MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 34/1999

Complex Geometry: Varieties of Low Dimensions

22.08. - 28.08.1999

Die Tagung fand unter der Leitung von A. Beauville (Paris), F. Catanese (Göttingen), E. Looijenga (Utrecht) und Ch. Okonek (Zürich) statt.

Wie schon bei früheren Tagungen über komplexe Geometrie in Oberwolfach haben auch in diesem Jahr wieder viele bedeutende Mathematiker aus verschiedenen Ländern an der Tagung teilgenommen, und es war deshalb nicht schwer, ein interessantes Tagungsprogramm zusammenzustellen.

Viele Vorträge bezogen sich auf wichtige komplex-geometrische Themen wie z.B. Modulräume von Flächen, Hilbertschemata, birationale Automorphismen projektiver Räume, Abelsche Varietäten, Kurven auf Flächen. Behandelt wurden auch moderne Entwicklungen und neuste Resultate in der komplexen Geometrie, etwa: projektive Kontaktmannigfaltigkeiten, MoriTheorie, Calabi-Yau Varietäten, holomorphe Blätterungen, Zopf-Monodromie, Fundamentalgruppen von Kähler Mannigfaltigkeiten. Darüber hinaus wurden auch Anwendungen von Methoden aus symplektischer und fast komplexer Geometrie dargestellt.

L. Ein

Effective Nullstellensatz

We discuss our recent joint work with R. Lazarsfeld.
Let X be a smooth complex projective variety of dimension n and L be an ample line bundle on X. Consider a linear system $|V| \subseteq|L|$. Let B be the base locus of $|V|$. Let Z_{1}, \ldots, Z_{r} be the distinguished subvarieties of B (in the sense of Fulton's intersection theory). We show that there are positive integers a_{1}, \ldots, a_{r} satisfying the Bezout inequality

$$
c_{1}(L)^{n} \geq \sum_{i=1}^{r} a_{i} d e g_{L} Z_{i}
$$

such that

$$
\mathcal{I}_{Z_{1}}^{\left(n a_{1}\right)} \cap \ldots \cap \mathcal{I}_{Z_{r}}^{\left(n a_{r}\right)} \subseteq \mathcal{I}_{B}
$$

We also discuss the relation between the Seshadri numbers and asymptotic regularity of ideal sheaves.

S. Mukai

Moduli of abelian surfaces and the regular polyhedral groups
Let (A, L) be an abelian surface of type $(1, d)$. A bilevel structure is the pair of a canonical level structure

$$
(K(L), \text { Weil }) \xrightarrow{\sim}\left((\mathbb{Z} / 5)^{\oplus 2},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right)
$$

of (A, L) and that of the dual abelian surface (\hat{A}, \hat{L}). The moduli space and its Satake compactification $\overline{\mathcal{A}^{b l}(1, d)}$ has a natural action of the group $G_{d} \times G_{d}$, where $G_{d}=P S L(2, \mathbb{Z} / d)$.
Theorem 1: For $d=2,3$ and $4, \overline{\mathcal{A}^{b l}(1, d)}$ is smooth and $G_{d} \times G_{d}$-equivariantly isomorphic to \mathbb{P}^{3}.
For $2 \leq d \leq 5, G_{d}$ is a regular polyhedral group. $G_{d} \times G_{d}$ acts on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and its ambient space \mathbb{P}^{3}. Note that the complement of $\mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}^{3}$ is isomorphic to $P G L(2) . \overline{\mathcal{A}^{b l}(1,5)}$ is no more smooth. The singular locus is the set of 72 point cusps.

Theorem 2: Let $\widetilde{\mathbb{P}^{3}}$ be the blow-up of \mathbb{P}^{3} at the 60 points $G_{5} \subset P G L(2) \subset \mathbb{P}^{3}$. Then there exists a $G_{5} \times G_{5}$-equivariant birational morphism $\widetilde{\mathbb{P}^{3}} \longrightarrow \overline{\mathcal{A}^{b l}(1,5)}$ which is an isomorphism outside the point cusps. There are 72 lines in \mathbb{P}^{3} passing through 5 of G_{5} and the strict transforms of these lines are contracted to the point cusps. (Normal bundle is $\mathcal{O}(-4) \oplus \mathcal{O}(-4)$.)

J. Wiśniewski

(report on a joint work with S. Kebekus, Th. Peternell, A. Sommese)
Projective contact manifolds
Let X be a projective manifold of dimension $2 n+1$ defined over \mathbb{C}. Suppose there exists a line bundle L over X and a twisted form $\theta \in H^{0}\left(X, \Omega_{X} \otimes L\right)$ such that

$$
\theta \wedge(d \theta)^{\wedge n} \in H^{0}\left(X, K_{X} \otimes L^{\otimes(n+1)}\right)
$$

does not vanish anywhere. Such a form is called a contact structure on X. The only known examples of contact projective manifolds over \mathbb{C} are:
(1) Wolf spaces-homogenous rational manifolds, each one defined for a simple algebraic group over \mathbb{C}, and
(2) projective bundles $\mathbb{P}\left(T_{Y}\right)$, where Y is an arbitrary smooth projective $(n+1)$-fold and $L=\mathcal{O}_{\mathbb{P}\left(T_{Y}\right)}(1)$.
The following theorem provides important information for the minimal model algorithm run for the classification of contact projective manifolds:
Theorem (Kebekus, Peternell, Sommese, Wiśniewski):
Let $\varphi: X \longrightarrow Y$ be an extremal ray contraction of a projective contact manifold (as defined above). If $\operatorname{dim} Y>0$ then Y is smooth of dimension $n+1$, $X=\mathbb{P}\left(T_{Y}\right), \varphi$ is the projection, $L=\mathcal{O}_{\mathbb{P}\left(T_{Y}\right)}(1)$ and the contact structure comes from $\operatorname{Aut}\left(T_{Y}\right)$.

M. Lehn

The cobordism class of Hilbert schemes of points on a surface
Let X be a smooth projective surface over the complex numbers. For each natural number n let $X^{[n]}$ denote the Hilbert scheme of zero-dimensional closed subschemes in X of length n. By a theorem of Fogarty $X^{[n]}$ is a projective manifold of dimension $2 n$. For any manifold Y let $[Y]$ denote its class in the complex cobordism ring $\Omega_{*}=\Omega_{*}^{U} \otimes \mathbb{Q}$. We prove that $\left[X^{[n]}\right]$
depends only on $[X]$ and n. As a corollary, there is a well-defined linear map $\Omega_{2} \rightarrow \Omega[[z]],[X] \mapsto \log \left(\sum_{n}\left[X^{[n]}\right] z^{n}\right)$. In particular, the value of any complex genus $g: \Omega_{*} \longrightarrow R$ on a Hilbert scheme can be computed from its values on the Hilbert schemes of any two surfaces that rationally span Ω_{2}. Thus methods using the toroidal structure of \mathbb{P}^{2} and $\mathbb{P}^{1} \times \mathbb{P}^{1}$ become available. The main theorem is equivalent to the existence of universal polynomials such that $c_{\lambda}\left(X^{[n]}\right)=P_{\lambda}\left(c_{1}^{2}(X), c_{2}(X)\right)$ for any Chern number c_{λ}, λ a partition of $2 n$. The proof of this claim proceeds by induction on n using the incidence variety of all pairs $\left(\xi, \xi^{\prime}\right) \in X^{[n]} \times X^{[n+1]}$ with $\xi \subset \xi^{\prime}$.

L. Caporaso

Uniformity of rational points over function fields
Let $g \geq 2, B$ a smooth projective curve over $\mathbb{C}, S \subset B$ a finite set.
Shafarevich conjecture, proved by Parshin and Arakelov, states that there exists only a finite number of non-isotrivial families of smooth curves of genus g over $B \backslash S$.

- We prove that such a number is uniformly bounded by a function on g, the genus of the base B, the cardinality of S.
- We generalize this to higher dimensional base.
- We apply the above results to obtain uniform boundedness of rational points of curves over function fields.

I. Dolgachev

Birational automorphisms of finite order of \mathbb{P}^{2}

We discuss the following equivalent problems:

1) Classify the conjugacy classes of elements of finite order in the group of birational transformations of \mathbb{P}^{2}.
2) Classify rational surfaces with an action of a cyclic group up to equivariant birational isomorphisms.
3) Classify plane curves $f(x, y)=0$ up to birational isomorphism such that the affine surface $z^{n}=f(x, y)$ is rational.
These problems were solved in XIX-century in the work of several mathematicians (E. Bertini, S. Kantor, E. Noether, A. Bottari are among them).
In this talk we reconstruct this work by using modern techniques (e.g. the classification of conjugacy classes in the Weil group of root lattices of type
$\left.A_{4}, D_{5}, E_{6}, E_{7}, E_{8}\right)$. We also mention another approach to this classification suggested by De-Qi Zhang. It is based on the theory of log-terminal Del Pezzo surfaces.

E. Sernesi

Nodal curves on surfaces of general type
On a given projective irreducible nonsingular algebraic surface S defined over \mathbb{C}, let $|C|$ be a linear system whose general element is smooth irreducible. For a given integer $\delta \geq 0$ let $\mathcal{V}_{C, \delta} \subset|C|$ be a locally closed subscheme parametrizing the universal family of irreducible curves in $|C|$ having δ nodes and no other singularities. An irreducible component $W \subset \mathcal{V}_{C, \delta}$ is called REGULAR if it is nonsingular of codimension δ in $|C|$. The following result, due to F . Flamini, has been discussed:
Theorem (Flamini): Let S and C as above and assume:

1. $\left(C-2 K_{S}\right)^{2}>0, \quad C\left(C-2 K_{S}\right)>0$
2. (i) $K_{S}^{2}>-4$ if $C\left(C-2 K_{S}\right) \geq 8$
(ii) $K_{S}^{2} \geq 0$ if $0<C\left(C-2 K_{S}\right)<8$
3. $C K_{S} \geq 0$
4. $H\left(C, K_{S}\right)<4\left[C\left(C-2 K_{S}\right)-4\right]$ where $H\left(C, K_{S}\right)=\left(C K_{S}\right)^{2}-C^{2} K_{S}^{2}$
5. (i) $\delta \leq \frac{1}{4} C\left(C-2 K_{S}\right)-1$ if $C\left(C-2 K_{S}\right) \geq 8$
(ii) $\delta<\frac{1}{8}\left(C\left(C-K_{S}\right)+\sqrt{C^{2}\left(C-2 K_{S}\right)^{2}}\right)$ if $0<C\left(C-2 K_{S}\right)<8$.

Then every irreducible component of $\mathcal{V}_{C, \delta}$ is regular.

H. Kaji

Projective geometry of adjoint varieties
An adjoint variety $X(\mathfrak{g})$ associated to a complex simple Lie algebra \mathfrak{g} is by definition the homogeneous projective variety in $\mathbb{P}_{*}(\mathfrak{g})$ obtained from the adjoint action of Int \mathfrak{g} on \mathfrak{g}. The main results here (a joint work with O. Yasukura) are as follows:
Theorem 1: For general points $x, y \in X(\mathfrak{g})$, the tangent locus of $[x, y]$ is equal
to $\{x, y\}$, where $[x, y]$ denotes the point in $\mathbb{P}_{*}(\mathfrak{g})$ defined by the Lie bracket of x and y.
Theorem 2: The secant variety of $X(\mathfrak{g})$ is decomposed as a disjoint union of projectivizations of a finite number of nilpotent orbits in \mathfrak{g} and the orbit in \mathfrak{g} through the semi-simple element associated to the minimal nilpotent orbit. Moreover there is a unique maximal orbit in those nilpotent orbits with respect to the closure ordering, which is equal to $\mathcal{O}_{[2]}$ for $\mathfrak{s l}_{2}, \mathcal{O}_{\left[31^{n-3}\right]}$ for $\mathfrak{s l}_{n \geq 3}$, $\mathcal{O}_{\left[2^{2} 1^{2 n-4}\right]}$ for $\mathfrak{s p}_{2 n}, \mathcal{O}_{\left[3^{2} 1^{n-6}\right]}$ for $\mathfrak{s o}_{n \geq 6}, \mathcal{O}_{A_{2}}$ for $E_{6,7,8}, F_{4}$ and $\mathcal{O}_{G_{2}\left(a_{1}\right)}$ for G_{2}.
Theorem 3: The variety of k-secants of $X\left(\mathfrak{s l}_{n}\right)$ is given by the projectivization of the locus in the space $\mathfrak{s l}_{n}$ of traceless matrices with rank at most $k+1$, for $0 \leq k \leq n$.
Theorem 4: A homogeneous projective variety has one apparent double point if and only if it is projectively equivalent to one of irreducible Freudenthal manifolds in $\mathbb{P}_{*}\left(\mathfrak{g}_{1}\right)$ defined by $\left\{Y \in \mathfrak{g}_{1} \mid(a d Y)^{2} \mathfrak{g}_{-2}=0\right\}$ for simple Lie algebras \mathfrak{g}, where $\mathfrak{g}=\oplus_{k=-2}^{2} \mathfrak{g}_{k}$ is a graded decomposition of contact type.
Theorem 5: The intersection of $X(\mathfrak{g})$ and $\mathbb{P}_{*}\left(\mathfrak{g}_{1}\right)$ coincides with the Freudenthal manifold associated to \mathfrak{g}.

G. Pareschi

Syzygies of abelian varieties
Let X be a projective variety and let L be a (usually very ample) line bundle on X. According to M. Green, the pair (X, L) is said to satisfy the property N_{p} if the first p steps of a minimal resolution of R_{L} over S_{L} are as follows:

$$
\oplus S_{L}(-p-1) \longrightarrow \ldots \longrightarrow \oplus S_{L}(-3) \longrightarrow S_{L}(-2) \longrightarrow S_{L} \longrightarrow R_{L} \longrightarrow 0
$$

where $R_{L}:=\oplus_{n \geq 0} H^{0}\left(L^{\otimes n}\right)$ is the graded algebra associated to L and $S_{L}:=\oplus_{n \geq 0} \operatorname{Sym}^{n}\left(H^{0}(L)\right)$ is the symmetric algebra over $H^{0}(L)$.
I prove the following result conjectured by Rob Lazarsfeld:
Theorem: Let X be an abelian variety over an algebraically closed field of characteristic zero. Let A be an ample line bundle on X and let us denote $L=A^{\otimes n}$. Let $p \in \mathbb{N}$. If $k \geq 3+p$ then the pair (X, L) satisfies the property N_{p}.
The proof uses methods of vector bundles on abelian varieties, which can be of independent interest.

K. Konno

Relative canonical algebra for pencils of curves
Let $f: S \longrightarrow B$ be a relatively minimal fibration of curves of genus ≥ 2, where S (resp. B) is a non-singular projective surface (resp. curve). One of the naive objects associated with f is the relative canonical algebra:

$$
R(f)=\oplus_{n \geq 0} R_{n}, \quad R_{n}:=f_{*}\left(\omega_{S / B}^{\otimes n}\right) .
$$

But not much is known so far about the structure of $R(f)$. Some years ago, Miles Reid conjectured that $R(f)$ is generated by elements of degrees ≤ 3 and related in degrees ≤ 6 (1-2-3 conjecture). By Nakayama's lemma, studying this problem for $R(f)$ is equivalent to studying the same problem for the canonical ring $R\left(F, K_{F}\right)$ of any fibre F of f.
Theorem 1: $R\left(F, K_{F}\right)$ is generated in degrees ≤ 3 and related in degrees ≤ 6 except in the case:
F is a multiple fiber which contains a cycle E with $p_{a}(E)=1$, $E^{2}=-1$ such that $E \subseteq B s\left|K_{F}\right|$.

In the exceptional case, $R\left(F, K_{F}\right)$ is generated in degrees ≤ 4 and related in degrees ≤ 8.
A main part of Theorem 1 is a corollary to the following:
Theorem 2: Let D be a 1-connected curve on a smooth surface, $p_{a}(D) \geq 2$ and K_{D} nef. Let L, M be line bundles on D such that $L-2 K_{D}, M-2 K_{D}$ are both nef. Then the multiplication

$$
H^{0}(D, L) \otimes H^{0}(D, M) \longrightarrow H^{0}(D, L+M)
$$

is surjective except in the following cases:
(1) $p_{a}(D)=2, L=M \equiv 2 K_{D}$
(2) D contains a curve $E, p_{a}(E)=E \cdot(D-E)=1$ and $L=M \equiv 2 K_{D}$ on E.

F. Bogomolov

Szpiro inequality for elliptic surfaces and mapping class groups
We consider an elliptic smooth nonisotrivial fibration V over \mathbb{P}^{1} with multiplicative degenerate fibers only and without multiple fibers. In this case we
have two invariants $D=\#$ number of singular fibers and $N=\# \sum_{s \in S} n_{s}$, where S is a set of singular fibers and n_{s} is a number of components in the singular fiber over s. It is clear that $D \leq N$. Szpiro inequality says that $N \leq 6 D$ and the lecture contains a proof of this result which uses only the monodromy of the fibration. Local monodromies are powers $T_{s}^{n_{s}}$ of local positive Dehn twists and we can write the natural relation for them as $\Pi T_{s}^{n_{s}}=1$. T_{s} are elements of $\operatorname{Map}(1)=S L(2, \mathbb{Z})$ but it is more natural to consider them in $\operatorname{Map}(1,1)$ which is the \mathbb{Z} central extension of $\operatorname{Map}(1)$. This extension is induced from the universal covering $S L \widetilde{(2,} \mathbb{R})$ of $S L(2, \mathbb{R})$ and positivity of T_{s} is interpreted as the property of it's natural lifting $\widetilde{T_{s}} \subset \operatorname{Map}(1,1)$ to move all the points of $\mathbb{R}=$ universal covering of $\mathbb{P}^{1}(\mathbb{R})=\mathbb{S}^{1}$ to the right.
The group $\operatorname{Map}(1,1)$ has a natural character $\chi: \operatorname{Map}(1,1) \longrightarrow \mathbb{Z}, \chi\left(\tilde{T}_{s}\right)=1$ and $\chi(c)=12$, where c generates the kernel $\operatorname{Map}(1,1) \longrightarrow \operatorname{Map}(1)$. Now $\Pi \tilde{T}_{i}^{n_{s}}=M c$ where $M=\frac{N}{12}$. On the other hand, the displacement angle for $\tilde{T}_{i}^{n_{s}}$ is bounded by π independently on n_{s}. Thus we obtain $2 \pi M \leq D \pi$, i.e. $N \leq 6 D$.
We extend this result to the case of elliptic fibrations over any curve, with any fibers and also to the families of curves of any genus (see Alg-geom preprint of Amoros, Bogomolov, Katzarkov, Pantev).

L. Bonavero

Mori theory on non projective toric manifolds
In this talk we are interested in the following:
let X be a non projective toric manifold such that there exists an invariant curve $C \subset X$ such that the blow-up $B_{C}(X)$ of X along C is projective. Then, we classify extremal Mori contractions on $\tilde{X}=B_{C}(X)$ for which the exceptional locus intersects the exceptional divisor E of $\tilde{X} \longrightarrow X$. We show that there are 3 types only, all being smooth blow-down on a smooth center. For this we use Mori theory for toric variety due to M. Reid. As a simple corollary, we show that there exists no such toric 3 -fold X such that \tilde{X} is Fano, without using any classification.

L. Katzarkov

Algebraic geometry methods in symplectic geometry
Let V be a 4-dimensional symplectic manifold. We say that it has a structure
of a topological Lefschetz pencil (TLP) iff:
-there exists a subset of points A
-there exists a subset of points $\left\{x_{\alpha}\right\}$
-a \mathcal{C}^{∞} map $f:\{V \backslash A\} \backslash\left\{x_{\alpha}\right\}$ such that

1) near A there are complex coordinates $z_{1}=z_{2}=0$ such that $f:\left(z_{1}, z_{2}\right) \longrightarrow$ z_{1} / z_{2}
2) near $\left\{x_{\alpha}\right\} f:\left(z_{1}, z_{2}\right) \longrightarrow z_{1}^{2}+z_{2}^{2}$.

Theorem (Donaldson): Every (V, ω) with $[\omega]$ integral has a structure of a TLP. Moreover the fibers are symplectic submanifolds PD to $k[\omega]$ for some $k \gg 0$.
Using the above theorem one can define a series of invariants:

$$
\rho_{k}: \pi_{1}\left(\mathbb{P}^{1} \backslash\left\{p_{1}, \ldots, p_{n_{k}}\right\}\right) \longrightarrow S p\left(2 g_{k}, \mathbb{Z} / d \mathbb{Z}\right) .
$$

Conjecture: For H_{1}, H_{2} Horikawa surfaces the sequences of representations:

$$
\begin{gathered}
\rho_{k}^{\prime}: \pi_{1}\left(\mathbb{P}^{1} \backslash\left\{p_{1}, \ldots, p_{n_{k}}\right\}\right) \longrightarrow S p\left(2 g_{k}, \mathbb{Z} / 3 \mathbb{Z}\right) \\
\rho_{k}^{\prime}: \pi_{1}\left(\mathbb{P}^{1} \backslash\left\{p_{1}, \ldots, p_{n_{k}}\right\}\right) \longrightarrow S p\left(2 g_{k}, \mathbb{Z} / 3 \mathbb{Z}\right)
\end{gathered}
$$

corresponding to $m_{k_{H_{1}}}$ and $m_{k_{H_{2}}}$ are not Hurwitz and and conjugacy equivalent.
A corollary from this conjecture will be that H_{1} is not symplectomorphic to H_{2}.

C. Voisin

On the Hilbert scheme of points of an almost complex fourfold
Recently it was proved by Ellingsrud, Göttsche and Lehn that the complex cobordism class of $\operatorname{Hilb}^{k}(X)$, where X is a complex compact surface, depends only on the complex cobordism class of X. Here $\operatorname{Hilb}^{k}(X)$ is the Hilbert scheme parametrizing subschemes of length k of X. One natural question raised by this result is whether or not the assignment $X \longmapsto \operatorname{Hilb}^{k}(X)$ can be extended to the context of almost complex varieties. We prove essentially this
Theorem: Let (X, J) be an almost complex fourfold. Then there exists a differentiable variety $\operatorname{Hilb}^{k}(X)$, with a stable almost complex structure and a differentiable map

$$
c: \operatorname{Hilb}^{k}(X) \longrightarrow X^{(k)}
$$

such that $c^{-1}(Z)$ is diffeomorphic to $c_{I}^{-1}(Z)$ for any complex structure I on X defined near Z and c_{I} the corresponding Hilbert Chow morphism. This $\operatorname{Hilb}^{k}(X)$ is well defined up to deformation.

K. Oguiso

Finiteness of $c_{2}=0$ contractions on a Calabi-Yau 3-fold
By a Calabi-Yau 3-fold we mean a minimal projective 3-fold $/ \mathbb{C}$ such that $\mathcal{O}_{X}\left(K_{X}\right) \cong \mathcal{O}_{X}$ and $h^{1}\left(\mathcal{O}_{X}\right)=0$. By a contraction $\Phi: X \longrightarrow W$, we mean a surjective morphism on a normal projective variety W with connected fibers. Φ is called $c_{2}=0$ contraction if $\Phi=\Phi_{|D|}$ such that $\left(D \cdot c_{2}(X)\right)=0$. As a corollary of the classification of $c_{2}=0$ contractions, we have shown the following:
Theorem:
(1) $\#\left(\left\{c_{2}=0\right.\right.$ contractions on $\left.X\right\} /$ isom $)<+\infty$
(2) Assume $c_{2}(X) \equiv 0$ in $\operatorname{Pic}(X)$. Then the Picard number $\rho(X)=2$ or 3 and
(a) the nef cone $\bar{A}(X)$ is rational simplicial cone, and
(b) every nef rational divisor on X is semi-ample.

As a corollary we also find the following:
Corollary: If $\rho(X)=1$, then $\pi_{1}(X)$ is finite.

J. Wahl

Hyperplane sections of Calabi-Yau varieties
A Calabi-Yau variety Z^{n} will mean a normal complex projective variety with isolated singularities, so that $K_{Z} \cong \mathcal{O}_{Z}, h^{1}\left(\mathcal{O}_{Z}\right)=0$, and the singularities are canonical (=rational Gorenstein). If $n=2$, this means a $K 3$ surface with RDP's.
One expects from "boundedness of families of Calabi-Yaus" that there are few of these, hence few hyperplane sections $X=Z \cap H$. Note $K_{X}=K_{Z}+\left.H\right|_{X}=$ $\mathcal{O}_{X}(1)$ is very ample. So we ask which canonically polarized $\left(X, K_{X}\right)$ are hyperplane sections of a C-Y. We explained the proof of the

Theorem: Suppose W is a smooth variety with $h^{1}\left(\mathcal{O}_{W}\right)=0$. Then a sufficiently ample smooth divisor X on W cannot be a hyperplane section of a Calabi-Yau variety Z, unless $W=Z$.
Corollary: A non-singular hypersurface of degree d in $\mathbb{P}^{n}(n \geq 2)$ cannot be a hyperplane section of a Calabi-Yau once $d>2 n+2$.

M. McQuillan

Non-commutative minimal models

The object of this talk was to study in the spirit of Mori's programme one of the basic examples of non-commutative geometry, namely foliations. Precisely we study pairs (X, F) consisting of an integrable foliation F on a normal algebraic space X. Restricting to the case of surfaces, we obtain an almost complete foliated analogue of Enriques-Kodaira classification. Various hyperbolicity results, already established by the author, would modulo considerations from diophantine geometry approximation, follow immediately or having a complete rather than almost complete classification, i.e. finishing off the remaining case.

References:

1) McQuillan M., "Diophantine approximation and foliations", Publ.Math I.H.E.S., vol.87, 1998
2) McQuillan M., Holomorphic curves on hyperplane sections of 3-folds", GAFA, vol.9, \#2, 1999
R. Piene (joint work with S. Kleiman)

Enumerating singular curves on surfaces

Given a family of smooth projective surfaces $\pi: F \longrightarrow Y$ and $D \subset F$ a relative divisor, T a topological type (= Enriques diagram), let $Y(T):=\left\{y \in Y \mid D_{y}\right.$ has singularities of type $\left.T\right\}$. We show that, under certain genericity assumptions, and for $\operatorname{cod}(T) \leq 8$, the class $u(D, T):=[\overline{Y(T)}]$ can be expressed as a polynomial of degree $r:=\#\{$ roots of the diagram $T\}$ in the classes $\mu(a, b, c):=\pi_{*} c_{1}(\mathcal{O}(D))^{a} c_{1}\left(\Omega_{F / Y}^{1}\right)^{b} c_{2}\left(\Omega_{F / Y}^{1}\right)^{c}$. We conjecture this holds for any T, at least for the case that $T=r A_{1}$ ($=r$ nodes). In this latter case, write $u(D, r):=u\left(D, r A_{1}\right)$ and (inspired by Göttsche's work) the generating function as $\sum u(D, r) t^{r}=\exp \left(\sum a_{q} t^{q} / q!\right)$; we show that the a_{q} are linear and we give an algorithm for computing them - this computes $u(D, r)$
for $r \leq 8$.
Applied to $F=S \times Y, S$ surface, $Y=|\mathcal{L}|, \mathcal{L}=\mathcal{M}^{\otimes m} \otimes \mathcal{N}$ we prove that the above formula is valid provided $m \geq 3 r+g^{2}+g+4-(s+x) / 12$ where $g:=1+c_{1}(\mathcal{M})\left(c_{1}\left(\Omega_{S}^{1}\right)+c_{1}(\mathcal{M})\right) / 2, s=c_{1}\left(\Omega_{S}^{1}\right)^{2}, x=c_{2}\left(\Omega_{S}^{1}\right)$.
We also recover two examples where Y is non-linear: Vainsencher's enumeration of 6 -nodal quintic plane curves on a general quintic hypersurface in \mathbb{P}^{4}, and Bryan-Leung's enumeration of the number $N_{g, n}$ of genus g curves algebraically equivalent to a given curve C, with $C^{2}=2 g-2+2 n, n \leq 8$, on an Abelian surface.

M. Teicher

New invariants of braid monodromy
§1. Introduction: Braid Monodromy Type (BMT) characterize curves and distinguish among families of curves. When applied to branch curves of generic projections of surfaces of general type, it characterize surfaces and it is an invariant of deformation families. It was proven in 1998 by the author and Viktor Kulikov that it two plane curves S_{1} and S_{2} are of the same BMT, then they are isotopic. Moreover, if two surfaces of general type have branch curves which are of the same BMT, then the surfaces are diffeomorphic. Thus BMT is between Def and Diff: Def $\Rightarrow B M T \Rightarrow$ Diff. There is a work in process to adapt this notion of BMT to the symplectic situation (following thesis of Auroux, who produced "generic" projection to $\mathbb{C P}^{2}$ of symplectic 4 -manifolds).
We want to provide discrete invariants of braid monodromy factorizations. The situation is as follows:
§2. Defining Braid Monodromy Type of curves: Let S be a plane curve of degree m. Let φ be the braid monodromy related to $S\left(\varphi: \pi_{1} \longrightarrow B_{m}\right)$. Let $\left\{\delta_{i}\right\}_{i=1}^{N}$ be a free geometric base of π_{1}. Let Δ^{2} be the generators of center $\left(B_{m}\right)$. Then by Artin: $\Delta^{2}=\prod_{i=1}^{N} \varphi\left(\delta_{i}\right)$. Such a presentation is called a Braid Monodromy Factorization (BMF). In the talk I defined Hurwitz equivalence of BMF, which induces the notion of BMT (S_{1} and S_{2} are of the same BMT if they have factorization which are Hurwitz and conjugacy equivalent).
§3 The Hecke Representation Invariants: On each BMF we define a new invariant derived from the Hecke algebra. Let $\operatorname{Hecke}\left(B_{m}\right)$ be the Hecke alge-
bra of B_{m}, $\operatorname{dimHecke}\left(B_{m}\right)=m!$. Let $H R$ be the representation of B_{m} in Hecke $\left(B_{m}\right)$ defined by multiplication from the left. For each BMF, $\prod_{i=1}^{N} b_{i}$ we look at the $m!\times N m!$ matrix $H R\left(b_{1}\right)-I, H R\left(b_{N}\right)-I$ and at the g.c.d. of its maximal order minors. We compute it for several examples and currently we try to apply it on branch curves.

N. Shepherd-Barron

Moduli and pencils of Enriques surfaces

This describes a joint work with T. Ekedahl.
There is a coarse moduli space M over \mathbb{Z} for appropriately polarized Enriques surfaces. The geometric fibres are 10-dimensional and irreducible (this is well known) if char $\neq 2$, while in char $=2$ there are two 10 -dimensional components, meeting in an irreducible 9 -dimensional variety. This stratification reflects the possible values of Pic^{τ}. The proofs depend upon an analysis of the period map (in the sense of Ogus) defined in the case where Pic $^{\tau} \neq \mu_{2}$. In contrast to the K3-case, the fibres of the pencil map are open subsets of \mathbb{P}^{1} (this comes from a construction similar to that of Moret-Bailly), but there is a generic Torelli theorem where Pic ${ }^{\tau}=\alpha_{2}$.
From the viewpoint of general moduli problems, the quotient map from the stack to M has the property that the local rings of M are not always invariant subrings (with respect to the automorphism group scheme) of the local rings of the universal deformation spaces. In fact, there can be 1-dimensional fibres, while the group schemes are finite.

F. Campana

Green-Lazarsfeld sets and solvable quotients of Kähler groups
Theorem 1: Let X be a compact Kähler manifold. Let G be a linear (i.e. embeddable in $G l(m, \mathbb{Q}), m \gg 0)$ solvable group which is a quotient of $\pi_{1}(X)$. Then either G is almost nilpotent, or there exists a finite etale abelian cover \tilde{X} of X and a surjective holomorphic map $f: \tilde{X} \longrightarrow C$ to a curve C of genus $g \geq 2$.
When X is projective, this result is due to Arapura-Nori, who obtained it by means of arithmetic geometry.
It is here derived from:
Theorem 2: Let X be as above. Let $\pi_{1} \widehat{(X)}=\operatorname{Hom}\left(\pi_{1}(X), \mathbb{C}^{*}\right)$ be the complex
algebraic group of characters of $\pi_{1}(X)$, and

$$
\Sigma^{1}(X):=\left\{\chi \in \widehat{\pi_{1}(X)} \text { s.t. } H^{1}\left(\pi_{1}(X), \mathbb{C}_{\chi}\right) \neq 0\right\}
$$

be the Green-Lazarsfeld set of X, where \mathbb{C}_{χ} is \mathbb{C} considered as a $\pi_{1}(X)$ module via χ. Then $\Sigma^{1}(X)$ is a finite union of torsion translates of subtori of $\pi_{1} \widehat{(X)}$.
When X is projective, theorem 2 was proved by C. Simpson (in a more general form). The Kähler case is reduced to the projective case, using arguments of A. Beauville, who established (among other things) the special case where the derived group $D \pi_{1}(X)$ of $\pi_{1}(X)$ is finitely generated.

G.P. Pirola

On subvarieties of a generic abelian variety
We show that the higher Abel-Jacobi mapping gives some geometrical informations on subvarieties of a generic abelian variety.
We prove:
Theorem: If X is a n-dimensional smooth variety with a nontrivial morphism $f: X \longrightarrow A$ where A is a generic abelian variety of dimension $a, a>3$, $\operatorname{dim} f(X)=n$, then

$$
p_{g}(X) \geq \frac{1}{2}(a-n)(a-n-1)+h^{n, 0}(A) .
$$

The main tools are:

1) Nori Theorem which shows that the Abel-Jacobi image of homologically trivial cycles is torsion modulo the largest abelian subvariety of the suitable intermediate Jacobian.
2) An explicit computation of the differential of the normal function associated to the cycle $f(X)$.

These methods give bounds on the number of moduli of irregular varieties.

Berichterstatter: P. Lupascu

List of participants

K. Amerik	amerik@mozart.ujf-grenoble.fr
W.P. Barth	barth@mi.uni-erlangen.de
I. Bauer	ibauer@uni-math.gwdg.de
T. Bauer	bauerth@mi.uni-erlangen.de
A. Beauville	beauville@dmi.ens.fr
F. Bogomolov	bogomolov@cims.nyu.edu
L. Bonavero	bonavero@ujf-grenoble.fr
F. Campana	campana@iecn.u-nancy.fr
L. Caporaso	caporaso@math.mit.edu
F. Catanese	catanese@uni-math.gwdg.de
C. Ciliberto	cilibert@axp.mat.uniroma2.it
O. Debarre	debarre@math.u-strasbg.fr
I. Dolgachev	idolga@math.lsa.umich.edu
L. Ein	ein@uic.edu
G. Ellingsrud	ellingrr@math.uio.no
B. Fantechi	fantechi@science.unitn.it
L. Göttsche	gottsche@ictp.trieste.it
K. Hulek	hulek@math.uni-hannover.de
H. Kaji	kaji@mse.waseda.ac.jp
L. Katzarkov	lkatzark@math.uic.edu
K. Konno	konno@math.wani.osaka-u.ac.jp
A. Langer	alan@mimuw.edu.pl
M. Lehn	lehn@uni-math.gwdg.de
E.J.N. Looijenga	looijeng@math.uu.nl
P. Lupascu	lupascu@math.unizh.ch
M. McQuillan	mquillan@ihes.fr
S. Mukai	mukai@math.nagoya-u.ac.jp
S. Müller-Stach	mueller-stach@uni-essen.de
K. O'Grady	ogrady@mat.uniroma1.it
K. Oguiso	mat9g0@spi-power.uni-essen.de
C. Okonek	okonek@math.unizh.ch
R. Paoletti	rp@dimat.unipv.it
G. Pareschi	pareschi@mat.uniroma2.it
C. Pauly	pauly@math.unice.fr

U. Persson	ulfp@math.chalmers.se
C. Peskine	peskine@math.jussieu.fr
T. Peternell	thomas.peternell@uni-bayreuth.de
C.A.M. Peters	chris.peters@ujf-grenoble.fr
R. Piene	ragnip@math.uio.no
G.P. Pirola	pirola@dimat.unipv.it
G. Sankaran	gks@maths.bath.ac.uk
A. Schmitt	schmitt1@cs.biu.ac.il
E. Sernesi	sernesi@matrm3.mat.uniroma3.it
N.I. Shepherd-Barron	nisb@dpmms.cam.ac.uk
S.A. Stromme	stromme@math.uib.no
T. Szemberg	szemberg@im.uj.edu.pl
M. Teicher	teicher@macs.biu.ac.il
A. Teleman	teleman@math.unizh.ch
C. Voisin	voisin@math.jussieu.fr
J.M. Wahl	jw@math.unc.edu
P.M.H. Wilson	pmhw@dpmms.cam.ac.uk
J. Wisniewski	jarekw@mimuw.edu.pl
F. Zucconi	zucconi@dimi.uniud.it

Dr. Katja Amerik
Department of Mathematics
Univ. Paris-Sud
Bat. 425
F-91405 Orsay Cedex

Prof.Dr. Wolf P. Barth
Mathematisches Institut
Universitt Erlangen
Bismarckstr. 1 1/2
91054 Erlangen

Dr. Ingrid Bauer
Fachbereich Mathematik
Universitt Gttingen
Bunsenstr. 3/5
37073 Gttingen

Dr. Thomas Bauer
FB Mathematik und Informatik Universitt Marburg
Hans-Meerschwein-Str. Lahnbg.
35032 Marburg

Prof.Dr. Arnaud Beauville
Departement de Mathematiques et Applications
Ecole Normale Superieure
45 , rue d'Ulm
F-75230 Paris Cedex 05

Prof.Dr. Fedor A. Bogomolov
Courant Institute of Mathematical Sciences
New York University
251, Mercer Street
New York, NY 10012-1110
USA

Dr. Laurent Bonavero
Institut Fourier
Universite de Grenoble I
Boite Postale 74
F-38402 Saint Martin d'Heres Cedex

Prof.Dr. Frederic Campana
Dept. de Mathematiques
Universite de Nancy I
B.P. 239

F-54506 Vandoeuvre-les-Nancy Cedex

Prof.Dr. Lucia Caporaso	Prof.Dr. Igor Dolgachev
Department of Mathematics	
Massachusetts Institute of Technol.	Dept. of Mathematics The University of Michigan 77 Massachusetts Ave 525 East University Avenue
Cambridge, MA 02138	Ann Arbor, MI 48109-1109
USA	USA
Prof.Dr. Fabrizio Catanese	Prof.Dr. Lawrence Ein Dapt. of Mathematics, Statistics and Computer Science, M/C 249 Universitt Gttingen Bunsenstr. 3-5
University of Illinois at Chicago	
37073 Gttingen	851 S. Morgan Street

Dr. Lothar Göttsche
International Centre for
Theoretical Physics, International
Atomic Energy Agency, UNESCO
P. O. B. 586 Miramare

I-34100 Trieste

Prof.Dr. Klaus Hulek
Institut fr Mathematik (C)
Universitt Hannover
Postfach 6009
30060 Hannover

Prof.Dr. Hajime Kaji
Department of Mathematics
School of Science and Engineering
Waseda University
Nishi-ohkubo; Shinjuku-ku
Tokyo 169-8555
JAPAN

Prof.Dr. Ludmil Katzarkov
Dept. of Mathematics
University of California at Irvine
Irvine, CA 92697-3875
USA

Prof.Dr. Kazuhiro Konno
Department of Mathematics
Graduate School of Science
Osaka-University
Toyonaka
Osaka 560-0043
JAPAN

Prof.Dr. Adrian Langer
Instytut Matematyki
Uniwersytet Warszawski
ul. Banacha 2
00-913 Warszawa
POLAND

Dr. Manfred Lehn
Mathematisches Institut
Universitt zu Kln
50923 Kln

Prof.Dr. Eduard J.N. Looijenga
Faculteit Wiskunde
Rijksuniversiteit Utrecht
Postbus 80.010
NL-3508 TA Utrecht

Dr. Paul Lupascu	Prof.Dr. Keiji Oguiso
Institut fr Mathematik	Department of Mathematical Sciences
Universitt Zrich	University of Tokyo
Winterthurerstr. 190	3-8-1 Komaba, Meguro-ku
CH-8057 Zrich	Tokyo 153 JAPAN
Dr. Michael McQuillan All Souls College Oxford University	Prof.Dr. Christian Okonek Institut fr Mathematik
GB-Oxford OX1 4AL	Universitt Zrich
	Winterthurerstr. 190
Prof.Dr. Shigeru Mukai	CH-8057 Zrich
Dept. of Mathematics	
Nagoya University	Dr. Roberto Paoletti
Chikusa-Ku	Dipartimento di Matematica
Nagoya 464-01	Universita di Pavia
JAPAN	Via Abbiategrasso 215
	I-27100 Pavia
Dr. Stefan Müller-Stach	
FB - Mathematik und Informatik	Prof.Dr. Giuseppe Pareschi
Universitt-GH Essen	Dipartimento di Matematica
45117 Essen	Universita degli Studi di Roma I
"La Sapienza"	
Prof.Dr. Kieran O'Grady	Piazzale Aldo Moro, 2
Via Morlupo 43	I-00185 Roma
I-00191 Roma	

Dr. Christian Pauly
Laboratoire Diedonne
Universite de Nice
Parc Valrose
F-06108 Nice Cedex 2

Prof.Dr. Ulf Persson
Department of Mathematics
University of Michigan
Ann Arbor, MI 48103
USA

Prof.Dr. Christian Peskine
Institut de Mathematiques Pures et
Appliquees, UER 47
Universite de Paris VI
4, Place Jussieu
F-75252 Paris Cedex 05

Prof.Dr. Thomas Peternell
Fakultt fr Mathematik und Physik Universitt Bayreuth

95440 Bayreuth

Prof.Dr. Chris A.M. Peters
Laboratoire de Mathematiques
Universite de Grenoble I
Institut Fourier
B.P. 74

Prof.Dr. Ragni Piene
Institute of Mathematics
University of Oslo
P. O. Box 1053 - Blindern

N-0316 Oslo

Prof.Dr. Gian Pietro Pirola
Dipartimento di Matematica
Universita di Pavia
Via Abbiategrasso 215
I-27100 Pavia

Prof.Dr. Gregory Sankaran
School of Mathematical Sciences
University of Bath
Claverton Down
GB-Bath Somerset BA2 7AY

Alexander Schmitt
Department of Mathematics and
Computer Sciences
Bar-Ilan University
Ramat-Gan 52900
ISRAEL

Prof.Dr. Edoardo Sernesi
Dipt. Mat. ROMA TRE
L.go S. Murialdo 1

I-00146 Roma

F-38402 Saint-Martin-d'Heres Cedex

Prof.Dr. Nick I. Shepherd-Barron	
Dept. of Pure Mathematics and	
Mathematical Statistics	
University of Cambridge	
16, Mill Lane	Prof.Dr. Claire Voisin Institut de Mathematiques Analyse Algebrique UB-Cambridge, CB2 1SB Universite Pierre et Marie Curie 4, place Jussieu, Case 247
Prof.Dr. Stein Arild Stromme	F-75252 Paris Cedex 5
Matematisk Institutt	
Universitetet i Bergen	Prof.Dr. Jonathan M. Wahl
Allegaten 55	Dept. of Mathematics
N-5007 Bergen	University of North Carolina
Phillips Hall	

Dr. Francesco Zucconi
Dipartimento di Matematica e Informatica
Universita di Udine
Via delle Scienze 206
I-33100 Udine

