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Vortragsausz�uge

Equivariant Chow groups and Cohomology of �nite groups

Emmanuuel Peyre (Strasbourg, France)

The talk was devoted to the study of geometrically negligible classes in the cohomology of a

�nite group. Let G be a �nite group and M be a G-module, an element  of H

i

(G;M) is said

to be geometrically negligible if and only if it satis�es the following condition: For any �eld

extension K of C, for any morphism � : Gal(K=K) ! G, where K is an algebraic closure of

K, the lifting �

�

() is trivial in the Galois cohomology group H

i

(K;M) := H

i

(Gal(K=K);M).

The group of negligible classes is denoted by H

i

(G;M)

n

.

>From now on, we restrict ourselves to the case M = Q=Z. In that case, it is known that

H

i

(G;Q=Z)

n

is trivial if i � 2. In degree 3, it is related to equivariant Chow groups, which are

de�ned as follows: Let W be a faithful representation of G over C and U be the open subset of

W on which G acts freely. By taking su�ciently many copies of a given faithful representation,

one may assume that codim

W

(W � U) > i. Then for any smooth variety Y over C equipped

with an action of G, one de�nes

CH

i

G

(Y ) := CH

i

((Y � U)=G)

and we put CH

i

G

(C) = CH

i

G

(SpecC).

Theorem.There is a canonical isomorphism from CH

2

G

(C) to H

3

(G;Q=Z):

This enables one to compare the group of geometrically negligible classes with the one of

permutation negligible classes, introduced by Saltman and which is de�ned by

H

3

(G;Q=Z)

p

= ker(H

3

(G;Q=Z)! H

3

(G;C(W )

�

):

Corollary.If 2 6 j jGj, then H

3

(G;Q=Z)

p

= H

3

(G;Q=Z)

n

.

Saltman had proven that these groups may be di�erent if G is a 2-group (for example the

quaternion group).
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In higher degrees, one needs equivariant K

M

i

-cohomology. If X is a smooth variety over a �eld

k, the group H

j

(X;K

M

i

) is de�ned as the j-th cohomology group of the complex

0! K

M

i

k(X)!

M

x2X

(1)

K

M

i�1

k(x)! � � � !

M

x2X

(i)

Z ! 0

where X

(i)

denotes the set of points of codimension i in X and K

M

�

k the Milnor K-theory

ring of k. Equivariant K

M

i

-cohomology is de�ned in terms of the usual K

M

i

-cohomology as the

equivariant Chow groups. Then Voevodsky's work implies the following result:

Theorem.There are canonical isomorphisms

H

2

G

(C;K

M

3

)

(2

1

)

~�! H

4

(G;Q

2

=Z

2

)

n

and H

2

G

(C;K

M

4

)

(2

1

)

~�! H

5

(G;Q

2

=Z

2

)

n

:

Computing the Homology of Koszul Complexes

Bernhard K�ock (Karlsruhe, Germany)

We presented a new method for computing the homology of generalized Koszul complexes. This

method is based on simplicial techniques and on the theory of cross e�ect functors. The main

application of these computations is a new and very natural proof of Riemann-Roch without

denominators which does not use the somewhat complicated deformation to the normal cone any

longer. Motivated by the plethysm problem in universal representation theory we constructed

explicit and functorial short exact sequences which immediately imply the Adams-Riemann-

Roch formula for regular immersions of codimension 1 (and codimension 2) and the Riemann-

Roch formula for tensor power operations for regular immersions of arbitrary codimension.

Algebraic K-theory of non-linear projective spaces

Thomas H�uttemann (Bielefeld, Germany)

Quillen has shown that there is an isomorphism of K-groups K

j

(P

n

R

)

�

=

L

n

0

K

j

(R), where

K

j

(R) is de�ned as the K-theory of the category of �nitely generated projective R-modules,

and K

j

(P

n

R

) is the K-theory of the category of vector bundles of �nite rank on the scheme

P

n

R

= Proj R[X

0

; : : : ; X

n

]. In the case of the projective line, it is well-known that the category

of vector bundles is equivalent to a certain category of diagrams of modules. A \non-linear"

version of this diagram category (replacing rings by monoids and modules by equivariant spaces)

has been introduced by Klein, Vogell, Waldhausen and Williams, who have also shown

that its K-theory (in the sense of Waldhausen) is homotopy equivalent to A(�) � A(�),

providing an analogue of Quillen's splitting result. In the talk I demonstrated how to extend

the non-linear setting to higher dimensions. It is surprising that many constructions from

algebraic geometry can be mimicked with \non-linear sheaves". The resulting mathmatical

machinery is one ingredient for actual K-theoretical calculations. Another important tool is

the existence of two Quillen closed model structures on a certain category of (non-linear)

presheaves. We thus have the full strength of abstract homotopy theory available, which allows

for a conceptual approach to the delicate �niteness conditions for sheaves.
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A postscript version of the paper is available for download via internet at

http://archiv.ub.uni-bielefeld.de/disshabi/1999/0006.ps.

A �eld with u-invariant 9

Oleg Izhboldin (MPI Bonn, Germany)

Let F be a �eld of characteristic 6= 2. Let ' = a

1

x

2

1

+ ::: + a

n

x

2

n

be a quadratic form over F

(we assume that det' 6= 0). The form is called isotropic if there exist �

1

; :::; �

n

2 F such that

a

1

�

2

1

+ :::+ a

n

�

2

n

= 0 and at least one of the elements �

1

; :::; �

n

is non zero. The u-invariant of

the �eld F is de�ned as the maximal dimension of unisotropic quadratic forms over F :

u(F ) = supfdim' j ' is an unisotorpic form over Fg:

For instance 1) u(C ) = 1; 2) u(R) = 1; 3) u(local �eld) = 4; 4) u(�nite �eld) = 2; 5)

u(C (t

1

; :::t

n

)) = 2

n

; 6) u(Q(i)) = 4. Note that in all examples listed above the u-invariant is

always a power of 2 or in�nite. This observation was (probably) a reason for the well known

Kaplansky conjecture (1953) stating that the only possible �nite values of the u-invariant are

powers of 2. In 1991 A. Merkurjev disproved this conjecture by constructing a �eld F with

u(F ) = 2n for any n � 1. It is known that the u-invariant never equals 3, 5 or 7. We prove the

following

Theorem. There exists a �eld F with u(F ) = 9.

One of the steps of the proof of this theorem is based on the computation of the group CH

3

(X

'

)

where ' is a form of dimension � 9 and X

'

is the projective quadratic given by the equation

' = 0. We compute the group CH

3

(X

'

) completely, except for the case dim' = 8. Besides, we

prove that for all forms of dimension � 9 which are not 4-fold P�ster neighbors the sequence

0! H

4

(F )! H

4

nr

(F (')=F )! TorsCH

3

(X

'

)! 0

is exact. This completes the computation of the groups H

4

nr

(F (')=F ) for forms of dimension

� 9.

Bloch's conductor formula in higher dimensions

(joint work with K.Kato)

Takeshi Saito (University of Tokyo, Japan/Max-Planck Bonn, Germany)

Let K be a local �eld and let X be a proper at regular scheme over the integer ring O

K

with

smooth generic �ber. The conductor Art(X=O

K

) is an invariant measuring the rami�cation of

the Galois representation on the `-adic etale cohomology. S. Bloch de�ned the self-intersection

0-cycle (�;�) 2 CH

0

(X

F

) supported on the closed �ber X

F

and formulated

Conjecture.

deg(�;�) = �Art(X=O

K

):

He proved it in the case dimX

K

= 1. The case dimX

K

= 0 is a classical equality between

discriminant and conductor. The main result is
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Theorem. Conjecture is true if the characteristic of K is 0 and the reduced closed �ber (X

F

)

red

has simple normal crossings.

Key ingredients in the proof are the following

1. Functorial propertity of a logarithmic localized Gysin map G(X

K

�

K

X

K

)! G(X

F

) of the

Grothendieck groups of coherent sheaves.

2. Lefschetz trace formula for log etale cohomology.

Combining these 2 new results with alteration by de Jong, we prove the theorem.

Semi-topological K-theory

Mark Walker (University of Nebraska Lincoln, USA)

In the �rst portion of this talk, I describe joint work with Dan Grayson in which we prove the

\algebraic mapping space" Hom(X ��

�

; Grass)

h+

gives the algebraic K-theory of a smooth

variety X over a �eld k. Here, Grass is the ind-variety parameterizing �nite dimensional

subspaces of k

1

, �

�

is the standard cosimplicial scheme, and the superscript \h+" refers to

forming the homotopy-theoretic group completion with respect to a certain �-space structure.

In the remainder of the talk, I describe joint work with Eric Friedlander concerning the so-

called \semi-topological K-theory" of a complex variety X. This is de�ned in analogy to the

construction of algebraic K-theory given above, by endowing the set Hom(X;Grass) with the

structure of a topological space. When X is a projective variety, this space may be de�ned

by observing Hom(X;Grass) has the structure of an inductive limit of quasi-projective vari-

eties. Writing Hom(X;Grass) for this topological space, we de�ne K

semi

(X) to be the space

Hom(X;Grass)

h+

, where here again the superscript refers to forming a certain homotopy-

theoretic group completion.

In general K

semi

0

(X) = �

0

K

semi

(X) is the quotient of K

0

(X) by algebraic equivalence of vector

bundles, and rationally we have a natural isomorphism K

semi

0

(X)

Q

�

=

A

�

(X)

Q

via the Chern

character.

We prove several results for K

semi

, including:

(1) the projective bundle formula K

semi

�

(PE)

�

=

K

�

(X)

n

, where E is a rank n bundle over

a projective variety X,

(2) a version of Poincare duality for smooth projective varieties, and

(3) a natural equivalence K

semi

(C) � K

top

(C

an

), where C is Riemann surface.

Additionally, we establish the existence of a natural \double-square" commutative diagram

K

alg

j

(X)

K

semi

j

(X)

K

�j

top

(X

an

)

L

q

H

2q�j

M

(X;Z(q))

L

q

L

q

H

2q�j

(X)

L

q

H

2q�j

sing

(X):
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Here, the vertical maps are total Segre class maps and the groups appearing along the bottom

row are the motivic, morphic, and singular cohomology groups of X. We make four conjectures

about this diagram for a smooth variety X, which are listed in increasing level of di�culty:

(1) The vertical maps are rational isomorphisms.

(2) The map K

alg

j

! K

sem

j

is an isomorphism for �nite coe�cients.

(3) The map K

semi

�

! K

��

top

becomes an isomorphism after inverting the action of the

Bott element.

(4) The map K

semi

j

! K

�j

top

is an isomorphism for j � dim(X)� 1.

Weil topology on varieties over �nite �elds

Steven Lichtenbaum (Brown University, USA)

We introduce a new Grothendieck topology on varieties over �nite �elds. This construction

bears the same relation to the �etale topology as the Weil group does to the Galois group, so we

call it the "Weil topology".

Let X be a variety over a �nite �eld k, and let

�

X = X �

k

�

k. We de�ne a topology T

X

by

letting the objects of T

X

be schemes �etale and of �nite type over

�

X, and the morphisms be

those which commute with the projection map to X and commute with the projection map to

�

k up to an integral power of Frobenius on each connected component. The coverings in this

topology are �etale coverings.

We may identify sheaves for the Weil topology on

�

k with �-modules, where � (isomorphic to Z)

is the subgroup of the absolute Galois group of k generated by Frobenius. Let � : X ! k, and

F a Weil sheaf on X. We de�ne H

0

W

(X;F ) to be H

0

(

�

X;F )

�

and H

i

W

(X;F ) to be the derived

functors of H

0

W

.

We conjecture that if Z(n) is an �etale motivic complex on X (say, Bloch's higher Chow groups

to be speci�c) then the H

i

W

(X;Z(n) are �nitely generated abelian groups for all i; X and n,

and that if X is connected, projective and smooth over k, these groups satisfy a version of

Poincar�e duality. We can check this for dimension X = 1.

Motives and splitting patterns of quadrics

Alexander Vishik, (MPI-Bonn, Germany)

Let k be some �eld, char(k) 6= 2, and W (k) be the Witt ring of quadratic forms over k. Let

I � W (k) be the ideal of even-dimensional forms. We get a �ltration: W � I � I

2

� � � � �

I

n

� : : : . The interesting problem is to describe the possible dimensions of anisotropic forms

in I

n

. The following statement is well-known.

Hauptsatz (Arason-P�ster).

Let char(k) 6= 2, q 2 I

n

(k) is anisotropic form. Then dim(q) is either 0, or � 2

n

.
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Do we still have some restrictions on dim(q), if dim(q) � 2

n

? The following conjecture is

well-known (was formulated, in particular, by B.Kahn):

Conjecture 1.

Let char(k) 6= 2, q 2 I

n

(k) is anisotropic form. Then dim(q) is either 0, or 2

n

, or � 2

n

+ 2

n�1

.

This conjecture was settled for n = 3 by A.P�ster, and for n = 4 by D.Ho�mann. Our main

result is:

Main Theorem. Let char(k) = 0, and

p

�1 2 k

�

.

Then Conjecture 1 is true for all n.

The main tool in the proof is the following lemma, describing possible dimensions of \binary"

direct summand in the motive of quadric.

Main Lemma.

Let char(k) = 0,

p

�1 2 k

�

, and q be anisotropic form over k. Suppose that L is a direct

summand in M(Q), and Lj

k

= Z� Z(i)[2i]. Then i = 2

r

� 1 for some r.

The Lemma above also permits to classify splitting patterns of forms of height = 2:

Theorem.

Let char(k) = 0,

p

�1 2 k

�

, and q be anisotropic form over k of height = 2. Then the splitting

pattern of q is:

1) for q 2 I

n

nI

n+1

(k) for n � 1: either (2

m

� 2

n

; 2

n�1

), for m > n � 1, or (2

n�1

; 2

n�1

), or

(2

n�2

; 2

n�1

) (for n � 2),

2) for q =2 I(k): (2

m

� 2

n

+ 1; 2

n�1

� 1) for some m � n > 1.

In the end, we formulate the conjecture, describing all possible values of dim(q) for anisotropic

q 2 I

n

.

Conjecture 2.

Let char(k) 6= 2, q 2 I

n

(k) be anisotropic. Then dim(q) is either 2

n+1

� 2

i+1

, where 0 � i � n,

or is even number � 2

n+1

.

This conjecture is a consequence of some natural conjecture about the structure of the inde-

composable direct summand in M(Q). Also, all the dimensions prescribed (by Conjecture)

are really dimensions of some anisotropic forms from I

n

(k) (for suitable k)(examples are con-

structed).

K-theory of complete discrete valuation �elds

Lars Hesselholt (MIT, USA)

This is joint work with Ib Madsen. Let A be a complete discrete valuation ring with �eld of

fractions K of characteristic zero and perfect residue �eld k of characteristic p > 2. We prove

that the canonical map

K

�

(K;Z=pZ)! K

et

�

(K;Z=pZ)
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is an isomorphism in degrees � 1.

It is known that for the �elds in question, the cyclotomic trace

K

�

(K;Z=pZ)! TC

�

(AjK; p;Z=pZ)

is an isomorphism in degrees � 1, and it is the right hand side - topological cyclic homology -

we evaluate. We de�ne T (AjK) to be the mapping cone of the transfer map T (k) ! T (A) in

topological Hochschild homology. There is a circle action on T (AjK) and we de�ne TR

n

(AjK; p)

to be the �xed set by the cyclic group of order p

n�1

. The homotopy groups TR

�

�

(AjK; p) has

a rich algebraic structure of which the de Rham-Witt pro-complex W

�

!

�

(A;M)

of A with the

canonical log structure is the universal example. The main theorem is that when �

p

� K, the

canonical map

W

�

!

�

(A;M)


 S

F

p

(�

p

)

�

TR

�

�

(AjK; p;Z=pZ)

is a pro-isomorphism. The topological cyclic homology groups are given a long exact sequence

: : :

TC

s

(AjK; p;Z=pZ) TR

s

(AjK; p;Z=pZ)

1�F

TR

s

(AjK; p;Z=pZ)

: : :

and main theorem implies that for s � 0,

TC

2s

(AjK; p;Z=pZ) = H

0

(K;�


s

p

)�H

2

(K;�


(s+1)

p

);

TC

2s+1

(AjK; p;Z=pZ) = H

0

(K;�


(s+1)

p

):

Hence the groups K

�

(K;Z=pZ) and K

et

�

(K;Z=pZ) are abstractly isomorphic in degrees � 1,

and it is not hard to see that the canonical map is an isomorphism.

A counterexample to the conjectured description of Chow rings of �nite groups

Burt Totaro (Chicago, USA)

I explain two new results on Chow rings of classifying spaces of algebraic groups G, extending

the results of my earlier papers:

Torsion algebraic cycles and complex cobordism, J. AMS 10 (1997), 467-493. The Chow ring

of a classifying space, Proc. Symp. Pure Math. (K-Theory, Seattle 1997), to appear.

First, we construct an analogue of Becker-Gottlieb transfer for Chow groups. The basic idea

of the construction had been used for di�erent purposes by Takeshi Saito. In particular, as

Becker and Gottlieb showed for all topological cohomology theories, we �nd that for any re-

ductive group G over a �eld of characteristic zero with maximal torus T, the restriction map

CH

�

(BG)! CH

�

(BN(T )) is split injective.

The second result of the lecture is the disproof of a conjecture from my paper in the Seattle

conference volume. Namely, we �nd a �nite group G for which the Chow ring CH

�

(BG) is not

generated by transfers of Chern classes of representations of subgroups of G. The group, the

�nite Heisenberg group 1 ! Z=2! G! (Z=2)

6

! 1, was suggested by the work by Schuster

and Yagita, who found that the cobordism ring MU

�

(BG) is not generated by transfers of

Chern classes for this group.

7



Schuster and Yagita �nd their interesting element of MU

6

(BG) using the Atiyah-Hirzebruch

spectral sequence for complex cobordism. No such computational tool is available for Chow

groups, and so, to �nd a corresponding interesting element of CH

3

(BG), we are forced to

exhibit a suitable algebraic cycle more or less explicitly.

Mixed Tate motoves with �nite coe�cients and conjectures about the Galois groups of �elds

Leonid Positselski (IAS, Princeton, USA)

In the common list of conjectures about motives with rational coe�cients over a �eld, there is

one saying that the embedding of the (hypothetical) abelian category of mixed Tate motives

into the abelian category of all mixed motives should induce isomorphisms on the Ext spaces.

The goal of the talk was to formulate analogue conjectures for mixed Tate motives with �nite

and integral coe�cients and connect the former with conjectures about Galois groups of �elds.

Hoping that the conjectures proposed here might prove more accessible than other conjectures

about motives, I was taking care to formulate them in a way not dependent on any existence

of abelian categories of motives, i.e. essentially on the vanishing conjectures.

For a triangulated category D and two subsets A;B � ObD we put A�B = fC 2 ObD : 9A!

B ! C ! A[1] with A 2 A; B 2 Bg, and A

�1

= f0g [

S

1

n=1

A � A � ::: � A (n A's). It is easy

to see that � is associative. Further, a sequence of objects fE

i

2 ObD : i 2 Zg is called an

exceptional sequence if Hom

k

D

(E

i

; E

j

) = 0 for all i > j and i = j, k 6= 0.

Theorem 1. Let D be a triangulated category generated by an exceptional sequence E

i

and

M = fE

i

g

�1

. Then M is an abelian category and D

b

(M) = D i�

(i) D is of algebraic origin (see Beilinson \On the derived category of perverse sheaves", or A.

Neeman \New axioms for triangulated categories"); and

(ii) Hom

k

D

(E

i

; E

j

) = 0 for all k < 0 and all i 6= j, k = 0, and all End

D

(E

i

) = Hom

0

D

(E

i

; E

i

)

are division rings, and

(iii) either of the next two equivalent conditions hold

(iii') the composition Hom

1

D

(M;M)� :::�Hom

1

D

(M;M) �! Hom

k

D

(M;M) is surjective for

all k � 2; or

(iii") D =

S

a<b

M[a] �M[a+ 1] � ::: �M[b].

Conjecture. For any �eld F , and any coe�cient ring C = Z; Q or Z=m, let DM(F;C) be

the triangulated category of motives. De�ne the triangulated category of mixed Tate motives as

the full subcategory M = fC(i) : i 2 Zg

�1

. Then the condition (iii) is satis�ed for M � D.

(This is what Bloch and Kriz call the \K(�; 1) conjecture". We will call it the \silly �ltration

conjecture" in view of (iii).)

Theorem 2. Let E

i

be an exceptional sequence in D such that M = fE

i

g

�1

satis�es the

condition (iii). Further assume (for simplicity of notation) that there is an auto-equivalence

(1) : D ! D such that E

i+1

= E

i

(1). Then Hom

k

D

(E

i

; E

j

) = 0 for all k > j � i and the graded

ring

L

1

k=0

Hom

k

D

(E

0

; E

k

) is quadratic, i.e. generated by Hom

1

D

(E

0

; E

k

) with relations in degree

2.

Remark. By the motivic conjectures one should have Hom

i

D

(C;C(i)) = K

Miln

i

(F ) 
 C, and

Milnor's K-theory is indeed a quadratic ring. That is the only justi�cation of the silly �ltration

conjecture that I am aware of.
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One cannot express the condition (iii) in terms of the algebra

L

Hom

k

(E

i

; E

j

) alone in general,

though one can in some special cases.

Theorem 3. Let E

i

be an exceptional sequence in D; assume that there is a shift functor

as in theorem 2. Further assume that Hom

k

D

(E

i

; E

j

) = 0 for all k 6= j � i, and that the

algebras End

D

(E

i

) are semi-simple. Then the condition (iii) holds for M = fE

i

g

�1

i� the

graded algebra

L

1

k=0

Hom

k

D

(E

0

; E

k

) is Koszul (see Beilinson-Ginzburg-Soergel \Koszul duality

patterns..." for the de�nition).

In view of the Beilinson-Parshin conjecture, for coe�cients C = Q and a �eld of char(F ) 6= 0

it follows that the silly �ltration conjecture is equivalent to the algebra K

Miln

�

(F ) 
 Q being

Koszul (this was communicated to me by A. Beilinson).

Koszulity Conjecture (A. Vishnik & me, 1995). For any prime l and a �eld F containing

the l-th roots of unity, the algebra K

Miln

�

(F )
 Q is Koszul.

The next theorem holds in the assumption of the Suslin-Voevodsky-Geisser-Levine result on

the Milnor-Bloch-Kato conjecture implying the Beilinson-Lichtenbaum formulas for the motivic

cohomology with �nite coe�cients. I also assume that the map K

Miln

n

(F )
Z=l! H

n

(G

F

; �


l

n

)

is an isomorphism for n = 2 (as proven by Merkurjev-Suslin) and a monomorphism for n = 3

(which may be still unknown).

Theorem. For any prime l, the union of the Milnor-Bloch-Kato conjecture and the \silly

�ltration" conjecture for Z=l coe�cients is equivalent to the Koszulity conjecture.

The result on Koszulity implying the MBK conjecture is due to A. Vishik and me (Math. Res

Letters, 1995). The rest is in the spirit of theorem 3 above.

Triangular Witt groups

Paul Balmer (London, Canada)

1. Theorem. Let E be an exact category with duality. Then the Witt group of E is an invariant

of the derived bounded category :

W(E)

�

=

W

�

D

b

(E)

�

:

Giving the precise meaning of this statement requires the de�nition of the Witt group of a

triangulated category with duality. Actually, using the translation functor, a triangulated

category with duality (K;#) immediately inherits a collection of dualities { namely the T

n

�#

for n 2 Z. Each of these dualities de�nes a Witt group. These groups will be denoted by

W

n

(K;#) and they are periodic in the following way :

W

n+4

(K;#)

�

=

W

n

(K;#):

Those translated (or shifted) Witt groups are also higher and lower Witt groups, in the sense

of the following result.

2. Theoreom. Consider an exact sequence of triangulated categories with duality :

0! J

j

�!K

q

�!L! 0

9



such that

1

2

2 K and such that A� B ' B ) A ' 0 in L. Then there exists

W(J)

W(j)

a 12-term periodic exact

sequence of Witt groups.

W(K)

W(q)

W(L)

@

0

W

3

(L)

@

3

W

1

(J)

W

1

(j)

W

3

(K)

W

3

(q)

W

1

(K)

W

1

(q)

W

3

(J)

W

3

(j)

W

1

(L)

@

1

W

2

(L)

@

2

W

2

(K)

W

2

(q)

W

2

(J)

W

2

(j)

3. Localization of schemes. Let X be a scheme. Consider E(X) the category of vector

bundles over X. Call lazily D

b

�

E(X)

�

the derived category of X. Let U ,! X be an open

subscheme. When is the derived category of U a localization of the derived category of X ?

This is true, for instance if X is separated and regular. When it happens to be true, one gets

from theorems 1 and 2 a localization exact sequence, linking the Witt groups of X, of U , and

of the category of those complexes on X which are acyclic on U .

In the case of a�ne schemes, this result was already established by A. Ranicki.

4. Spectral sequences. ( Joined work with Charles Walter)

4.1. Theorem. Let K = D

0

� D

1

� � � � � D

n

� D

n+1

= 0 be a �ltration of triangulated

categories with dualities such that

1

2

2 K. Then there is a converging spectral sequence :

E

p;q

1

= W

p+q

(D

p

=D

p+1

) =)W

p+q

(K)

where E

p;q

1

= 0 when p is not between 0 and n.

4.2. Theorem. Let X be a regular separated scheme of Krull dimension n, in which 2 is

invertible. Then, there exists a spectral sequence

E

p;q

1

=

8

<

:

L

x2X

(p)

W

�

k(x)

�

if q � 0 mod 4

0 if q � 1; 2; 3 mod 4

=)W

p+q

(X):

The \�rst page" of this spectral sequence is then quite particular. In line q = 0, we have a

Gersten complex between p = 0 and p = n and 0 outside those columns. Then this line is

repeated every 4 lines (up and down), the lines in between being all trivial. In low dimension,

we obtain the following result.

4.3. Corollary. Let X be a separated regular scheme of dimension � 4 in which 2 is invertible.

Then there exists an exact sequence :

M

x2X

(3)

W

�

k(x)

�

�!

M

x2X

(4)

W

�

k(x)

�

�!W(X)�!

M

x2X

(0)

W

�

k(x)

�

�!

M

x2X

(1)

W

�

k(x)

�

:
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In particular, purity for Witt groups holds for such schemes when dimension is lower or equal

to 3, that is :

0�!W(X)�!

M

x2X

(0)

W

�

k(x)

�

�!

M

x2X

(1)

W

�

k(x)

�

is an exact sequence.

Purity for global schemes in dimension 3 is new. So is the weak purity in dimension 4 (exactness

at the points of codimension 0). Purity has recently been proved in all dimensions for regular

local rings containing a �eld by M. Ojanguren and I. Panin.

On Polly(anna)logs

1

(Joint work with Philippe Elbaz-Vincent.)

Herbert Gangl (MPI Bonn, Germany)

In an unpublished note, Kontsevich de�ned the \1

1

2

-logarithm", associated to a prime p, as the

truncated power series of � log(1 � x) (for which we propose the \truncated" letter $) as a

function from Z=p to Z=p:

$

1

(x) = $

(p)

1

(x) =

p�1

X

k=1

x

k

k

(mod p):

We think to it as the \�nite 1-logarithm". Kontsevich observed that it satis�es a functional

equation which is known in the literature as the fundamental equation of information the-

ory, and he asked for similar functional equations for the next case, i.e. for the function

$

2

(x) =

P

p�1

k=1

x

k

=k

2

.

Cathelineau on the other hand, motivated by his studies on Hilbert's third problem (on scissors

congruences), was led earlier to the fundamental equation of information by considering an

\in�nitesimal" analog of the dilogarithm function. This suggests looking at functional equa-

tions for in�nitesimal polylogarithms (of level n) and proving these equations for the \�nite

polylogarithm" $

n�1

(x) =

P

p�1

k=1

x

k

=k

n�1

(mod p) directly. For n = 3, Cathelineau has given

the general functional equation for the in�nitesimal trilogarithm. This enables us to answer

Kontsevich's question: we can show that $

2

satis�es the same equation. Even better, via a

tangential procedure (given by Cathelineau for n = 2)|which allows to derive a functional

equation for the in�nitesimal n-logarithm from a functional equation for the n-logarithm|one

obtains a recipe how to produce equations for $

n�1

from the latter ones.

The �nite polylogarithms have appeared in the literature prominently in the guise of \Miri-

mano� polynomials" (cf. Ribenboim's 13 Lectures). One can prove that the product $

1

(a)$

1

(b)

can be expressed in terms of $

2

only, and the special case a = b amounts to an identity found

by Mirimano� which is crucial for proving his criteria for Fermat's last theorem. Others of Miri-

mano�'s identities can be reinterpreted in terms of functional equations of �nite polylogarithms

which might nurture the hope that further knowledge concerning the latter could provide more

obstacles for a solution of FLT to exist... (but this may well be too Pollyanna!

1

)

1

Pollyanna. The name of the heroine of stories written by Eleanor Hodgman Porter (1868-1920), American
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Motivic cohomology over discrete valuation rings

Thomas Geisser (Tokyo, Japan)

Let X be a smooth variety over a Henselian discrete valuation ring R, with residue �eld k of

characteristic p, and quotient �eld F of characteristic 0. Let j : U ! X and i : Y ! X be

the inclusions of the generic and closed �bers. Let Z(n) the motivic complex de�ned by higher

Chow groups for either the Zariski, Nisnevich or �etale topology. Then there is an exact triangle

in the derived category of sheaves on Y :

Ri

!

Z(n) ! i

�

Z(n) ! i

�

Rj

�

Z(n) ! : : : :

By recent results of Levine, the motivic complex on X has the localization property, or equiva-

lently satis�es purity for the Zariski topology Ri

!

Z(n)

Zar

�

=

Z(n� 1)

Zar

[�2]. To study the �etale

motivic complex we can restrict ourselves to �nite coe�cients (since rationally Zariski and �etale

motivic cohomology agree). In this case we have Z=m(n)

�et

�

=

�


n

m

on U , because U is smooth

over a �eld of characteristic 0. Conjecturally, a truncated version of purity should hold for the

�etale topology.

Conjecture 1.

�

�m

Ri

!

Z=m(n)

�et

�

=

Z=m(n� 1)[�2]

�et

:

In fact, truncation should not be necessary if p 6 jm. The right hand sides agree with �


n�1

m

[�2]

and �

n�1

[�n � 1] for p 6 jm and m = p, respectively, because Y is smooth over a �eld of

characteristic p. The conjectures is a consequence of the Beilinson-Lichtenbaum conjecture

(stating that Zariski and �etale motivic cohomology of �eld agree in degrees less than or equal

to the weight). More precisely, the above conjecture is equivalent to the Beilinson-Lichtenbaum

conjecture for all quotient �elds of strictly Henselian local rings of X. Using purity of �


n

m

one

sees that the prime to p part of the conjecture is equivalent to Z=m(n)

�et

�

=

�


n

m

. It also has the

following strengthening:

Conjecture 2. If p 6 jm, then i

�

Z=m(n)

Nis

�

=

Z=m(n)

Nis

.

We have to use the Nisnevich topology here in order to get Henselian local rings; the statement

is wrong for the Zariski topology or if pjm. On the other hand, the �rst conjecture follows by

�etale shea��cation. To study the above problems, we use a Gersten resolution:

Theorem 3. Let � : X

�et

! X

Zar

be the change of sites. Then there is a long exact sequence of

sheaves on Y

Zar

0 ! R

s

i

!

�

�

Z(n) !

M

x2Y

(0)

H

s

x;�et

(X;Z(n)) !

M

x2Y

(1)

H

s+1

x;�et

(X;Z(n)) ! : : : :

This is a Gersten resolution of on a smooth scheme over a �eld, hence Gabber's method for

proving Gersten resolutions can be applied. Comparing this Gersten resolution to the resolution

of R

s�2

�

�

�


n�1

m

, and of �

n�1

, this theorem allows the following partial answers to the �rst

conjecture:

children's author, used with allusion to her skill at the `glad game' of �nding cause for happiness in the most

disastrous situations; one who is unduly optimistic or achieves happiness through self-delusion.

[Oxford English Dictionary 2]
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Theorem 4. a) If p 6 jm, then �


n

m

is a split direct summand of Z=m(n)

�et

. They agree, if purity

holds for the strict Henselization of the generic point of the closed �ber. For example, they are

equal if m has not divisor smaller than n� 1.

b) We have R

n+1

Z=p(n)

�et

�

=

�

n�1

, and purity if and only if purity holds for the strict Henzeli-

sation of the generic point of the closed �ber.

Proof. a) For the �rst statement note that the composition

�


n

m

�

=

Z=m(1)


n

[

! Z=m(n)

c

! �


n

m

is the identity. The second statement follows comparing Gersten resolutions. For the �nal

statement, one uses the calculation of K-theory of a Henselian discrete valuation ring, and the

degeneration of the spectral from motivic cohomology to K-theory up to small primes.

b) For the �rst statement, one uses the calculation of Milnor-K-theory of a Henselian discrete

valuation ring of Bloch-Kato. The second statement follows using Gersten resolutions. Q.E.D.

Note that the theorem reduces the �rst conjecture to the Beilinson-Lichtenbaum conjecture for

the quotient �eld of the strict Henselization of the closed �ber of the generic point.

Unipotent elements in semisimple simply connected groups in characteristic p > 0

Philippe Gille

Let k be a �eld with positive characteristic p > 0 and k

s

a separable closure of k. Let G=k be

a semisimple simply connected algebraic group. A subgroup U of G(k) is called unipotent if

every element of U is unipotent. We prove the following result, conjectured by J. Tits.

THEOREM. Assume [k : k

p

] � p. Then every unipotent subgroup U of G(k) is contained in

the unipotent radical of a k{parabolic subgroup of G.

The case p = 2 is due to Tits and the theorem was also known if p is not a torsion prime of G and

if G has type A

n

or C

n

. One says that a k{closed unipotent subgroup of G=k is k{embeddable

in a Borel subgroup if there exists a k{Borel subgroup of G=k, which contains U . According

to Borel{Tits, an unipotent subgroup U of G(k) is contained in the unipotent radical of a

k{parabolic subgroup of G if and only if each element is k

s

{embeddable in a Borel subgroup.

There is an other reduction to the case of a single element of order p. Thus we are reduced to the

following case: k = k

s

, U is generated by an element u of order p, G=k is split and almost simple,

G has not type C

n

. Let us set K = k((t)) and denote by K

mod

a maximal tamely rami�ed

closure of K. The key point is to associate to u a cohomology class 

�

(u) 2 H

1

(K;G) in the

following way. Let � 2 H

1

(K;Z=pZ) be a character such that the corresponding extension L=K

is totally rami�ed (e.g. the Artin{Schreier extension X

p

�X =

1

t

). Viewing u as a morphism

u : Z=pZ! G, one de�nes 

�

(u) = u

�

(�) 2 H

1

(L=K;G) � H

1

(K;G). Using the Bruhat{Tits

building of G on a suitable extension of L, we prove that the class 

�

(u)

K

mod

2 H

1

(K

mod

; G)

detects if u lies in a Borel subgroup. Kato's p{cohomological dimensions of k and K satisfy

dim

p

(k) � 1 and dim

p

(K) � 2. The absolute Galois group Gal(K

mod

) is a p{group, hence

H

1

(K

mod

; G) = 1 by the main theorem of a previous work, and the proof is �nished.
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Natural indecomposable cycles for higher Chow groups on low dimensional Jacobians

Alberto Collino (Torino, Italy)

There is a basic indecomposable higher cycle K 2 CH

g

(J(C); 1) on the Jacobian J(C) of a

general hyperelliptic curve C of genus g, see [C1]. Consider K

t

the translation of K associated

with a point t 2 C, we prove that in general K � K

t

is indecomposable if g � 3. Our tool is

Lewis' condition for indecomposability [L]. We produce next on the jacobian J(C) of any curve

C of genus 3 a geometrically natural family of higher cycles, which we call the 4-con�gurations,

and which have trivial image under the regulator map.

We show that when C becomes hyperelliptic the family in the limit contains a component of

indecomposable cycles of type K �K

t

. This is not su�cient to yield indecomposability of the

general 4-con�guration. Luckily N. Fakhruddin [F] has just proved that this property holds,

by looking at the boundary of the family of 4-con�gurations when the curve C degenerates

to the stable curve C

1

+ C

2

, here C

i

is of genus i. Fakhruddin's boundary is an element in

the usual Chow group CH

2

(J(C

2

) � C

1

) and it is homologous to 0. Fakhruddin's computes

that the abel-jacobi image of the cycle cannot be inside the specialization of the abel jacobi

image of a cycle on the general jacobian of genus 3. This is the basic ingredient which yields

indecomposability.

We view the facts above as instances of a memory , to the e�ect that CH

m

(A; n) should

remember properties of CH

m

(B; n � 1), where A and B are abelian varieties with dimB =

dimA+1. Our motivation for this expectation is Bloch's de�nition of higher Chow groups, for

instance the �rst higher Chow group CH

m

(X; 1) is a relative group of cycles of codimension m

in the product X � P

1

, relative to X �f0;1g. Now P

1

relative to f0;1g is C

�

, and A� C

�

is degeneration of A� E, E an elliptic curve.
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On l-adic polylogarithms and l-adic iterated integrals

Zdzis law Wojtkowiak (Nice, France)

Let X = P

1

Q

n f0; 1;1g. Let p be a path on V (C ) from

~

01 to z 2 V (C ) and let � 2 Gal(

�

Q =Q).

Then p

�1

�(p) 2 �

1

(X

�

Q

;

~

01). We embed �

1

(X

�

Q

;

~

01) into non-commutative formal power series

Q

l

ffX; Y gg in the following way: x(loop around 0) 7! e

X

, y(loop around 1) 7! e

Y

. Let ^

p

(�)

be the image of p

�1

�(p) in Q

l

ffX; Y gg. ^

p

(�) is a Lie element. We set

log ^

p

(�) = l(z)X + l

1

(z)Y + l

2

[Y;X] + :::+ l

n

[[Y;X]; X

n�2

] + :::
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l

n

(z) are functions from Gal(

�

Q =Q ) to Z

l

(n). As classical polylogarithms they depend on the

choice of a path p. The question when

P

n

i

l

n

(z

i

) is a cocycle leads to the same conditions as in

Zagier's conjecture for polylogarithms. The l-adic polylogarithms satisfy the same functional

equations as classical polylogarithms.

Noncommutative Chern characters of compact Lie group C

�

-algebras and compact quantum

groups

(Joint work with D.N. Diep and N.Q. Tho)

Aderemi O. Kuku (ICTP, Trieste, Italy)

In the talk, we at �rst, construct and study Chern characters from K-theory (Algebraic and

Topological) of an involutive Banach algebra A to the periodic cyclic homology HP

�

(A) and

entire cyclic homology HE

�

(A).

When A is the group C

�

-algebra C

�

(G) of a compact Lie group G, we show that the Chern

characters K

�

(C

�

(G))! HE

�

(G) and K

alg

�

(C

�

(G))! HP

�

(C

�

(G)) are isomorphisms that can

be identi�ed respectively with the classical Chern characters K

W

�

(C(T )) ! HE

�

W

�

(C(T )) and

K

�

(C(T )) ! HP

�

(C(T )) that are also isomorphisms when T is a maximal torus of G with

Weyl group W .

When G is a complex algebraic group with compact real form and C

�

"

(G) is the C

�

-algebra

compact quantum group, we prove that the Chern characters K

�

(C

�

"

(G))! HE

�

(C

�

"

(G)) and

K

alg

�

(C

�

"

(G))! HP

�

(C

�

"

(G)) induce, respectively, isomorphismsK

�

(C

�

"

(G))
C ' HE

�

(C

�

"

(G)),

K

alg

�

(C

�

"

(G))
 C ! HP

�

(C

�

"

(G)) which can respectively be with the isomorphism

K

�

(N

T

)� C ! H

�

DR

(N

T

) where N

T

is the normaliser of T in G.

A remark on the rank conjecture

Rob de Jeu (Durham, UK)

For an Abelian group A, write A

Q

for A 


Z

Q . Let F be an in�nite �eld, and let n � 1

be an integer. Suslin proved that the natural map H

n

(GL

n

(F );Z) ! H

n

(GL(F );Z) is an

isomorphism. Viewing K

n

(F )

Q

as a subspace of H

n

(GL(F );Q), we get a �ltration on K

n

(F )

Q

by setting

F

rank

r

K

n

(F )

Q

= Image(H

n

(GL

r

(F );Q))

\

K

n

(F )

Q

for r � 1, and F

rank

r

= 0 for r � 0. Here the image is the image of the natural map

H

n

(GL

r

(F );Q) ! H

n

(GL(F );Q). Suslin conjectured that for an in�nite �eld F , for all r,

we have a direct sum decomposition

F

rank

r

K

n

(F )

Q

� F

r+1



K

n

(F )

Q

= K

n

(F )

Q

:

Here F

m



K

n

(F )

Q

= �

n

j=m

K

(j)

n

(F ) is the m{th part of the gamma �ltration on K

n

(F )

Q

, K

(j)

n

(F )

being the j{th eigenspace for the Adams operations  

k

. We prove a statement about the

action of certain operators on H

n

(GL(F );Z), which implies that for an in�nite �eld F , the

rank conjecture is equivalent to the equality

F

rank

r

K

n

(F ) =

r

M

j=1

K

(j)

n

(F ):
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Let CH

p

(F; n) denote Bloch's higher Chow groups. One can de�ne linear higher Chow groups

by using only linear cycles in the de�nition, obtaining groups denoted LCH

p

(F; n) together

with a natural map LCH

p

(F; n)! CH

p

(F; n). Suslin also conjectured that the natural maps

H

n

(GL

p

(F );Q) ! H

n

(GL

p+1

(F );Q) are injective. Assuming this conjecture holds for F , or

under slightly weaker assumptions, we can use our results to de�ne maps

 

(p)

n

:

F

rank

p

K

n

(F )

Q

F

rank

p�1

K

n

(F )

Q

!

Image(H

n

(GL

p

(F );Q))

Image(H

n

(GL

p�1

(F );Q))

! LCH

p

(F; n)

Q

! CH

p

(F; n)

Q

:

The last group is isomorphic to K

(p)

n

(F ), and if the rank conjecture holds for F , so is the �rst.

We conjecture that, under the assumptions needed to de�ne  

(p)

n

, if the rank conjecture holds

for the in�nite �eld F , then

(i) the map  

(p)

n

: F

rank

p

K

n

(F )

Q

=F

rank

p�1

K

n

(F )

Q

! CH

p

(F; n)

Q

is an isomorphism;

(ii)  

(p)

n

is a non{zero rational multiple of the composition of the natural isomorphism

K

(p)

n

(F )

�

= F

rank

p

K

n

(F )

Q

=F

rank

p�1

K

n

(F )

Q

implied by the rank conjecture, and Bloch's comparison

isomorphism K

(p)

n

(F )

�

= CH

p

(F; n)

Q

.

This conjecture is an attempt to unify several other conjectures in this area. For example, it

implies that the map LCH

p

(F; n)

Q

! CH

p

(F; n)

Q

is surjective, a conjecture of Gerdes, which

is known if p = n or n � 1. We verify part (i) of this new conjecture in the case p = n, using

results of Suslin and Nesterenko.

Class �eld theory for varieties over p-adic �elds

Tam�as Szamuely (Budapest, Hungary)

Let k be a p-adic �eld and let X be a smooth, projective, geometrically integral k-variety.

Unrami�ed class �eld theory of X, as introduced by S. Bloch and S. Saito, studies a reciprocity

map

�

X

: SK

1

(X)! �

ab

1

(X)

where SK

1

(X) is de�ned as the cokernel of the natural map

@ :

M

x2X

1

K

2

k(x)!

M

x2X

0

k(x)

�

induced by the tame symbol (where X

i

=points of dimension i in X).

The map �

X

coincides with the reciprocity map of local class �eld theory for k in the case X

is just a point; on the other hand, when X has good reduction with (smooth) special �bre Y ,

it specialises via the boundary maps in K-theory to the reciprocity map

�

Y

: CH

0

(Y )! �

ab

1

(Y )

de�ned by S. Lang in 1956.

The easiest way of de�ning �

X

is by imitating (following S. Saito) the construction of Lang:

one picks a closed point x and sends the multiplicative group of the residue �eld k(x) into

Gal(k(x))

ab

by local class �eld theory, then pushes the image forward into �

ab

1

(X) by functori-

ality of the fundamental group. One then has to check that this map is trivial on the image of
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� which amounts to proving a certain reciprocity law on curves. As I explained in my lecture,

both this reciprocity law and the classical one used in Lang's construction are special cases of

a purely geometric statement which is an easy consequence of the covariant functoriality of the

Bloch-Ogus spectral sequence for proper morphisms.

Thanks to the work of S. Saito and various collaborators, much is known about the image of

�

X

; in particular, it is dense in the good reduction case and in the semi-stable case there is a

description of the cokernel in terms of the dual graph of the special �bre. However, the kernel

is much more di�cult to determine. It cannot be expected to be trivial since Colliot-Th�el�ene

showed that even in the case of curves of genus at least one it contains a uniquely divisible

subgroup of in�nite rank; conversely, any uniquely divisible subgroup of SK

1

(X) is contained

in the kernel. So the best that can happen is that the kernel itself is uniquely divisible. Unique

l-divisibility for l 6= p of the kernel is known for curves with good reduction and for curves of

genus one. In the last part of my lecture I showed that assuming the Bloch-Kato conjecture in

degree 3 (known for l = 2 and perhaps l = 3) we get unique l-divisibility (l 6= p) of the kernel

for surfaces satisfying H

2

(X;Q

l

) = 0 (so in particular those with potentially good reduction)

and that in general for varieties with good reduction the problem is intimately related to the

acyclicity in degree 3 of a certain Bloch-Ogus complex which holds trivially in dimension � 2

and which is a special case of a conjecture of Kato's in general. The proofs of these results

exploit Voevodsky's theory of motivic complexes.

Negative K-theory of exact categories

Marco Schlichting (Paris, France)

For any exact category E we construct an exact category SE , called suspension of E , such

that the K-theory space K(

~

E) of the idempotent completion

~

E of E has the same homotopy

type as 
K(SE). We therefore obtain a (in general non-connective) 
-spectrum IK(E) by

setting IK(E)

n

= K(

g

S

n

E) whose positive homotopy groups are the Quillen K-groups of E . Our

construction gives a de�nition of negative algebraic K-groups of an arbitrary exact category E

as the negative homotopy groups of IK(E), or equivalently as IK

i

(E) = �

i

IK(E) = K

0

(

g

S

i

E) for

i � 0. It coincides with Bass' negative K-theory of a ring A if E is P(A), the (split exact)

category of �nitely generated projective A modules. More generally, for any split exact category

E , our negative K-groups agree with those de�ned by Karoubi and Pedersen-Weibel. We

conjecture that our negative K-groups coincide with those de�ned by Thomason-Trobaugh for

the exact category of vector bundles on a quasi-compact and quasi-separated scheme supporting

an ample family of line bundles.

We prove a localization theorem, extend Quillen's resolution and additivity theorems to negative

K-theory and show that the negative K-theory of noetherian abelian categories is trivial. For

an exact functor f , we construct an exact category C(f) whose IK-theory is the homotopy

co�ber of IK(f). The long exact sequence in positive and negative K-theory associated to the

localization of a ring with respect to a left denominator set of right non-zero divisors is an

example of our setting. We also remark that the Pedersen-Weibel K-homology theory on �nite

simplicial complexes has an extension to exact categories within our framework.
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Gersten's conjecture in the equicharacteristic case

Ivan Panin (Steklov Mathematical Institute, St.Petersburg, Russia)

The Gersten conjecture in K-theory ( [Q], Conjecture 5.10 ) inspired many deep results [BO],

[Ga], [Gr], [C-THK], [PS], [R], [V]. This conjecture was proved by Gersten for the case of

discreat valuation rings with �nite residue �elds and for certain equi-characteristic discreat

valuation rings. Quillen proved this conjecture for regular local rings of the geometric type.

And later Sherman proved it for all equi-characteristic discreat valuation rings. We prove the

following result

Theorem. Let R be an equi-characteristic regular local ring. Then the Gersten complex

0 ! K

�

(R) ! K

�

(K) !

M

ht(p)=1

K

��1

(k(p)) ! :::

is exact, where K is the quotient �eld of R.

The proof of this theorem is based on a theorem of D.Popescu, on a limit theorem of Grothendieck,

and on the result of Quillen in the geometric case.
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