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Die Modelltheorie{Tagung 2000 wurde von Daniel Lascar (Paris 7), Alexander Prestel (Kon-

stanz) und Martin Ziegler (Freiburg) organisiert. 53 Teilnehmer von 31 Universit

�

aten aus 10

L

�

andern und 4 Kontinenten waren zugegen, bei fast einem Viertel handelte es sich um Dokto-

randen oder

"

Jungforscher\.

Die Tagung deckte die meisten Teilbereiche zeitgen

�

ossischer Modelltheorie ab, insbesondere

Stabilit

�

atstheorie, Cherlins Vermutung, einfache Theorien, o-minimale Strukturen sowie die

Modelltheorie bestimmter algebraischer Strukturen wie z.B. Moduln, bewerteter K

�

orper, qua-

dratischer Formen.

T

�

aglich au�er mittwochs gaben bekannte Spezialisten eines Gebietes Einf

�

uhrungen in wichtige

Ergebnisse der letzten Jahre, die von allgemeinem Interesse in der Modelltheorie sind. Diese

zweist

�

undigen Vorlesungen wurden von Anand Pillay

�

uber CM{Trivialit

�

at, von Zo�e Chatzida-

kis

�

uber generische Automorphismen, von Charles Steinhorn

�

uber die Trichotomie o-minimaler

Strukturen und von Francisco Miraglia

�

uber Marshalls Vermutung gehalten. 9 einst

�

undige Vor-

tr

�

age und 12 Kurzbeitr

�

age gaben einen

�

Uberblick

�

uber aktuellste Forschungsergebnisse aus der

Modelltheorie oder nahestehenden Gebieten.

Der traditionelle Mittwochsaus
ug und ein Konzert am Donnerstag Abend rundeten die von

allen Teilnehmern als gelungen und anregend empfundene Tagung ab.
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Oleg Belegradek (Istanbul)

De�nable sets in some ordered structures

An ordered abelian group is said to be regular if, for any positive integer n, every interval of

cardinality at least n contains an element divisible by n. A. Robinson and E. Zakon proved that

an ordered abelian group is regular i� it is elementarily equivalent to an archimedean group.

Theorem 1 Let G be a regular ordered abelian group with �nite jG : nGj for all positive

integers n. Then, for every expansion of G by some bounded relations, every set de�nable in

the expansion is eventually equal in 1 to a �nite union of cosets of nG, for some integer n.

For example, the conclusion holds for any ordered group elementarily equivalent to a subgroup

of the rationals. Note that the result cannot be generalized to arbitrary ordered abelian groups.

Zo�e Chatzidakis (Paris)

Generic automorphisms

Let T be a theory model complete in a language L. Consider the L [ f�g-theory T

0

= T [

f� is an automorphismg. Question: does T

0

have a model companion (denoted by T

A

)?

This question is motivated by a positive answer for T = ACF , and by the study of @

1

-generic

automorphisms of saturated structures by Lascar.

In the �rst part of the talk, I give an overview of the known answers to this questions. Even

though there is no criterion for the existence of T

A

, if one knows that T

A

exists, one can derive

consequences. A conjectures states that if T

A

exists then T must be stable.

Let T be a stable theory, which eliminates quanti�ers and imaginaries in L, and assume that

T

A

exists.

If B � M j= T

A

, de�ne acl

�

(B) = acl

T

(�

i

(B) j i 2 Z). Then if B � (M

1

; �

1

); (M

2

; �

2

), and

(M

1

; �

1

); (M

2

; �

2

) are models of T

A

, then

M

1

�

B

M

2

() (acl

�

1

(B); �

1

)

�

=

B

(acl

�

2

(B); �

2

)

This has for consequences:

{ a description of the completions of T

A

{ a description of the types

{ acl

�

(B) coincides with the model-theoretic acl(B).

We then de�ne independence: A

j

^

C

B () acl

�

(CA) and acl

�

(CB) are independent over

acl

�

(C) in the sense of T . One then shows that models of T

A

satisfy the independence theorem

over models of T

0

, and this implies that T

A

is simple by a result of Kim & Pillay (and supersimple

if T is superstable).

This allows one to describe imaginaries in models of T

A

in terms of imaginaries of models of T ,

provided that acl

�

(B) j= T

0

for any subset B of a model of T

A

.

In the second part of the talk, I start giving some of the main results obtained for ACFA(=

ACF

A

). The following two results are crucial:

Theorem 1 (Dichotomy theorem, Chatzidakis, Hrushovski, Peterzil)

Let K j= ACFA, D � K

n

be de�nable over E = acl

�

(E). Then either D is modular, or there

is F = acl

�

(F ) � E and �a 2 D, b 2 acl

�

(�a; F ) n F such that �(b) = b or (in char p > 0)

�

n

(b) = b

p

n

for some n > 1.

(Recall that a (1-)de�nable set S, de�ned over E, is modular if whenever �a;

�

b are �nite tuples

of elements of S, then �a and

�

b are independent over acl

�

(�aE) \ acl

�

(

�

bE).)
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Modularity is a very strong property, and we show

Theorem 2 (Chatzidakis, Hrushovski, Peterzil) Let G be an algebraic group de�ned over

K j= ACFA, and let H be a de�nable modular subgroup of G(K). If X � G(K) is quanti�er-

free de�nable, then X \H is a Boolean combination of cosets of de�nable subgroups of H.

We then list some of Hrushovski's results on modular subgroups of algebraic groups. One

reduces to the case where the algebraic group G is a simple abelian group, i.e. either G

a

; G

m

or a simple abelian variety.

Theorem 3 (Hrushovski, char 0) Let A be a simple abelian variety, and assume that A has

a proper de�nable subgroup which is not modular. Then A is isomorphic to an abelian variety

A

0

de�ned over

^

Fix(�).

Theorem 4 (Hrushovski) Let A be an abelian variety de�ned over Fix(�), let f(T ) 2 Z[T ]

and assume that (f(T ); T

n

� 1) = 1 for all n > 1. Then ker(f(�)) is modular. (f(�) is viewed

as an endomorphism of A(K).)

I conclude with some applications of the dichotomy theorem to the study of non modular sets

for the theories DCF

A

and SCF

e;A

(SCF

e

= theory of separably closed �elds with a �xed

p-basis of size e).

Zo�e Chatzidakis (Paris)

Forking in !-free PAC-�elds

Recall that a PAC �eld is a �eld K such that every (absolutely irreducible) variety de�ned

over K has a K-rational point. These �elds have a good elementary theory, and elementary

invariants exist, and are of two kinds:

(1) �eld kind: the degree of imperfection of K, and the isomorphism type of K\

~

k where k = Q

or F

p

(2) Galois kind: some !-sorted elementary theory associated to G(K) = Gal(K

s

=K).

!-free PAC �elds satisfy the additional condition that ifK

0

� K is countable then G(K

0

)

�

=

c

F

!

,

the free pro�nite group on ! generators. The !-sorted theory associated to

c

F

!

is particularly

simple, and it turns out that forking is easy to describe. For simplicity, let us restrict to the

case of characteristic 0. Let E � A;B be relatively algebraically closed sub�elds of an !-free

PAC �eld K. Then tp(A=B) does not fork over E if and only if:

(1) A and B are linearly disjoint over E

(2) Whenever E � B

0

� B is relatively algebraically closed in B, then G(K) projects onto

G(acl(AB

0

))�

G(B

0

)

G(B) (here acl(AB

0

) denotes K \

g

AB

0

).

We are able to show that !-free PAC �elds satisfy the independence theorem:

Let E � A;B be relatively algebraically closed sub�elds of K and assume that A and B are

linearly disjoint over E. Let �c

1

; �c

2

be tuples realising the same type over E, and such that

tp(�c

1

=A) and tp(�c

2

=B) do not fork over E. Then there is �c realising tp(�c

1

=A) [ tp(�c

2

=B) such

that tp(�c=acl(AB)) does not fork over E.

This gives an example of a theory which is not simple, but in which the independence theorem

holds. Moreover, it puts in prominence a notion of weak independence (one replaces (2) by

G(K) projects onto G(A) �

G(E)

G(B)) which seems to su�ce for applications, and has the

advantage of being symmetric.
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Lou van den Dries (Urbana{Champaign)

H-�elds

H-�elds are ordered di�erential �elds generalizing Hardy �elds and the �eld R((x

�1

))

LE

of

LE-series, and admitting a simple �rst-order axiomatization. We study Liouville extensions in

the category of H-�elds, as a small step towards a model theory of H-�elds. The main result

is that an H-�eld has either exactly one or exactly two Liouville closures (up to isomorphism).

Some conjectures on Liouville closed H-�elds were discussed.

Olivier Fr�econ (Lyon)

Solvable groups of �nite rank

In a groupG, a Carter subgroup is a locally nilpotent and self-normalizing subgroup. R. W. Car-

ter has shown that every �nite solvable group possesses an unique conjugacy class of Carter

subgroups. This result is fundamental in the theory of �nite solvable groups. F. O. Wagner has

proved analogues of this result for certain classes of stable groups, in particular, the connected

solvable groups of �nite Morley rank. It is shown that this result is still valid for solvable groups

of �nite Morley rank that are not necessarily connected. The proof uses the notions of local

de�nability and of locally closed subgroups. Various results on de�nable subgroups of groups

of �nite Morley rank are generalized to locally closed subgroups.

Ivo Herzog (Lima)

The pseudo-�nite dimensional representations of sl(s; k)

Let L = sl(s; k) be the Lie algebra of 2�2 traceless matrices over a �eld k, which is algebraically

closed and char(k) = 0. Every �nite dimensional representation of L is a direct sum of simple

modules and for every natural number n > 0, there is up to isomorphism, a unique simple

representation V (n) of dimension n + 1. Let C = the elementary class generated by the �nite

dimensional representations and closed under direct sum factors; and let U

0

(L) = the ring of

functions de�nable relative to T = Th(C) by a positive-primitive formula. By the theorem of

Harish{Chandra, U(L) � U

0

(L) where U(L) denotes the universal enveloping algebra of L.

Theorem 1 The theory T = Th(C) admits elimination of pp-imaginaries.

Some general theorems of Prest may be applied to get the following consequences.

(1) The inclusion U(L) � U

0

(L) is an epimorphism of rings.

(2) The ring U

0

(L) is von Neumann regular.

(3) There is a categorical equivalence C ' U

0

(L)-Mod, the category of U

0

(L)-modules.

The simple representations of U

0

(L) admit a topology induced by the Ziegler spectrum. The

points V (n), n > 0, form a discrete, open and dense subset; the �eld of fractions K(L) of U

0

(L)

is another point. But there are continuum more none of which are known.

These methods allow an axiomatization of the �nite dimensional representations of L in the

language of U(L)-modules gives by the two sets expressing:

(1) M is a U(L)-module.

(2) If e 2 U

0

(L) is a central idempotent and eM 6= 0, then the L-representation has a highest

weight space.
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Kitty Holland (De Kalb)

Rank 2 �elds

We describe the construction of a �eld of Morley Rank 2 as the generic of a class of �elds with

a unary predicate U , the notion \6" coming from �(X) = 2 � t:d:(X)� jX \ U j.

(Joint work with John Baldwin).

Markus Junker (Freiburg)

Almost equational theories

It is possible to associate with every structure M a family of topologies, one on each M

n

,

which is a projective limit of noetherian topologies and generated by the de�nable closed sets.

A de�nable set is closed i� its conjugates under automorphism groups of models satisfy the

descending chain condition on intersections. Any type-de�nable set is the union of its less than

� many �-irreducible components (� the cardinality of a monster model). An extension of types

p � q is called free if the closure of the realisation set of q contains a �-irreducible component

of p. This is exactly local non-forking w.r.t. the family of equations in Srour's sense. A theory

is called almost equational if this freeness relation is an independence relation. This is the

case if it is symmetric. All known stable and simple theories and some non simple ones are

almost equational. Therefore we get a topological characterization of forking in a large class of

theories.

Franz{Viktor Kuhlmann (Saskatoon)

Additive polynomials and F

p

((t))

F

p

((t)) denotes the �eld of formal Laurent series over the �eld with p elements; it carries

the t-adic valuation v

t

. A well known open problem in model theoretic algebra is to �nd a

complete recursive axiom system for the elementary theory of F

p

((t)). This would yield that it

is decidable. A similar result was shown by Ax{Kochen and Ershov for the p-adics Q

p

; v

p

. An

adaptation of their axiom system to the case of F

p

((t)) is:

(�) \henselian defectless valued �eld of characteristic p with value group a Z-group and residue

�eld F

p

".

Theorem 1 (K., 1989) This axiom system is not complete. While

K = O

K

+ }(K) + tK

p

+ : : : + t

p�1

K

p

(1)

(with O

K

the valuation ring and }(X) = X

p

�X) holds for K = F

p

((t)), there is an extension

of F

p

((t)) of transcendence degree 1, with v(t) still the least positive element in the value group,

which satis�es (�) but not (1).

As }(K); tK

p

; : : : ; t

p�1

K

p

are the images of K under the additive polynomials }(X); tX

p

; : : : ;

t

p�1

X

p

, the question arises what one can say elementarily about subgroups of (K;+) of the

form

f

1

(K) + : : : + f

n

(K) (2)

for any additive polynomials f

1

; : : : ; f

n

(a polynomial f is called additive if f(a+ b) = f(a)+

f(b) for all a; b).
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De�nition: Let (K; v) be a valued �eld and S a subset of K. We say that S has the optimal

approximation property (OA) if each x 2 K has an optimal approximation from S w.r.t. the

v-metric, that is, there is some (in general non-unique) closest point in S. This property is

elementary if S is de�nable.

Theorem 2 (K., 1998) There is an elementary condition for the coe�cients of f

1

; : : : ; f

n

such that (2) has (OA) in every maximally valued �eld (K; v) which contains the coe�cients.

Using the local compactness of F

p

((t)), we can do better:

Theorem 3 (van den Dries and K., 1999)

In F

p

((t)), (2) has (OA) for all choices of f

1

; : : : ; f

n

.

Quantifying over the coe�cients of all additive polynomials, we obtain a recursive elementary

axiom scheme (S) which holds in F

p

((t)).

Question: Is (�) + (S) complete?

Angus Macintyre (Edinburgh)

Wilkie's method for constructing

o-minimal expansions of R

A structure on R is identi�ed with S = (S

n

)

n>1

, where S

n

is the collection of parametrically

de�nable subsets of R

n

. One may capture this abstractly by various closure conditions (e.g.

closure under projections). It is convenient to work with prestructures S = (S

n

)

n>1

, S

n

�

P(R

n

) arbitrary, and then weak structures closed under \, �, linear bijections, and extending

the semi-algebraic structure. Each prestructure S has a least extension to a structure Tarski(S).

If Tarski(S) is o-minimal, S inherits certain �niteness properties, notably #, a uniformity

condition on the number of connected components for X \ A, X in S, A an a�ne subspace.

In some spaces another condition (*) is inherited, giving sets in S as projections of closed sets

in higher dimensions. Both # and * are the traces of deep results in Tarski(S) when this is

o-minimal.

There are weak structures S known which satisfy # and * and for which o-minimality of

Tarski(S) is not evident. A famous example is the semi-Pfa�an weak structure S.

Some Boolean or topological operations preserve �niteness of connected components, some do

not: : and \ are bad, _, � and closure are good. One de�nes Ch(S), the Charbonnel closure

of S, by closing under good operations, and it turns out that Ch(S) satis�es # and * if S does.

Then Ch(S) turns out to be a tame universe. Functions therein are essentially C

k

, each k, and

Sard's Theorem holds under only C

1

-hypotheses.

Wilkie showed that if Ch(S) satis�es a suitable Boundary Hypothesis, then Ch(S) = Tarski(S).

He veri�ed (by a tricky Sardian argument) the Boundary Hypothesis if S is based on C

1

-

primitives. Later Karpinski and I found the correct relaxation of this C

1

-condition, culminating

in an abstract description, in terms of a suitable basis, of arbitrary o-minimal structures S on

R.

Angus Macintyre (Edinburgh)

Elementary theory of Frobenius on Witt vectors

For k a perfect �eld of characteristic p, W [k] carries a canonical automorphism �, the lifting of
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Frobenius. We study the model theory of the valuation ring W [k] with �, in the context of a

more general study of (K; v; �) where (K; v) is a valued �eld and � an automorphism of (K; v).

We aim for, and achieve, results of Ax{Kochen{Ersov type for this situation.

Elementary, but crucial, conditions are that v(�(x)) = v(x), and v(K) = v(Fix(�)). These

lead to the study of the automorphism �� of the residue �eld k, and several axioms about (k; ��)

enter, namely that k is closed under solution of linear ��-equations.

To get a good �-theory of pseudoconvergence is rather di�cult. An axiom scheme, not valid

in all W [k], saying that there are no nontrivial ��-identities on k, is the most natural basis for

a good theory. On the W [k] other arguments around p-derivations handle the Frobenius case.

This culminates in a �-Hensel Lemma, and a theory of �-Henselization.

The logical output is a variety of theorems of Ax{Kochen type, reducing the theory to that of

(k; ��) and the value group, and types to types over (k; ��) and the value group, using angular

component maps in the style of Denef.

A special consequence is

Y

p

�

W [F

alg

p

];Frob

�

=D �

Y

p

�

F

alg

p

[[t]]; \Frob"

�

=D

(where D is non principal) and \Frob" on the power series ring is x 7! x

p

on coe�cients, and

identity on t

Z

.

Dugald Macpherson (Leeds)

Imaginaries in algebraically closed valued �elds

The theory of algebraically closed valued �elds of �xed characteristic and �xed residue charac-

teristic is complete, and has quanti�er elimination in a simple language, by work of Abraham

Robinson. However, it does not have elimination of imaginaries | for example, the value group

and the residue �eld consist of imaginaries which cannot be coded in the �eld. In joint work

of Haskell, Hrushovski, and the speaker, following up earlier work of Jan Holly, it is shown

that elimination of imaginaries does hold if certain sorts are added: namely, a sort for the set

of \closed balls" (sets fx 2 K : v(x � a) > 
g), and a sort for the set of \open balls" (sets

fx 2 K : v(x � a) > 
g) (here, a ranges through the �eld K, and 
 through the value group).

There is also a quanti�er elimination in a simple language when these sorts are added, and a

sort for the value group is also added. The proof proceeds by showing that de�nable functions

in one variable from K to the privileged sorts are coded in these sorts. A key step is to show

that de�nable R-submodules of K

n

are coded (where R denotes the valuation ring).

Francisco Miraglia (S~ao Paulo)

Marshall's and Lam's conjectures

The talk reported on joint work with M. Dickmann of the University of Paris VII, presenting

the development of the notion of Special Group and applications to the solution of the problems

mentioned in the title. The material presented appears in [1], [2] and [3]. In what follows all

Pythagorean �elds are formally real.

In 1974, M. Marshall posed the following

Problem 1 (see [4]) Let F be a Pythagorean �eld and ' a quadratic form over F . Suppose

that for all orders P on F , the signature of ' relative to P is � 0 mod 2

n

. Is it true that '

belongs to the n

th

power of the fundamental ideal of the Witt ring of F?

8



In fact, a more general problem was stated by Marshall for abstract order spaces. An equivalent

formulation of this in terms of special groups is:

Problem 2 (see [5]) Let G be a reduced special group and ' a form over G. Suppose that for

every SG-character sigma of G, the signature of ' at sigma is � 0 mod 2

n

. Is it true that

' 2 I

n

(G)?

Problem 1 has an a�rmative answer, which appeared in [2]. However, Problem 2 remains open.

Generalizing Problem 1, T.-Y. Lam asked (see Open Problem B, [4], p. 49)

[�]

Let F be a formally real �eld, let n > 1 be an integer and let ' be a quadratic form

over F . Assume that sgn

P

(') � 0 mod 2

n

, for every order P of F . Is it true that

' 2 I

n

(F ) +W

t

(F ), that is, there is a form  2 I

n

(F ) and a torsion form � over F ,

such that ' �  � �?

An a�rmative answer to [�] would follow from the solution to Problem 1 if one could show that

the reduced theory of quadratic forms over a formally real �eld F is isomorphic to the theory of

quadratic forms over a Pythagorean �eld K. However, this is not known at present, and may

even turn out to be unprovable in set theory.

Sometime after our positive answer to Problem 1, we realized that the ideas from the algebraic

K-theory of �elds used therein could be generalized to Special Groups to yield a proof of [�]

([3]). In fact, we prove more. To state the result, let F be a formally real �eld, let T be a

preorder on F and write �(F; T ) for the set of orders on F that extend T . Then, we show

[��]

Let n > 1 be an integer and let ' be a quadratic form over F , such that sgn

P

(') � 0

mod 2

n

, for every order P 2 �(F; T ). Then, there are forms  ; � over F , such that

 2 I

n

(F ) and

(i) There are a

1

; : : : ; a

m

2

_

T such that � 


N

m

i=1

h1; a

i

i �

F

0

(ii) ' �

F

 � � .

�

F

denotes Witt-equivalence in F . A form verifying (i) is called a T -torsion form; thus, torsion

forms over F are exactly the �

_

F

2

-torsion forms.

The talk was divided into the following parts :

{ Part I: Special Groups and the Boolean Hull;

{ Part II: Outline of the proof of Marshall's conjecture for Pythagorean �elds;

{ Part III: K-theory of Special Groups; outline of the proof of (the general form of) Lam's

Conjecture.

Part I described the de�nition and some of basic properties of the notion of special group, a

�rst-order foundation for an abstract algebraic theory of quadratic forms. The other theme

was the Boolean algebra functorially associated to a reduced special group, called its Boolean

hull. Most of the material comes from [1].

Part II consisted of a sketch of the proof of Marshall's conjecture, taken from [2].

Part III consisted of an exposition of the fundamental properties of an algebraic K-theory of

special groups, that has Milnor's mod2 K-theory as a special case. It also included a sketch of

the proof of the general form (**) of Lam's conjecture, appearing in [3].
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Yaacov Peterzil (Haifa)

Using the trichotomy theorem

Almost all applications of the trichotomy theorem for o-minimal structures (T) so far have been

limited to the model theoretic context (e.g. analysis of certain groups in o-minimal structures

can be replaced by analysis of groups in expansions of real closed �elds).

The questions is whether one could use (T) to shed new light on familiar mathematical objects,

in analogy to the applications of Zil'ber's trichotomy theorem in the Zariski setting.

For that, a better model theoretic framework needs to be developed for structures which contains

de�nable o-minimal sets as their \building blocks" in analogy to the role played by strongly

minimal sets in the stable/simple setting.

As a test case we ask: Assume N is a structure de�nable in an o-minimal structure M . If N is

unstable, is there in N a de�nable o-minimal set?

Anand Pillay (Urbana{Champaign)

CM-triviality

We discuss the notion of CM-triviality, as well as some results and conjectures.

A stable theory T is said to be CM-trivial (de�ned by Hrushovski), if for any c, and A � B

algebraically closed with acl(cA) \ B = A, then cb(tp(c=A)) � acl(B). 1-based implies CM-

trivial. Hrushovski proved that his new strongly minimal sets are CM-trivial.

We point some old results (5 years ago).

Theorem 1 Any stable �eld is non CM-trivial.

Theorem 2 If G is a connected group de�nable in a theory T which is CM-trivial and of �nite

Morley rank, then G is nilpotent.

We also show how \coordinatization theorems" hold for the notion of CM-triviality:

Theorem 3 Suppose T has �nite U-rank and all U-rank 1 types are CM-trivial. Then T is

CM-trivial.

We also give some higher-dimensional generalizations.
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Anand Pillay, (Urbana{Champaign)

Some model theory of compact complex spaces

We consider the category C of compact complex manifolds, considered as a many-sorted struc-

ture whose relations are analytic subsets of Cartesian products. Zil'ber proved that Th(C) has

quanti�er elimination and is totally transcendental of �nite Morley rank. We make some more

observations. For example

Theorem 1 Th(C) has elimination of imaginaries.

We discuss relations between complex analytic and model theoretic notions, for example if p is

a complete type over C of dimension 6 2, then U(p) = RM(p).

We also note the truth of the Mordell{Lang conjecture for complex tori.

Theorem 2 If A is a complex torus, and M a �nitely generated subgroup, and X an analytic

subvariety of A, then X \M is a �nite union of cosets.

Fran�coise Point (Mons)

The theory of modules of separably closed �elds

(Joint work with P. Dellunde, F. Delon)

We will denote by SCF

p;e

the �rst-order theory of separably closed �elds of characteristic p

and invariant e 2 ![f1g in the language of �elds. Y. Ershov showed that SCF

p;e

is complete

(see [3]). Moreover, whenever e is �nite, if one adds new constants for the elements of a chosen

p-basis and the p-unary functions sending an element to its p-components over this basis, one

gets quanti�er elimination in this extended language (see for instance [2], Proposition 27).

We will consider the models of SCF

p;e

in a weaker language. We �x a separably closed �eld

K of characteristic p and of (�nite) invariant e. Let � be the Frobenius map and B a �xed

p-basis of K. We may consider K as a module over the skew polynomial ring R = F

p

(B)[t;�]

(see [1]). We extract a series of properties of those �elds as R-modules and we show that

the corresponding theory T

e

of modules over R is model-complete and decidable. In those

structures, the decomposition of an element over the p-basis can be expressed and we will

extend the ordinary language of modules with the analogue of the p-component functions. The

analysis proceeds �rst in investigating the torsion part, which comes down to the question

whether we can describe in that weaker language the root structure (here we can only speak

of the p-polynomials (see [4], [5]), second we show that any positive primitive (p.p.) formula is

equivalent to a positive quanti�er-free formula, then we show that the index of two p.p. de�nable

subgroups is either 1 or 1 in any torsion-free summand of a model of our theory. This su�ces

to prove that this theory is the theory of separably closed �elds of �xed imperfection degree in

that weaker language, and that it admits quanti�er elimination. Then we show that this theory

T

e

is (stable), non-superstable and that the Ziegler spectrum is uncountable.

References

[1] P. M. Cohn, Skew �elds, Encyclopedia of mathematics and its applications, edited by G.-C.

Rota, volume 57, Cambridge University Press, 1995.

[2] F. Delon, Id�eaux et types sur les corps s�eparablement clos, Suppl�ement au Bull. de la

S.M.F., M�emoire 33, Tome 116, 1988.

[3] Y. Ershov, Fields with a solvable theory, Doklady 174 (1967) pp. 19{20; English translation

in Soviet Mathematics 8 (1967) pp. 575{576.
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Bruno Poizat (Lyon)

Generischen K

�

urven (Courbes g�en�eriques)

Satz 1 Die Theorie T

d

der generischen 
aschen Kurve mit Grad d hat einen limit T , das ist

die Theorie der nicht gekollapsiert Hrushovskis von K

�

orpern plus Kurve, mit Dimensionsformel

�(k) = Trd(k)�#(P

�

unkte auf die Kurve).

Satz 2 Es ist nicht m

�

oglich eine Kurve aus zwei K

�

urven, oder aus eine Kurve plus/minus ein

Punkt, mit Erstordnungformeln zu trennen.

References

[1] Olivier Chapuis, Ehud Hrushovski, Pascal Koiran, Bruno Poizat: La limite des th�eories de

courbes g�en�eriques.

Mike Prest (Manchester)

Some general themes arising

from the model theory of modules

One may (attempt to) classify �nitely generated modules in the sense of producing a list, but

this may not directly lead to an understanding of the connection between them and of the way

they are organised into natural families. Results of Crawley{Boevey, Krause & Ringel show how

single in�nitite-dimensional indecomposable pure-injective modules represent families of �nitely

generated modules. The pure-injective modules are themselves the points of a topological space

| the Ziegler spectrum, and so understanding this space helps us to understand the structure

of the category of �nitely generated modules.

The dual topology on this space generalises the Zariski topology on the spectrum of a com-

mutative noetherian ring and, together with the associated sheaf of rings of locally de�nable

scalars, gives another way of organising the indecomposable pure-injective modules.

We illustrate these ideas with the path algebra (over a �eld k) of the quiver �

2

�

�

�

�

�




! �

�

�

�

�

This is a domestic �nite-dimensional algebra which was used by Schr�oer and by Burke and Prest

(who described its Ziegler spectrum) to provide a counterexample to the conjecture (of Prest)

that the Cantor{Bendixson rank of a domestic algebra must be 2. Indeed related algebras show

that every �nite rank > 3 can occur (rank 0 � �nite representation type; rank 1 is impossible:

Krause, Herzog; rank 2 is obtained from tame hereditary algebras).

The \Gabriel{Zariski" spectrum of the ring is best understood by �rst throwing away the

�nitely generated points. Then one has left, roughly, the union of two projective lines over k

together with an in�nite discrete series of points.
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Mihai Prunescu (Greifswald)

P 6= NP for abelian groups

We proved that for all in�nite abelian groups G one has P

G

6= NP

G

in the sense of binary

nondeterminism (NBP) de�ned by Bruno Poizat in his book \Les petits cailloux". We use the

good behaviour of the problem Nullsack

�

G

=

�

(x

1

; : : : ; x

n

)

�

�

n > 1; x

i

2 G; 9J 6= ;; J � f1; : : : ; ng

X

j2J

x

j

= 0

	

with respect to elementary equivalence and we embed one of the groups

H 2 fZ; H

2

; H

3

; : : : ; H

p

; : : : g H

p

=

M

!

Z

p

elementary p-group

in a non-standard extension G

�

of G such that H 6 G

�

, H \G = f0g; the rest of technique as

like by Poizat.

If the P vs NP problem, the classical problem denote, according to Koiran{Fournier 1999 one

has:

P = NP () P 6= BNP for the structure (R; 0; +;�;6) parameter-free

Open Problem: Find an abelian ordered group (G; 0; +;�;6) such that according to the

de�ned structure �

G

=2 NBP

G

.

Such a existence would imply P = NP classically.

Thomas Scanlon (Berkeley)

Groups de�nable in complex manifolds

Let C denote the category of compact complex manifolds considered as a many-sorted �rst-order

structure with the compact complex manifolds as basic sorts and the closed analytic subvarieties

taken as the basic de�nable subsets of a productM

1

�� � ��M

n

of basic sorts. Zil'ber has shown

that C admits quanti�er elimination, has �nite Morley rank, and that every strongly minimal

set interpretable in C is Zariski (possibly after removing �nitely many points). Hrushovski &

Zil'ber observed that any strongly minimal set interpretable in C is de�nably isomorphic to an

algebraic set. Hrushovski suggested that the classi�cation of strongly minimal sets (at least

relative to the Zil'ber trichotomy) could be completed by showing that a connected locally

modular group interpretable in C is necessarily a complex torus. We show

Theorem 1 If X is a strongly minimal, non trivial, non algebraic compact complex manifold,

then X is a complex torus.

Corollary: There are trivial strongly minimal sets in C (e.g. the Inoue surfaces).

Theorem 2 There are connected locally modular groups in C which are not complex tori. In

particular, if X is the complement of two elliptic curves on a Hopf surface of algebraic dimension

zero, then X carries the structure of a non compact locally modular group

Hans Schoutens (New Brunswick)

Constructible properties and invariants

Let P be a property of local rings, (or, more generally an invariant ! : flocal ringsg ! N).

For X a variety, one wants to understand the set � = fx 2 X j O

X;x

has property Pg (or,
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�

n

= fx 2 X j !(O

X;x

) = ng). If X � A

n

K

, then we could �rst look at � \ X(K) � K

n

.

Even if this set is de�nable, then we are not guaranteed that � is a constructible set in the

Zariski topology. A su�cient condition for the latter to happen, is that moreover � (and its

complement) are universally saturated in the sense that any point x 2 �\U (U Zarsiki generic)

has a specialisation y 2 � \ U which is K-rational. However, checking universally saturation

seems to be an algebraic/geometric property.

Charles Steinhorn (Poughkeepsie)

The trichotomy theorem for o-minimal structures

We discuss the following theorem of Peterzil and Starchenko:

Trichotomy theorem (Peterzil & Starchenko, Proc. LMS, '98) Let M be an !

1

-saturated

o-minimal structure. For each a 2M , exactly one of the following holds:

(T1) a is trivial;

(T2) the structure that M induces on some convex neighborhood of a is an ordered vector space

over an ordered division ring;

(T3) the structure that M induces on some open interval around a is an o-minimal expansion

of a real-closed �eld.

Here, \a is trivial" means that there is no open interval I containing a and de�nable, continuous

F : I�I !M that is strictly monotone in each variable. If J �M is an open interval of trivial

points, then every de�nable relation that M induces on J is a boolean combination of binary

relations, or equivalently, that pairwise independence of a collection of elements of J implies

independence, where independence is with respect to algebraic closure.

We �rst introduce the relevant notions and discuss what the theorem says. In particular, we

mention that it yields an appropriate version of the Zil'ber principle in the o-minimal context.

Then we describe several of the key ideas that enter into the proof of the theorem.

Katrin Tent (W�urzburg)

New results on the Cherlin{Zil'ber conjecture

using Tits' theory of buildings

We report on recent progress on the Cherlin-Zil'ber Conjecture, viz. that a simple group of �nite

Morley rank is an algebraic group over an algebraically closed �eld. The conjecture implies in

particular that any such group must have a de�nable \split" BN-pair. Using the connections

between BN-pairs and generalized polygons we show the following.

Theorem 1 ([2]) If G is a simple group of �nite Morley rank with a de�nable irreducible BN-

pair of (Tits-) rank 2 such that RM(P

i

=B) = 1 for both proper parabolic subgroups P

1

; P

2

> B,

then G

�

=

PSL

3

(K); PSp

4

(K) or G

2

(K) for some algebraically closed �eld K.

This implies the Cherlin-Zil'ber Conjecture for all groups whose associated building has panels

of Morley rank 1.

The following is a partial analogue of the famous paper by Fong and Seitz on �nite groups with

split BN-pairs:

Theorem 2 ([1]) Let G be a simple group with a de�nable BN-pair of rank 2 where B = U �T

for T = B \ N and a normal subgroup U of B with Z(U) 6= 1. It was shown in [3] that the

14



Weyl group W = N=B \N has cardinality 2n with n = 3; 4; 6; 8 or 12. If G has �nite Morley

rank then furthermore the following holds:

(1) If n = 3, then G is de�nably isomorphic to PSL

3

(K) for some algebraically closed �eld K.

(2) If U is nilpotent and both parabolic subgroups have the same Morley rank, then n 6= 12.

(3) If Z(U) contains a B-minimal subgroup A with RM(A) > RM(P

i

=B) for both parabolic

subgroups P

1

and P

2

, then n = 3; 4 or 6 and G is de�nably isomorphic to PSL

3

(K); PSp

4

(K)

or G

2

(K) for some algebraically closed �eld K.

References

[1] K. Tent, Split BN-pairs of �nite Morley rank, preprint.

[2] K. Tent, H. Van Maldeghem, Cherlin's Conjecture for buildings with panels of Morley rank

1, preprint.

[3] K. Tent, H. Van Maldeghem, On irreducible (B,N)-pairs of rank 2, preprint.

Frank Wagner (Lyon)

Fields of �nite Morley rank

It was remarked by Lascar and Pillay 15 years ago that in a strongly minimal set with in�nite

acl(;) every algebraically closed subset is an elementary substructure, and we have weak elim-

ination of quanti�ers. In my talk I shall generalize these properties to �elds of �nite Morley

rank, and also to minimal groups of �nite Morley rank with in�nite acl(;) (for instance divisible

minimal groups with torsion). Note that these structures are almost strongly minimal, but that

our theorem does not necessarily hold for almost strongly minimal structures in general. For

instance, the algebraic closure of ; in an a�ne line is empty, and not a prime model.

As a corollary, I obtain that if K is a bad �eld (a �eld of �nite Morley rank with a distinguished

predicate for an in�nite proper multiplicative subgroup) of characteristic zero, or a di�erence

�eld of �nite Morley rank, then the absolutely algebraic numbers of K form an elementary

substructure.

Dieser Bericht wurde von Markus Junker erstellt.
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