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The Mathematics Research Institute at Oberwolfach (Germany) hosted the meeting entitled \Ran-

dom Systems" which was organized by L. Arnold (Bremen), I. Goldsheid (London) and Y. Kifer

(Jerusalem). The meeting was attended by 41 scientists from France, Germany, Israel, Italy,

Russia, Switzerland, the United Kingdom and the United States.

This was an interdisciplinary meeting whose main purpose was to bring together two cultures:

probabilists (from stochastic dynamics, stochastic particle systems, systems in random environ-

ment) with dynamical systems people (from smooth/topological dynamics and ergodic theory with

applications), and allow for an exchange of ideas, methods and models. The talks can be grouped

according to four main themes:

Stochastic Dynamics: K. Athreya (Ames), V. Baladi (Paris), M. Kl�unger (Bremen), M. Scheut-

zow (Berlin) and

�

O. Steno (Jerusalem). In addition, an informal seminar on Random Attrac-

tors was organized on Monday night, with talks by H. Crauel (Berlin), P. Imkeller (Berlin) and

B. Schmalfuss (Merseburg).

Statistical Mechanics Systems: C. Boldrighini (Roma), A. Bovier (Berlin), J.-D. Deuschel

(Berlin), D. Io�e (Haifa), Y. Kondratiev (Bonn), R. Minlos (Moscow), A. Soshnikov (Caltech), O.

Zeitouni (Haifa) and E. Zhizhina (Moscow).

Dynamical Systems and Ergodic Theory: J. Aaronson (Tel Aviv), A. Karlsson (Yale), A.

Katok (Penn State), G. Keller (Erlangen), F. Ledrappier (Paris), C. Liverani (Roma), M. Pollicott

(Manchester), O. Sarig (Tel Aviv), J. Schmeling (Berlin) and R. Sharp (Manchester).

Random Walks on Groups: Y. Guivarc'h (Rennes) and V. Kaimanovich (Rennes).

The feedback received by the organizers about the success of the meeting was rather positive. New

contacts between the two cultures were started, and existing ones were extended and deepened.

Vortragsausz�uge

J. Aaronson: Group extensions of Gibbs-Markov maps

(Joint work with M. Denker)

These are essentially random walks driven by weakly dependent base transformations and with

properties like random walks with i.i.d. jump distributions, as we attempt to show. Here we

present two partial results on exactness.

A Markov map is a quintuple (X;B;m; T; �) where (X;B;m; T ) is an ergodic transformation, and

� � B is a countable or �nite partition satisfying: (i)
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1

; :::x
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A Gibbs Markov map is a Markov map (X;B;m; T; �) with the Gibbs property, and such that

inf

a2�

m(Ta) > 0.

Theorem 1: Let (X;B;m; T; a) be a mixing Gibbs-Markov map, and let the map � : X ! R

d
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uniformly r-H�older continuous on each a 2 �, i.e. sup
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Then T

�

is exact.

Theorem 2: Let (X;B;m; T; �) be a mixing Markov map with the Renyi property and let � : X !

R

d

have �nite memory. If T

�

is topologically mixing then T

�

is exact.

Notes: (i) R

d

can be replaced by an arbitrary locally compact, Abelian, polish group equipped

with a Lipschitz norm.

(ii) For a relevant preprint, see http://www.math.tau.ac.il/�aaro.

K. B. Athreya: Random logistic and other population dynamics maps

Let fC

n

g

1

1

be i.i.d. with values in [0; 4]. Let fX
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g

1

0

be the Markov chainX
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V. Baladi: Rates of random mixing for random (i.i.d.) unimodal maps

(Joint work with M. Benedicks and V. Maume-Deschamps)

It has been known for a while (Jakobsen, Collet-Eckmann, Benedicks-Carleson) that the inter-

val map f

a

(x) = a � x

2

admits a mixing absolutely continuous invariant measure for a positive

Lebesgue measure set of parameters a. Keller-Novicki and Young independently proved that its

correlation functions decay exponentially, for smooth test functions. We consider random compo-

sitions x 7! f

a

(x) + ! with ! chosen in [�"; "] in an i.i.d. way following an absolutely continuous

probability distribution 

"

. Adapting to random systems, on the one hand a notion of hyperbolic

times due to Alves and on the other hand a probabilistic coupling method introduced by Young

to study rates of mixing, we proved stretched exponential bounds for the random rates of mixing

of almost every itinerary and smooth test functions.

C. Boldrighini: Almost-sure results for random walks in uctuating random environ-

ments

Consider a discrete-time random walk (RW) on the lattice Z

�

, � = 1; 2; :: with transition prob-

abilities P (X

t+1

= x + ujX

t

= x; � = �) = P

0

(u) + "c(u; �(t; x)), depending on a random �eld

� = f�(t; x) : (t; x) 2 Z

�+1

g, which is a collection of i.i.d. random variables distributed with some

non-degenerate distribution �. Here " > 0 is a small parameter and the RW P

0

is �nite-range and

completely irreducible. c(u; s) is also �nite range and < c(u; �) >

�

= 0.

We consider the RW for �xed �. The main results are:

(i) For all � � 1 and " small enough the CLT holds for X

t

, and all normalized models tend to the

limiting gaussian moments.

(ii) The local CLT holds with the gaussian term of the averaged RW P

0

modulated by a factor

2



depending on the �eld, as seen from the �nal point.

Similar results can be obtained in dimension � � 3 for \directed polymer" models in which a

trajectory bond (t; x)! (t+ 1; x+ u) is given weight P

0

(u)(1 + "�(t; x)).

A. Bovier: Stochastic dynamics of random mean-�eld models

Recent years have seen considerable progress in the mathematically rigorous understanding of

the equilibrium statistical mechanics of some disordered mean �eld spin-systems: the REM, the

Hop�eld-model, and others. From a physical point of view, in particular in disordered systems,

the question of the dynamics and the approach to equilibria are often far more relevant. One of

the fundamental issues that is to be resolved concerns the question of how the knowledge of the

equilibrium distribution (Gibbs measures) can give information on the long-time behavior of the

dynamics.

I report on some �rst results in this direction in certain types of mean�eld dynamics, i.e. Markov

chains on discrete state space �

N

� "Z

d

that are reversible with respect to the measure Q

N

of

the form Q

N

(x) � exp(�NF

N

(x)), where F

N

converges to some deterministic function F

0

and

F

N

� F

0

is random and after scaling with some N

�

it converges to some stochastic �eld.

H. Crauel: Random set and point attractors

After recalling the notion of random dynamical systems (RDS) we introduce the notion of random

point and set attractors, which are characterized as random sets attracting all deterministic points

and bounded sets, respectively, of the state space. Basic properties are:

(i) a necessary and su�cient condition for their existence is the existence of a not necessarily

invariant random compact set attracting all points or bounded sets, respectively,

(ii) the set attractor is (P-a.s.) unique, connected, supporting all invariant measures and containing

all unstable sets of its subsets,

(iii) there exists a minimal point attractor,

(iv) set and minimal point attractor are measurable with respect to the past.

However, (and this is a major di�erence when comparing with deterministic dynamical systems),

the point attractor does not support all invariant measures. For white noise systems (the most

prominent examples of which are products of i.i.d. maps and systems induced by stochastic di�er-

ential equations) the point attractor still does support all invariant Markov measures. A simple

example, which is a particular realization of Brownian motion on the circle S

1

, shows that there

may exist anticipating invariant measures not supported by the point attractor.

J.-D. Deuschel: Random interfaces: pinning, entropic repulsion and wetting transi-

tion

(Joint work with E. Bolthausen, O. Zeitouni and H. Giacomi)

We consider the anharmonic crystal, or lattice massless �eld, with zero-boundary conditions out-

side D

N

= [�N;N ]

d

\Z

d

and N a large natural number, that is the �nite volume Gibbs measure

P

N

with Hamiltonian

P

<x;y>

V (S

x

� S

y

), V a strictly convex even function. We investigate two

types of interaction with the wall fS

x

= 0; x 2 D

N

g: the repulsion 


+

N

= fS

x

� 0; x 2 D

N

g and

a weak �-pinning of strength e

J

. Under the repulsion condition 


+

N

, the inuence is repelled to a

height of O(

p

logN) if d � 3 and O(logN) if d=2. On the other hand, any weak pinning produces

a localization and generates a mass, i.e. an exponential decay of the covariances in d � 2. When

the two e�ects, repulsion and pinning compete, M. Fisher has shown a wetting transition for the

(simple) 1 � d model, that is delocalization for weak pinning and localization for strong pinning

parameter J . We prove that for the harmonic (gaussian) case, pinning always wins in d � 3. The

delicate 2-dimensional case remains open.

Y. Guivarc'h: Products of random matrices with dynamical counterparts
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(Joint work with J.P. Conze)

Let G = SL(d;R), N = group of upper triangular matrices, A the group of diagonal matrices,

� a discrete subgroup of G with Zcl(�) = G. Let � be a probability measure on G such that

R

log kgkd�(g) < 1, �

�

the group generated by the support of �. One supposes Zcl(�

�

) = G.

One uses the properties of the random walk on G=N in order to get properties of the action of N

or A on � n G. One shows that there is an attractor A � � n G for A such that A has a dense

orbit in A, a lot of recurrent points. Also there is a closed invariant set N � � n G for N such

that many points have dense orbits. If � is of ping-pong type, then every point of N has a dense

N -orbit. Also in that case every point of A is recurrent.

P. Imkeller: Random attractors, cohomology of ows of stochastic and random dif-

ferential equations

We consider random dynamical systems generated by smooth stochastic di�erential equations.

To construct random attractors, we use a comparison argument based on Lyapunov functions.

This comparison argument is not well compatible with Ito's stochastic calculus. For this reason

we pass, via a random coordinate change, to a random di�erential equation the dynamics of

which is generated by an appropriate random stationary uctuating vector �eld. This coordinate

change (conjugation) faithfully maps random attractors, but is interacting in its own right, being

a Lyapunov cohomology. We show that conjugations exist provided the di�usion vector �elds

generate solvable Lie algebras. This way we are able to construct random attractors for many

interesting examples including randomly perturbed Du�ng-van der Pol oscillators.

D. Io�e: A rigorous approach to the Ornstein-Zernike theory of uctuations

We show that for every p < p

c

and any dimension d � 0 the two point function g

p

(x)b=P

p

(0$ x)

of the Bernoulli bond percolation satis�es the Ornstein-Zernike asymptotic relation

g

p

(x) =

	

p

(~n(x))

kxk

d�1

2

e

��

p

(x)

(1 + o(1));

where �

p

is the (direction dependent) inverse correlation length, and 	

p

: S

d�1

! R is a positive

analytic function acting on unit directions ~n(x)b=x=kxk:

V. Kaimanovich: Markov chains on equivalence relations

Usually probabilists prefer to study Markov chains whose transition probabilities are absolutely

continuous with respect to the stationary measure of the chain. However, there are numerous

examples of Markov chains with a �nite stationary measure whose transition probabilities are

concentrated on countable (or just �nite) sets. Such sets arise in ergodic theory (e.g. random

walks on the preimages of an endomorphism), but also in a very natural way in probability

(random walks in random environment). The typical situation is that, although there is a global

�nite stationary measure, the \local" behavior of sample paths (provided the starting point is

�xed) may be rather complicated. This is analogous to what happens with Brownian motion on

�ber bundles (ergodic \global" behavior vs. complicated leafwise behavior).

The talk consists of two parts. The �rst part is of more methodological nature and explains

the relationship between Markov chains with discrete transition probabilities and equivalence

relations. Namely, any such chain determines an equivalence relation generated by pairs of points

(x; y) : p(x � y) > 0. In a simple way one can express stationarity of the measure on the state

space in terms of the Radon-Nikodym derivative (with respect to the equivalence relation) of this

measure. Now the properties of the equivalence relation are connected with the leafwise behavior

of the Markov chain. For example, if the equivalence relation is non-amenable, then the leafwise

Poisson boundaries have to be non-trivial.

In the second part we give an entropy criterion of triviality of the leafwise Poisson boundaries (it

is a far reaching generalization of the analogous criterion for random walks on groups obtained

by Vershik and myself and and by Deriennic). This criterion also readily applies to the problem

4



of identi�cation of leafwise Poisson boundaries. One just has to replace the original Markov

chain with its \Poisson extension" whose state space is optimal by \adding" the leafwise Poisson

boundaries to the points of the original state space: the new state space X projects onto the

original one X with the �bers (E

x

; "

x

) which are the Poisson boundaries of the leafwise chains

started from the points x 2 X . The transition probabilities of the new chain are the conditional

transition probabilities with respect to E

x

.

A. Karlsson: A multiplicative ergodic theorem and non-positively curved spaces

In a joint work with G.A. Margulis, we study integrable cocycles u(n; x) over an ergodic mea-

sure preserving transformation that take values in a semigroup of non-expanding maps of a non-

positively curved space Y , e.g. a Cartan-Hadamard space or a uniformly convex Banach space.

It is proved that for any y 2 Y and almost all x, there exists A � 0 and a unique geodesic ray

(t; x) in Y starting at y such that

lim

n!1

1

n

d ((An; x); u(n; x)y) = 0:

In the case where Y is the symmetric space GL

N

(R)=O

N

(R) and the cocycles take values in

GL

N

(R) this is equivalent to the multiplicative ergodic theorem of Oseledec. Two further appli-

cations, concerning Hilbert-Schmidt operators and Poisson boundaries, are also described.

A. Katok: Slow entropy

Invariants describing the speed of sub-exponential growth in dynamical systems with zero entropy

are introduced both in topological and measure-theoretic setting. In the topological situation, i.e.

for a continuous map f : X ! X of a compact metric space with the distance function d let us

consider the integral metric between the orbit segments: @

f

n

(x; y) =

1

n

P

n�1

i=0

d�f

i

. Let

~

N

d

(f; "; n)

be the minimal of an (n; ")-spanning set in the metric @

f

n

(x; y). The asymptotic growth of these

quantities is described using scale functions. A function a : (0;1) � (0;1) ! (0;1) is called a

scale function if a(�; t) is increasing for all t and lim

t!1

a(s; t) = 1 for all s. The power scale

a(s; t) = t

s

is a typical example. The quantity

lim

"!1

�

sup

n

s : lim

t!1

~

N

d

(f; "; n)=a(s; t) > 0

o�

is called the upper a-entropy; the lower a-entropy is de�ned with lim.

In the measurable setting one considers a measure preserving transformation T : (X;�)! (X;�)

and a �nite measurable partition �. Let �

T;�

: X ! 
 be the corresponding covering map and

X

n

= (�

n

T;�

)

�

� the marginal of the pushforward measure (�

n

T;�

)

�

� corresponding to the �rst n

coordinates. The Hamming metric in the sense of �nite codes is de�ned by

d

H

n

(!; !

0

) :=

1

n

n�1

X

i=0

(1� �

!

i

!

0

i

):

Let N

H

�

(T; "; n; �) be the minimal number of balls in d

H

n

metric whose union have �

n

measure at

least 1� �. The upper (lower) measure-theoretic a-entropy for the scale function a is de�ned as

sup

�

lim

�!0

lim

"!0

n

s : lim

n!1

N

H

�

(T; "; n; �)=a(s; n) > 0

o

(and correspondingly with lim). For the a-entropy a generator theorem holds (sup is achieved

at the generating partition). Variational inequality between topological and measure-theoretic

a-entropies holds, but not necessarily the variational principle.

These invariants are useful in the study of elliptic and parabolic phenomena in dynamics.

There is a natural extension of these constructions to action of amenable groups. One application

is the construction of a Z

k

actions, k � 2, by a zero entropy transformation which cannot be
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realized as action by a di�eomorphism on a compact di�erentiable manifold with respect to a

Borel measure.

G. Keller: Coupled maps - between dynamics and statistical mechanics

We study coupled systems of mixing, piecewise C

2

and piecewise expanding interval maps � :

[0; 1] ! [0; 1]. Let I be a �nite or countable index set and denote the state space of the coupled

system by 


I

:= [0; 1]

I

. The dynamics of the system is described by the map T

"

: 


I

! 


I

; T

"

:=

�

"

� T , where T : 


I

! 


I

; (T!

i

) = �(!

i

), and �

"

: 


I

! 


I

is C

2

-close to the identity on 


I

in

the following sense: k�

"

(x) � xk

1

� C � ", kD�

"jx

� 1k

1

� C � " and kDD

i

�

"jx

� 1k

1

� C � "

for all x 2 


I

and i 2 I . Under the (unavoidable) additional assumption that there is some k > 0

such that j(�

k

)

0

j > 2 and no critical point of � is of period less than or equal to k we have for

�nite I :

Theorem 1: (Keller-K�anzle) 9"

0

= "

0

(�; C) > 0 such that 8" 2 [0; "] and 8I �nite: T

"

: 


I

! 


I

has a unique absolutely continuous invariant probability measure �

";I

. (T

"

; �

";I

) is exponentially

mixing, and the density h

";I

of �

";I

satis�es var(h

";I

) � card I � const(�; C) (bounded variation!).

For in�nite systems (card I = 1) one can deduce from this the existence of a T

"

-invariant

probability measure �

";I

all of whose �nite dimensional marginals are absolutely continuous (for

short: �

";I

2 AC

1

(


I

)). Even more is known: If � � I is �nite, then the conditional measures

�

";I

(�jF

In�

)(!) on 


�

have densities of bounded variation for �

";I

-almost all !. For one-sided

couplings on I = N we can prove the following

Theorem 2: (Keller-Zweim�uller) If �

";I

; �̂

";I

2 AC

1

(


I

) are T

"

-invariant and if �

";I

jF

tail

=

�̂

";I

jF

tail

, then �

";I

= �̂

";I

, where F

tail

denotes the spatial tail �eld of 
.

In order to deduce uniqueness of �

";I

we need one more assumption: Suppose that

�

�

�

@�

";i(!)

@!

j

�

�

�

�

const�((1� ")�

ij

+ "p

j�i

) for a probability vector (p

k

)

k2Z

with p

k

= 0 for k < 0 and

P

k

p

k

e

tk

<1

for all t > 0. Then

Theorem 3: (Keller-Zweim�uller) T

"

: 


I

! 


I

has a unique invariant measure �

";I

2 AC

1

(


I

).

Correlations of Lipschitz observables decay exponentially in time and space under �

";I

.

M. Kl�unger: Random logistic maps

We study the random dynamical system ' over an ergodic dynamical system (
;F ;P; #) that is

generated by

 (!) := c(!)x(1� x);

where c : 
 ! [0; 4]. This is a random perturbation of the logistic family. We construct random

attractors and give necessary and su�cient conditions for the existence of invariant measures that

are not concentrated at zero. In the case of existence, we give conditions for the uniqueness of

these measures.

Y. Kondratiev: Stochastic dynamics for continuous systems

We propose a new approach to the construction of Markov semigroups corresponding to in�nite

particle di�usion generators for continuous point system. This approach is based on a version

of harmonic analysis on con�guration spaces. More precisely, using a \proper" version of the

Fourier transform we transport the generator from functions on con�guration spaces into an op-

erator on functions de�ned on �nite con�gurations. The transformed generator has a special form

which gives a possibility to construct a semigroup recursively. Then the inverse Fourier transform

produces a Markov semigroup on observables of our system.

Note, that the same approach works also in the case of deterministic and Hamiltonian dynamics.

In the latter case it gives the rigorous deriving of the BBGKY-hierarchy for the time evolution of

the correlation functions.

F. Ledrappier: Local characteristics for dynamical systems.
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We are in the setting of smooth ergodic theory: f : M ! M is a C

1+�

-di�eomorphism of the

compact Riemannian manifold M , � is an ergodic invariant measure without exponent zero. We

consider \Takens-Thieullen dynamical �-balls" de�ned as follows:

for � � 0 B

�

(n; x; ") =

�

yjd(f

i

x; f

i

y) � e

�i�

; i = 0; 1; :::; n� 1

	

for � � 0 B

�

(n; x; ") =

�

yjd(f

i

x; f

i

y) � e

(n�i)�

; i = 0; 1; :::; n� 1

	

.

One result says that there exists a piecewise a�ne function '(�) such that for �-a.e. x, all �, we

have

'(�) = lim

"!0

�

lim

n!1

lim

n!1

�

�

1

n

log�(B

�

(n; x; ")):

(Compare with Brin-Katok's entropy).

Actually '(�) =

P

(�

i

+ �)

+



i

for � � 0 and '(�) =

P

(�

i

+ �)

�



i

for � � 0, where �

i

are

the exponents and 

i

are \partial dimensions in the direction i" as introduced by Young and

Ledrappier.

C. Liverani: Random perturbations of dynamical systems

I discuss random perturbations of a given dynamical system (X;T ) de�ned by transition proba-

bilities

P

"

(x 2 Ajy) =

Z

A

q

"

(Ty; �)d�

where q

"

is smooth and q

"

(x; y) = 0 if d(x; y) > ". The focus is on the stability of the statistical

properties of the deterministic dynamical system (invariant measure, speed of convergence to the

equilibrium, etc.).

The method is based on the study of the spectrum of the family of transfer operators L

"

associated

to the random perturbations (L

0

being the Perron-Frobenius operator associated to the dynamical

system). The essential tool consists in a rather general result, obtained in collaboration with G.

Keller, concerning the stability of the spectrum for a family of operators satisfying a uniform

Lasota-Yorke type inequality. The above setting applies immediately to the case of piecewise

smooth expanding maps but can also be applied to certain Anosov di�eomorphisms. This is

achieved by introducing appropriate functions spaces on which the operator L

0

turns out to be

quasi-compact. These last results are work in progress together with G. Keller and M. Blank.

R. Minlos: The spectral analysis of the disorder stochastic 1-D Ising model

We consider the generator of the Glauber dynamics for a 1-D Ising model with random bounded

potential at any temperature. We prove that for any realization of potential the spectrum of

the generator is the union of separate branches (so-called k-particle branches, k = 1; 2; :::) and

with probability one it is a nonrandom set. We �nd the location of the spectrum and prove the

localization for the one-particle branch of the spectrum. As a consequence we �nd a lower bound

for the spectral gap for any realization of the random potential. It is contained in the paper S.

Albeverio, R. Minlos, E. Scucciatelli, E. Zhizhina. Com. Math. Phys. 204, 651{668 (1999).

M. Pollicott: The linear action of some discrete subgroups of SL(2; C )

The purpose of this talk is to explain the natural generalization of distribution results on orbits of

a point in R

2

nf(0; 0)g under the linear action of a discrete group � � SL(2;R) [due to Ledrappier].

In the case of SL(2;R), an element  =

�

a b

c d

�

maps (; (z

1

; z

2

)) 7! (az

1

+ bz

2

; cz

1

+ dz

2

).

If the orbits are ordered by norm kk =

�

jaj

2

+ jbj

2

+ jcj

2

+ jdj

2

�

1

2

then for (z

1

; z

2

) 6= (0; 0) and

� n SL(2;R) compact (say) the orbits are distributed as k(z

1

; z

2

)k

�1

2

dz

1

dz

2

. The proof uses an

equivalence with the usual action of SL(2;R) on horospheres in the Poincar�e upper half-plane H

2

.

To generalize to the case of discrete subgroups � � SL(2; C ), with linear actions on C

2

, it is

appropriate to consider horospheres in the Poincar�e upper half-space H

3

, along with a choice of

frames (and their translations under transport on horocycles). Using properties on the (uniform)

7



distribution of horospheres (and frames) one recovers the analog of Ledrappier's result for SL(2; C ).

There are partial generalizations to subgroups � � � � SL(2; C ) such that �nSL(2; C ) is compact

and � n �

�

=

Z

d

, say. This is joint work with F. Ledrappier.

O. Sarig: Thermodynamic formalism for countable Markov shifts

A version of the Thermodynamic Formalism is presented in the setting of a topological Markov

shift with a countable number of states. The talk is divided into three parts: De�ning topological

pressure; generalizing Ruelle's Pesin formula theorem; a discussion of phase transition phenomena.

The main theorem is that there exist three di�erent types of qualitative behavior, similar to that

of positive recurrent, null recurrent and transient Markov chains. The passage of a one-parameter

family of potentials f��g

�>0

from one mode of recurrence to another yields critical phenomena.

M. Scheutzow: Dispersion of sets under a stochastic ow

(Joint work with David Steinsaltz and Mike Cranston)

It has been conjectured by R. Carmona that under \reasonable" conditions the diameter of the

image of a ball (say) under a stochastic ow on R

d

, d � 2, grows linearly almost surely. We

show that the conjecture holds for stochastic ows without drift under boundedness, Lipschitz

and non-degeneracy assumptions on the quadratic variation of the driving martingale �eld. This

class of ows includes (essentially) all isotropic Brownian ows. The question is motivated by

applications in oceanography.

B. Schmalfuss: Stability for random sets and random Lyapunov functions

Over the metric dynamical system (
;F ;P; �) we consider a random dynamical system ' with

state space R

d

. A random invariant compact set A is called globally asymptotically stable if for

any " > 0 there exist two random compact neighborhoods U

1

; U

2

of A such that

Pfdistance(U

2

(�); A(�)) > "g < "

'(t; !; U

1

(!)) � U

2

(�

t

!); for all t � 0

and for any random variable X

P- lim

t!1

distance('(t; !;X(!)); A(�

t

!)) = 0:

Theorem: The random compact invariant set A is globally asymptotically stable if and only if

there exists a Lyapunov function, i.e. a function V such that:

(i) V : 
� R ! R

+

is measurable,

(ii) V (!; �) is continuous and uniformly unbounded,

(iii) V (!; x) = 0, x 2 A(!),

(iv) V (�

t

!; '(t; !; x)) = e

�t

V (!; x); for t � 0.

J. Schmeling: Dimension theory in dynamical systems

We give an overview over the dimension theory established recently. We emphasize that dimen-

sions are characteristics which connect \orbit complexity" with the geometry of the manifold the

system lives on. In particular there was recent progress in understanding this connection in the

case of smooth di�eomorphisms. We discuss how this theory can be generalized to the case of

piecewise smooth endomorphisms. Here the connection between entropy, Lyapunov exponents and

dimensions is more subtle. There is a crucial connection between the dimension being equal to the

\expected" value and the invertibility of the system on the attractor. Moreover, the (physically

meaningful) SRB-measure can be characterized by a dimension formula in \typical" cases. This

allows us to show the stochastic stability of the SRB-measure in a \typical" situation.

R. Sharp: Asymptotic expansions for closed geodesics in homology classes

8



Let V be a compact Riemannian manifold with negative sectional curvatures. Let  denote a

typical closed geodesic on V , l() its length, and [] 2 H

1

(V;Z) its homology class. We report

on recent work of Anantharaman (1998), Pollicott and Sharp (1998) and Kotani (1999) on the

distribution of closed geodesics in H

1

(V;Z). We suppose b = rank H

1

(V;Z)� 1. For convenience

we assume that H

1

(V;Z) has no torsion. We introduce the counting function �(t; �) = ]f : l() �

T; [] = �g.

Theorem: (Anantharaman; Pollicott and Sharp) For any N � 1,

�(T; �) =

e

hT

T

1

2

b+1

�

C

0

+

C

1

(�)

T

+

C

2

(�)

T

2

+ :::+

C

N

(�)

T

N

+O(

1

T

N+1

)

�

;

where h is the topological entropy of the geodesic ow on SV .

Theorem: (Kotani) C

1

(�) = C

1

(0)�Dk�k

2

, where D > 0 is a constant and k � k is a natural norm

on H

1

(V;R).

Corollary: If k�k < k�k then �(T; �) > �(t; �) for all su�ciently large T .

A. Soshnikov: Universality in random matrices at the edge of the spectrum

We study large random hermitian (resp. real symmetric) Wigner matrices. In the hermitian case

our ensemble can be de�ned as A = ka

ij

k

1�i;j�n

, where Re a

ij

=

�

ij

p

n

; i � j, and Im a

ij

=

�

ij

p

n

; i < j, are independent random variables such that

(i) all moments of f�

ij

; �

ij

g exist,

(ii) all odd moments vanish,

(iii) E�

2

ij

= E�

2

ij

=

1

8

for i < j , E�

2

ii

� const,

(iv) higher moments do not grow very fast: E�

2k

ij

; E�

2k

ij

� (const k)

k

.

Under these conditions we prove that the �rst few largest eigenvalues of A after proper rescal-

ing converge in distribution to the Tracy-Widom law established in mid-nineties for the limiting

distribution of the largest eigenvalue in the gaussian ensemble (G.U.E.). In particular

P

�

�

max

� 1 +

x

2 � n

2

3

�

�!

n!1

F (x) = exp

�

�

Z

+1

x

(y � x)q

2

(y)dy

�

;

where q is the solution of

q

00

(x) = xq(x) + 2q

3

(x); q(x) � A

i

(x); x!1:

�

O. Steno: Markov chains in random environments and random iterated function

systems

We consider random independent iterations of functions where the function to iterate is random

according to an, in each step, randomly chosen probability distribution (environment). Ergodic

theorems are obtained under average contraction conditions and the limiting probability regime

is analysed.

O. Zeitouni: Asymptotics for random walks in random environment

Let � denote an iid law on [0; 1]

Z

. The random walk in random environment s

n

is the Markov

process with transitions

P

!

(X

n+1

= i+ 1jX

n

= i) = !

i

P

!

(X

n+1

= i� 1jX

n

= i) = 1� !

i

:

I will describe several asymptotic results for

X

n

n

. In particular, the relation between quenched

9



large deviations

lim

1

n

logP

!

�

X

n

n

2 B

�

� � inf

x2B

I

q

(x); �-a.s.

and annealed ones

lim

1

n

log�
 P

!

�

X

n

n

2 B

�

� � inf

x2B

I

a

(x);

is explored. Analogous results for random walks in random environment on a Galton-Watson tree

will be described.

E. Zhizhina: The Lifshitz tail and relaxation to equilibrium in the 1-D disordered

Ising model

We study spectral properties of the generator of the Glauber dynamics for a 1-D disordered

stochastic Ising model with random bounded couplings. By an explicit representation for the

upper branch of the spectrum of the generators we get an asymptotic formula for the integrated

density of states near the upper edge of the spectrum. This asymptotic behavior appears to have

the form of the Lifshitz tail, which is typical for random operators near uctuation boundaries. As

a consequence we �nd the asymptotics for the average over the disorder of the time-autocorrelation

function to be

D

h�

!

0

(t)� �

0

(0)i

P (!)

E

!

= e

�gt�kt

1

3

(1+o(1))

as t!1 with constants g; k depending on the distribution of the random couplings.

Berichterstatter: L. Arnold and M. Kl�unger

10



Tagungsteilnehmer mit e-mail-Adressen

Jon Aaronson aaro@math.tau.ac.il

Ludwig Arnold arnold@math.uni-bremen.de

Krishna B. Athreya kba@iastate.edu

Viviane Baladi viviane.baladi@math.u-psud.fr

Carlo Boldrighini boldrigh@axcasp.caspur.it

Erwin Bolthausen eb@math.unizh.ch

Anton Bovier bovier@wias-berlin.de

Hans Crauel crauel@math.tu-berlin.de

Jean Dominique Deuschel deuschel@math.tu-berlin.de

J�urgen G�artner jg@math.tu-berlin.de

Hans-Otto Georgii georgii@rz.mathematik.uni-muenchen.de

Ilya Goldsheid I.Goldsheid@qmw.ac.uk

Matthias Gundlach gundlach@math.uni-bremen.de

Yves Guivarc'h guivarch@univ-rennes1.fr

Wilhelm Huisinga huisinga@zib.de

Peter Imkeller imkeller@mathematik.hu-berlin.de

Dmitri Io�e ieio�e@ie.technion.ac.il

Vadim A. Kaimanovich kaimanov@univ-rennes1.fr

Anders Karlsson andersk@math.yale.edu

Anatole B. Katok katok a@math.psu.edu

Gerhard Keller keller@mi.uni-erlangen.de

K.M. Khanin k.khanin@ma.hw.ac.uk

Boris Khoruzhenko b.khoruzhenko@qmw.ac.uk

Yuri Kifer kifer@math.huji.ac.il

Marc Kl�unger kluenger@math.uni-bremen.de

Yuri Kondratiev kondratiev@uni-bonn.de

Francois Ledrappier ledrappi@math.polytechnique.fr

Carlangelo Liverani liverani@axp.mat.uniroma2.it

Robert A. Minlos minl@iitp.ru

Gunter Ochs gunter@math.uni-bremen.de

Mark Pollicott mp@ma.man.ac.uk

Hermann Rost rost@math.uni-heidelberg.de

Omri Sarig sarig@math.tau.ac.il

Michael Scheutzow ms@math.tu-berlin.de

Bj�orn Schmalfuss schmalfu@in.fh-merseburg.de

J�org Schmeling shmeling@math.fu-berlin.de

Richard Sharp sharp@ma.man.ac.uk

Alexander B. Soshnikov sashas@cco.caltech.edu

�

Orjan Steno steno@math.huji.ac.il

Ofer Zeitouni zeitouni@ee.technion.ac.il

Elena Zhizhina ejj@iitp.ru

11



Tagungsteilnehmer

Prof.Dr. Jon Aaronson

School of Education

Tel Aviv University

Ramat Aviv

Tel Aviv 69978

ISRAEL

Prof.Dr. Ludwig Arnold

Institut f�ur Dynamische Systeme

Universit�at Bremen

Fachbereich 3

Postfach 330440

28334 Bremen

Prof.Dr. Krishna B. Athreya

Dept. of Mathematics

Iowa State University

400 Carver Hall

Ames , IA 50011

USA

Prof.Dr. Viviane Baladi

Departement de Mathematique

Universite de Geneve

Case Postale 240

2-4 rue du Lievre

CH-1211 Geneve 24

Prof.Dr. Carlo Boldrighini

Dipartimento di Matematica

Universita degli Studi di Roma I

"La Sapienza"

Piazzale Aldo Moro, 2

I-00185 Roma

Prof.Dr. Erwin Bolthausen

Institut f�ur Angewandte Mathematik

Universit�at Z�urich

Winterthurerstr. 190

CH-8057 Z�urich

Dr. Anton Bovier

Weierstra�-Institut f�ur

Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Mohrenstr. 39

10117 Berlin

Dr. Hans Crauel

Fachbereich Mathematik

Technische Universit�at Berlin

Stra�e des 17. Juni 136

10623 Berlin

Prof.Dr. Jean Dominique Deuschel

Fachbereich Mathematik

Technische Universit�at Berlin

Stra�e des 17. Juni 136

10623 Berlin

Prof.Dr. J�urgen G�artner

Fachbereich Mathematik / FB 3

Sekr. MA 7-5

Technische Universit�at Berlin

Stra�e des 17. Juni 136

10623 Berlin

Prof.Dr. Hans-Otto Georgii

Mathematisches Institut

Universit�at M�unchen

Theresienstr. 39

80333 M�unchen

Prof.Dr. Ilya Goldsheid

School of Mathematical Sciences

Queen Mary and West�eld College

University of London

Mile End Road

GB-London , E1 4NS

12



Dr. Matthias Gundlach

Institut f�ur Dynamische Systeme

Universit�at Bremen

Fachbereich 3

Postfach 330440

28334 Bremen

Prof.Dr. Yves Guivarch

U. E. R. Mathematiques

I. R. M. A. R.

Universite de Rennes I

Campus de Beaulieu

F-35042 Rennes Cedex

Wilhelm Huisinga

Konrad-Zuse-Zentrum f�ur

Informationstechnik Berlin (ZIB)

Takustr. 7

14195 Berlin

Prof.Dr. Peter Imkeller

Institut f�ur Mathematik

Humboldt-Universit�at zu Berlin

10099 Berlin

Prof.Dr. Dmitri Io�e

Faculty of Industrial Engineering

Technion

Haifa 32000

ISRAEL

Prof.Dr. Vadim A. Kaimanovich

IRMAR

Universite de Rennes I

Avenue de General Leclerc

F-35042 Rennes Cedex

Dr. Anders Karlsson

Ramskogsv. 212

S-136 68 Haninge

Prof.Dr. Anatole B. Katok

Department of Mathematics

Pennsylvania State University

303 McAllister Building

University Park , PA 16802

USA

Prof.Dr. Gerhard Keller

Mathematisches Institut

Universit�at Erlangen

Bismarckstr. 1 1/2

91054 Erlangen

Prof.Dr. Boris Khoruzhenko

School of Mathematical Sciences

Queen Mary and West�eld College

University of London

Mile End Road

GB-London , E1 4NS

Prof.Dr. Yuri Kifer

Institute of Mathematics

Hebrew University

Givat Ram

Jerusalem 91 904

ISRAEL

Marc Kl�unger

Institut f�ur Dynamische Systeme

Universit�at Bremen

Fachbereich 3

Postfach 330440

28334 Bremen

Prof.Dr. Yuri Kondratiev

Institut f�ur Angewandte Mathematik

Universit�at Bonn

Wegelerstr. 6

53115 Bonn

13



Prof.Dr. Francois Ledrappier

Centre de Mathematiques

Ecole Polytechnique

Plateau de Palaiseau

F-91128 Palaiseau Cedex

Prof.Dr. Carlangelo Liverani

Dipartimento di Matematica

Universita degli Studi di Roma

Tor Vergata

Via della Ricerca Scienti�ca

I-00133 Roma

Prof.Dr. Robert A. Minlos

Institute for Information Trans-

mission Problems

Russian Academy of Sciences

19 Bol.Karetny per,

101447 Moscow GSP-4

RUSSIA

Dr. Gunter Ochs

Institut f�ur Dynamische Systeme

Universit�at Bremen

Fachbereich 3

Postfach 330440

28334 Bremen

Prof.Dr. Mark Pollicott

Department of Mathematics

The University of Manchester

Oxford Road

GB-Manchester M13 9PL

Prof.Dr. Hermann Rost

Institut f�ur Angewandte Mathematik

Universit�at Heidelberg

Im Neuenheimer Feld 294

69120 Heidelberg

Dr. Omri Sarig

School of Mathematical Sciences

Tel Aviv University

Ramat Aviv, P.O. Box 39040

Tel Aviv 69978

ISRAEL

Prof.Dr. Michael Scheutzow

Fachbereich Mathematik / FB 3

Sekr. MA 7-5

Technische Universit�at Berlin

Stra�e des 17. Juni 136

10623 Berlin

Dr. Bj�orn Schmalfu�

Fachhochschule Merseburg

Fachbereich Informatik und

Angewandte NW

06217 Merseburg

Dr. J�org Schmeling

Fachbereich Mathematik

und Informatik

Freie Universit�at Berlin

Arnimallee 2-6

14195 Berlin

Dr. Richard Sharp

Department of Mathematics

The University of Manchester

Oxford Road

GB-Manchester M13 9PL

Alexander B. Soshnikov

Dept. of Mathematics

California Institute of Technology

Pasadena , CA 91125

USA

14



Prof.Dr. Orjan Steno

Institute of Mathematics

The Hebrew University

Givat-Ram

91904 Jerusalem

ISRAEL

Prof.Dr. Ofer Zeitouni

Dept. of Electrical Engineering

TECHNION

Israel Institute of Technology

Haifa 32000

ISRAEL

Prof.Dr. Elena Zhizhina

Institute for Information Trans-

mission Problems

Russian Academy of Sciences

19 Bol.Karetny per,

101447 Moscow GSP-4

RUSSIA

15


