2

(R

3

)) (one-photon space). The total

Hamiltonian of the system is de�ned by

H(V ) = H

D

(V )
 I + I 
 d�(!)� q

3

X

j=1

�

j

A

�

j

(x);

where H

D

(V ) = � �(�ir)+m�+V is the one-particle Dirac operator with V a 4�4 Hermitian

matrix valued function on R

3

, d�(!) is the second quantization of the one-photon energy

function ! : R

3

! [0;1), q is the charge of the Dirac particle, A

�

j

(x) is the quantized radiation

�eld with momentum cuto� � : R

3

! R

3

.

We report on some results about the following aspects:

� Self-adjointness of H(V ).

� Spectral analysis in the case V = 0: In this case we have

UHU

�1

=

Z

�

R

3

p

H(p) dp (H = H(0));

with H(p) = � � p+m� + d�(!)�

P

3

j=1

�

j

d�(k

j

)� q

P

3

j=1

�

j

A

�

j

(0):

A. Arai (Hokkaido University, Sapporo, Japan).
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22. R. Benguria: Stability of positive diatomic molecules

Considering the nonrelativistic Schr�odinger operator for homonuclear diatomic molecular ions

within the Born-Oppenheimer approximation, we study the stability problem for increasing

ratio Z=N of nuclear charge Z to number N of electrons. In particular, we derive improved

bounds on the critical parameters that imply instability. That is, parameters that lead to

dissociation of the molecular system into atomic fragments. The principal qualitative advantage

of our estimates is the inclusion of electronic correlation; i.e., taking into account the e�ect

of electron-electron repulsion on the molecular bond. Comparing our rigorous results with

empirical of computed data, we formulate a conjecture that should quantify the actual stability

behaviour of realistic molecular species.

R. Benguria (P.U. Cat�olica de Chile): Joint work with H. Alanc~on, P. Duclos and H. Hograve.

23. S. Wugalter: Atoms in a homogeneous magnetic field

Let

H =M

�1

0

(ir

0

+ A

0

)

2

+

N

X

j=1

(ir

j

+ A

j

)

2

�

N

X

j=1

N jr

j

� r

0

j

�1

+

X

s;t;s<t

jr

s

� r

t

j

�1

;

r

j

= (x

j

; y

j

; z

j

), A

0

=

B

2

(�Ny

0

; Nx

0

; 0), A

j

=

B

2

(y

j

;�x

j

; 0), be the Schr�odinger operator of an

N electron atom in a homogeneous magnetic �eld. Let P = (P

x

; P

y

; P

z

) =

P

N

j=0

(ir

j

+A

j

); be

the operator of pseudomomentum.

By H

�

denote the operator H reduced to the states with �xed values of pseudomomentum

� = (�

1

; �

2

; �

3

):

Theorem 23.1. For all � = (�

1

; �

2

; �

3

) we have �

disc

(H

�

) 6= ;. Moreover, let N(�) be the

number of eigenvalues of the operator H

�

, which are less than (�� �); � = inf �

ess

(H

�

). Then

N(�)�

1=2

!const as �! +0.

S. Wugalter.

24. K. Yajima: L

p

-boundedness of wave operators

Let H = �� + V and H

0

= �� on L

2

(R

d

). If V is short range the wave operator W

�

=

s � lim

t!�1

e

itH

e

�itH

0

exist and are complete, i.e. W

�

is a partial isometry from L

2

(R

d

) to

L

2

ac

(H), the absolutely continuous subspace for H.

We prove that wave operators W

�

are bounded in L

p

(R

d

) for all 1 � p � 1 for d � 3

and for 1 < p < 1 for d � 1; 2 under suitable decay at in�nity conditions on V (x) and the

additional spectral condition on H, viz: 0 is not an eigenvalue or a resonance of H. Because

W

�

intertwine H

0

and H

ac

, the absolutely continuous part of H; viz f(H)P

ac

=W

�

f(H

0

)W

�

�

,

this result reduces L

p

�L

p

estimates for f(H)P

ac

to that of f(H

0

). In this way, we can extend,

e.g. the previously known results ke

�itH

P

ac

k

L

p

!L

p

0

� ct

2p(

1

2

�

1

p

0

)

to lower dimensions. The result

for the case d = 1 is also proven by R. Weder, and is a joint work with Galthayer.

K. Yajima (University of Tokyo).

Report written by: S�ren Fournais
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