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The goal of this conference was to stimulate interaction between di�erential geometry, partial

di�erential equations and stochastics. In order to explore this interplay, we brought together

experts from various �elds that are open for these connections, hoping to encourage further active

research and new discoveries in this direction. The conference was attended by 43 participants.

It was organized by K. David Elworthy (Warwick Univ.), J�urgen Jost (MPI Leipzig) and Karl-

Theodor Sturm (Bonn Univ.). Unfortunately, J. Jost could not attend.

There had been 19 lectures and two introductory series of lectures. In these lectures, the

speakers presented progress and problems in geometric analysis and/or recent results in stochas-

tic analysis. In several talks, probabilistic approaches to problems in geometric analysis were

described. Other speakers illustrated geometric aspects and methods in stochastic analysis.

Analysis on metric spaces (including geometric and stochastic aspects) and convergence of

Riemannian manifolds (with emphasis on the question of convergence of spectra, heat kernels

and processes) developed into some of the main topics of the conference. Other important

topics were e.g. harmonic maps, heat kernels (on manifolds and graphs), Sobolev inequalities,

stochastic methods in complex analysis, loop space analysis, spectral geometry and Yang-Mills

equation.
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Abstracts

Brownian motion and value distribution of minimal surfaces

Atsushi Atsuji

We wish to consider some relations between some value distributional properties of minimal

surfaces and global behaviours of Brownian motion on them. Our �rst observation is related

to Omori's observation in '67. He showed that if a minimal submanifold immersed in R

n

of

bounded sectional curvature cannot lie inside any non-degenerate cones. We can improve this

easily by stochastic arguments as follows.

Theorem 1. If a minimal submanifold immersed in an Hadamard manifold is stochastically

complete, then it cannnot lie inside domains which allow a concave majorant of k(d(x

o

; x)) for

some proper function k : [0;1) ! [0;1).

From this we expect that stochastic completeness should be some constraint on global behav-

ior of minimal submanifolds. We already discussed on the value distribution of (classical) Gauss

maps, but we found that there are many minimal surfaces whose Gauss maps have arbitrary

value distribution. Then our �rst question is ;What global property of Briownian motion implies

that the Gauss map cannnot omit a set of logarithmic capacity zero ?

We have already known that triviality of invariant ���eld (= L

1

Liouville property) implies it

and we can show the similar result to Theorem 1 under the assumption of L

1

Liouville property.

We are also interested in Bernstein type theorem. The famous Bernstein theorem is closely

related to parabolicity of mionimal surface. Schoen and Simon gave a generalization of it as

follows.

Theorem (Schoen-Simon '83) . IfM is a simply connected, complete and properly embedded

minimal surface in R

3

satisfying that vol(B(r) \M) = O(r

2

), then it is a plane, where B(r) =

fx 2 R

3

: jxj < rg.

We consider this type of result without properness condition. We can replace the above

volume condition with �niteness of projective volume which is introduced by Tkachev. We

de�ne for a minimal surface x : M ! R

3

,

Q(M) =

Z

M

jx

?

j

2

jxj

4

;

where x

?

is a normal part of x to a tangent vector of x(M). We can replace properness on M

with stochastic completeness. We have

Theorem 2. Let M be a complete, stochastically complete and simply connected embedded

minimal surface in R

3

. If Q(M) <1, then it is a plane.
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We remark that properness automatically implies stochastic completeness. For a properly

immersed minimal surface M (63 o), we have

Q(M) = C lim

r!1

1

log r

Z

B(r)\M

1

jxj

2

:

Hence the above theorem includes Schoen-Simon's result.

On the Spectrum of Dirac Operators on Noncompact Manifolds

Werner Ballmann

Let M be a complete and connected Riemannian manifold and � : E = E

+

� E

�

! M be

a Dirac bundle over M in the sense of Gromov and Lawson. The associated Dirac operator D

on C

1

(E) is elliptic and essentially selfadjoint in L

2

(E). In the case where M is closed, the

essential spectrum of D is empty and the Atiyah{Singer index theorem gives an explicit formula

for the index of DjC

1

(E

+

).

If M is noncompact and if one is interested in relations between the geometry of M and the

spectrum of D, only natural bundles E can be dealt with. Then the geometry of the ends of M

comes into play.

In their work on compact manifolds with cylindrical boundary (collar), Atiyah, Patodi and

Singer show that their boundary value problem corresponds to the index problem for D on

L

2

(E), where the ends are extended to (one sided) in�nite cylinders. In a sense, this is the most

simple geometry of ends.

In joint work with Jochen Br�uning, I studied the case where M is a surface with �nitely may

ends of �nite area and pinched negative curvature. We obtain explicit conditions on the bundle

which are more or less equivalent to D being Fredholm, we also obtain an explicit index formula

in the latter case. Our methods can also be applied in other situations. Independently and

with similar methods, John Lott (Ann Arbor) obtained related results for the operator d + d

�

in arbitratay dimension.

Random holonomy and Yang-Mills �elds

Robert Bauer

Yang-Mills �elds on a vector bundle can be characterized by martingales: The connection

A is Yang-Mills i� the vertical variation of the stochastic parallel transport under certain per-

turbations of the driving Brownian motion is a martingale. We give several applications of this

result:

First, in radial gauge, the stochastic parallel transport v(t) can be written as a double integral

(relative to the time parameter and the perturbation parameter s) over the curvature

v(t) = v

1

(t) =

Z

1

0

v

s

(t)

Z

1

0

v

�1

s

(r)F (sx(r)) < s@x(r); x(r) > v

s

(r) ds;
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with x(t) Brownian motion on R

d

and F the curvature of the vector bundle. The martingale

characterization together with this formula can now be used to obtain a small-ball characteriza-

tion of Yang-Mills �elds: The net rotation of the stochastic parallel transport along Brownian

motion until it exits a ball of radius � is of the order �

4

i� the connection is Yang-Mills.

Second, one can study weak convergence of the stochastic parallel transport for time t!1

for a vector bundle over Euclidean space. For closed paths we show that there exists a gauge

invariant notion of a weak limit of the random holonomy and we give conditions that insure the

existence of such a limit. Then, we study the asymptotic behavior of the average of the random

holonomy in the case of 't Hooft's 1-instanton.

For open paths there exists an almost sure limit under appropriate curvature assumptions.

This result relies on the existence of good gauges.

Manifolds and graphs with slow heat kernel decay

Thierry Coulhon

This talk reports on a joint work with Martin Barlow and Alexander Grigor'yan. Let M be

a complete non-compact Riemannian manifold, � its Laplace-Beltrami operator and p

t

(x; y) its

heat kernel, i.e. the kernel of the heat semigroup e

t�

. Denote by V (x; r) the Riemannian volume

of the geodesic ball of center x 2 M and radius r > 0. The question is the direct relationship

between the behaviour of

sup

x2M

p

t

(x; x)

as a function of t! +1, and the volume growth of M , i.e. the behaviour of

v(r) = inf

x2M

V (x; r)

as r! +1. We show that

sup

x2M

p

t

(x; x) �

C


(ct)

;

where 
 is de�ned by

t =

Z


(t)

0

v

�1

(s) ds;

and that this estimate is essentially sharp in the sense that for every suitable v there exists a

manifold M with bounded geometry and volume growth at least v such that

sup

x2M

p

t

(x; x) �

c




1

(Ct)

;

where 


1

di�ers from 
 from at most a logarithmic factor. If v(r) ' r

D

, 
(t) ' t

D

D+1

. We also

show that there exists a manifold with bounded geometry satisfying

cr

D

� V (x; r) � Cr

D

and

sup

x2M

p

t

(x; x) � ct

�

D

D+1

:
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This example is inspired by the recent litterature on fractals. As a conclusion, we deduce the

exact range of possible behaviours of sup

x2M

p

t

(x; x) for manifolds with polynomial volume

growth.

Bibliography

1. Barlow M., Di�usions on fractals, in Lectures on Probability Theory and Statistics, Ecole d'�et�e de Proba-

bilit�es de Saint-Flour XXV - 1995, 1-121, Springer Lecture Notes Math. 1690, 1998.

2. Barlow M., Coulhon T., Grigor'yan A., Manifolds and graphs with slow heat kernel decay, preprint.

3. Coulhon T., Ultracontractivity and Nash type inequalities, J. Funct. Anal., 141, 510-539, 1996.

4. Coulhon T., Grigor'yan A., On-diagonal lower bounds for heat kernels on non-compact manifolds and

Markov chains,Duke Math. J., 89, 1, 133-199, 1997.

5. Grigor'yan A., Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana,

10, 2, 395-452, 1994.

Collapse of Random Hypergraphs:

Pure Jump Processes with a Deterministic Limit

R. W. R. Darling, J. R. Norris

Context: Convergence of multidimensional pure jump Markov processes of pure jump type to

the solution of a deterministic ODE. General but elementary results of this kind are proved in

an appendix, using exponential martingales.

Speci�c application: Construct a random hypergraph � on a set of L vertices as follows:

for j � 0 and for sets G of j vertices, the number of j-tuples covering G is Poisson, and these

random variables are independent. A 1-tuple covering a vertex is called a patch. A 0-tuple

covering the empty set is called debris. Collapse of � is a process in which a patch is selected

uniformly at random, causing deletion of the vertex v it covers, and conversion of every every

j-tuple on a set of vertices including v to a (j � 1)-tuple on the set of remaining vertices; the

patches on v become debris. Such selections occur at the jump times of a Poisson process.

Asymptotics: The three-dimensional jump process, consisting of vertices deleted, patches,

and debris, is Markov, and when rescaled by converges at an exponential rate to the solution of

an ODE. There is a critical regime in which small changes in model parameters cause abrupt

changes in model behavior.

Spectral gaps on loop spaces : A counterexample

Andreas Eberle

Let M be a compact connected and simply connected Riemannian manifold, and let LM =

C(S

1

;M) denote the space of continuous loops over M , endowed with the Bismut measure P .
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We show that if there exists a closed geodesic 
 : S

1

! M such that the curvature is constant

and strictly negative in a neighbourhood of 
(S

1

), then a Poincar�e inequality on LM w.r.t. the

H

1

type metric and the measure P does not hold. A similar result holds on based loop spaces

endowed with pinned Wiener measure, provided the base point is close to 
(S

1

).

The key point is that the closed geodesics 


n

obtained by winding around 
 n times are local

minima for the energy functional. This forces the Bismut measure to concentrate near these

geodesics. Because of the negative curvature, the \concentration gets stronger for large n", which

destroys the Poincar�e inequality. The rigorous proof of the theorem is based on estimates for the

concentration of Brownian bridges on hyperbolic spaces near the minimal geodesic connecting

the endpoints of the bridge.

The Geometry of the First Steklov Eigenvalue

Jose Escobar

Let (M

n

; g) be a compact Riemannian manifold with boundary and dimension n � 2. In

this talk we discuss the �rst non-zero Steklov eigenvalue problem

�' = 0 in M;

@'

@�

= �

1

' on @M;

where �

1

is a positive real number.

Problem (1) is known as the Steklo� problem because it was introduced by him in 1902,

for bounded domains of the plane. In this case the problem has applications in physics. The

function ' represents the steady state temperature on a domain M and the 
ux on the boundary

is proportional to the temperature.

I will discuss the relation of this problem to harmonic analysis and some areas of di�erential

geometry, then we discuss upper and lower estimates of the eigenvalues �

1

in terms of the

geometry of the manifold (M

n

; g). Some of the estimates I will discuss are: a sharp estimate

for surfaces with non-negative Gaussian curvature which says that �

1

� k

0

where k

0

is the

minimum of the geodesic curvature. An upper estimate for a convex manifold with non-negative

Ricci curvature which is given in terms of the �rst non-zero eigenvalue for the Laplacian on

the boundary. An estimate from below for a starshaped domain on a manifold whose Ricci

curvature is bounded from below. A comparison theorem for simply connected domains in a

simply connected manifold. We exhibit annuli domains for which the comparison theorem fails

to be true. We introduced the isoperimetric constant I(M) de�ned as

I(M) = inf


�M

Vol(�)

minfVol(


1

);Vol(


2

)g

;

where 


1

= 
\@M is a non{empty domain with boundary in the manifold @M , 


2

= @M�


1

,

and � = @
 \ int(M), where int(M) is the interior of M . I will discuss a Cheger's type inquality
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that involves the isoperimetric constant I. Finally we will discuss upper and lower estimates for

the constant I in terms of isoperimetric constants of the boundary of M .

Geodesic 
ow and di�usions on hyperbolic manifolds

Jacques Franchi

I have been working for these last years on the di�usions and the geodesic 
ow on hyperbolic

manifolds.

An hyperbolic manifold is a smooth manifold with constant negative curvature, and is the

quotient of the standard hyperbolic space by some discrete group of M�obius isometries. The

geodesic 
ow on such a manifold is a basic example of unstable dynamical system, intensively

studied, among others by Hadamard, Hopf, Sina��, Patterson, Sullivan, Bowen, Margulis.

Y. Le Jan found six years ago how to obtain the central limit theorem for the geodesic 
ow

on an hyperbolic manifold of �nite volume by using the Brownian motion on this manifold.

This idea of reducing the geodesic 
ow case to the Brownian case was then developed to the

asymptotic study of the singular windings about the cusps of the manifold, still in the �nite

volume case, by Enriquez-Le Jan in two dimensions and by myself in three dimensions.

It was so established that the geodesic 
ow winds around the cusps, under the Liouville measure,

asymptotically at time t : with speed t following a Cauchy law in two dimensions, and with

speed

p

t log t following a Gaussian law in three dimensions. This concluded such studies for

the �nite volume case.

The in�nite volume case is much harder to handle. The Liouville measure has to be replaced

by the singular Patterson-Sullivan measure, and the Brownian motion by the ground-state dif-

fusion ; but the lift of this di�usion to the stable foliation and the geodesic 
ow do not have the

same invariant measure anymore. It is then necessary to study the excursions in the cusps of

some approximating other di�usion, above a level eventually going to in�nity, and to perform a

lot of estimates.

This work was recently done by Enriquez, Le Jan and myself in the two-dimensional case. The

winding speed is some power of the time, and the asymptotic winding law is stable.

We also worked out, in any dimension, a simple construction of the fundamental di�usion,

through its canonical lift to the frame bundel, and deduced its exit law from the universal cover.

Very recently, we obtained a central limit theorem in the case � > d=2 ; � being the

Hausdor� dimension of the limit set, and the manifold having dimension d+ 1 .

Calculus on Metric Spaces, I and II

Juha Heinonen

Concepts and results from �rst order calculus have recently been extended to a certain class

of metric measure spaces. The principal assumptions are the doubling condition on the measure
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and the validity of a Poincar�e inequality de�ned in terms of \upper gradients". In these two

talks, I explain the basic concepts in the area { in particular some of the recent work of J. Cheeger

who has shown that one can construct a measurable cotangent bundle together with an exterior

di�erential on doubling spaces that support a Poincar�e inequality. A theory of Sobolev spaces

based on upper gradients is instrumental in Cheeger's work. Finally, I explain some examples

of spaces that fall under this theory; these spaces can be complicated both topologically and

geometrically, they can have Hausdor� dimension any prescribed positive number larger than

one, for example.

Convergence of Riemannian manifolds and Laplace operators

Atsushi Kasue

Riemannian manifolds are considered as metric spaces equipped with Riemannian distances

and also Dirichlet spaces endowed with the Riemannian measures and the energy forms; on

a family of compact Riemann ian manifolds, the Gromov-Hausdor� distance and the spectral

distance induce uniform topologies. The former is concerning the metric structure and the latter

is de�ned by the heat kernels.

A basic fact is that a family of compact, connected Riemannian manifolds whose heat kernels

satisfy a uniform on-diagonal estimate from a bove is precompact with respect to the both

metrics. In this talk, we discussed on (1) the structure of limit spaces of the family from the

view-points of Gro mov-Hausdor� distance and the spectral distance; (2) the convergence of en

ergy forms; (3) the spectral convergence of vector bundle Laplacians; (4) the convergence of

harmonic maps of manifolds in the family to Riemannian manifolds of nonposit ive curvature.

Probability and Analysis on Euclidean Complexes

Yuri Kifer

A natural Brownian motion on Euclidean complexes was constructed by M.Brin and myself

(to appear in Math. Z.) using a direct gluing procedure but a natural approach to it via Dirichlet

forms should work, as well. The latter should provide also additional results like Cheeger's

inequality between the top of spectrum of the natural Laplacian on such complexes. The next

natural step is to introduce an appropriate notion of martingales on complexes (and on more

general metric spaces) and connect them with with harmonic maps to metric spaces de�ned

in recent years by Jost, Korevaar and Schoen. It would be nice to have a characterization of

harmonic maps as those which map Brownian motins to matingales similarly to the smooth

case. There is an old de�nition of martingales on metric spaces due to Benes and recently it was

discussed in the language of barycenters by Es-Sahib and Heinich. It is not clear whether these

martingales are appropriate for the study of harmonic maps and it would be interesting to check

whether the natural Brownian motion on complexes and even graphs is a martingale in this sense.
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Actually, the main point of our work with Brin was to understand the asymptotic behaviour of

the Brownian motion on Euclidean complexes and to describe the spaces of harmonic functions

there (Poisson and Martin boundaries) and the main motivation was to see how Alexandrov's

de�nition of negatively curved metric spaces together with Gromov's hyperbolicity condition

produces an asymptotic behaviour of the Brownian motion familiar from the case of negatively

curved manifolds. Related ideas appear in the probabilistic approach to the little Picard theorem

for harmonic maps so if a connection between martingales on complexes and harmonic maps is

established we can extend the little Picard theorem to harminic maps to hyperbolic Euclidean

complexes. An advantage of studying of speci�c nonsmooth objects like complexes vis-a-vis

general metric spaces is that complexes possess a natural metric, a natural Brownian motion

and a natural Laplacian and so they should serve as a testing ground for all constructions and

de�nitions suggested for general metric spaces.

Analysis in metric spaces

Pekka Koskela

Heinonen and I have recently established a theory of quasiconformal mappings on Ahlfors

regular Loewner spaces. These spaces are metric spaces that have su�ciently many recti�able

curves in a sense of good estimates on moduli of curve families. The Loewner condition can

be conveniently described in terms of Poincar�e inequalities for pairs of functions and upper

gradients. Here an upper gradient plays the role that the length of the gradient of a smooth

function has in the euclidean setting. For example, the euclidean spaces and Heisenberg groups

and the more general Carnot groups admit the type of a Poincar�e inequality we need. We

describe the basics of spaces that admit a Poincar�e inequality for pairs of functions and upper

gradients and discuss the associated Sobolev spaces. We also discuss the concept of a Sobolev

mapping between two metric spaces. In order to gain linear structure we embed the target space

into a Banach space. One interesting point here is that the validity of a Poincar�e inequality

for maps of a metric doubling space into a (non-trivial) Banach space does not depend on the

Banach space in question. In particular, if we have a Poincar�e inequality for real valued maps,

then we automatically have a Poincar�e inequality for maps into any Banach space.

Sobolev spaces over map between metric spaces

Kazuhiro Kuwae

We construct the (1; p)-Sobolev spaces and energy functionals over L

p

-maps between metric

spaces for p � 1 under the condition so-called strong measure contraction property of Bishop-

Gromov type (SMCPBG in short). Under this property, we also prove the existence of energy

measures, and the weak Poincar�e inequality, which extends some parts of the results of Korevaar-

Schoen and Sturm. Alexandrov spaces are included in this formulation and we show that
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the constructed Sobolev spaces are compatible with (1; p)-Sobolev spaces over L

p

-functions on

Alexandrov spaces.

Stochastic pants on a Riemannian Manifold

Remi Leandre

With Z. Brzerzniak, we construct random pants over a manifold. We show that they realize

an application from E 
 E into E where E is the space of continuous functions over the loop

space. This gives an analoguous of one of Segal's axiom in conformal �eld theory, the Hilbert

space of the theory being replaced by a Banach space. I de�ne a Dirac-Taubes operator over

the quotient of a loop group, and I justify the conjecture that its equivariant Index is equal to

the Witten genus of the underlying homogeneous manifold, by doing an expansion in small time

of the considered operator. I de�ne a Dirac-Taubes operator over the quotient of a twisted loop

group,. This allows me to repeat with this new model the arguments of Witten for the rigidity

theorem.

Sobolev inequalities and rigidity theorems

Michel Ledoux

We review some joint works with D. Bakry on the geometric aspects of Sobolev inequali-

ties with sharp constants on Riemannian manifolds. In particular, we show that the optimal

logarithmic Sobolev inequality entails optimal heat kernel bounds. Furthermore, a Riemannian

manifold with dimension n and non-negative Ricci curvature satisfying the sharp logarithmic

Sobolev inequality is isometric to R

n

. The corresponding result for the classical Sobolev in-

equality is also established. Some open problems on the Nash inequality and the compact case

are discussed.

Special Itô maps and an L

2

Hodge theory for one forms on path spaces

Xue-Mei Li

This is a joint work with K. D. Elworthy. Let M be a smooth compact Riemannian manifold.

For a point x

0

of M and a �xed T > 0, let C

x

0

M denote the space of continuous paths � : [0; T ] !

M with �(0) = x

0

. There are the deRham cohomology groups H

q

deRham(r)

(C

x

0

M). Each such

group is equal to the singular cohomology group by a recent work of C. J. Artkin, even though

C

x

0

M does not admit smooth partitions of unity, and so trivial for q � 0 since based path spaces

are contractible. Contractibility need not imply triviality of the deRham cohomology group when

some restriction is put on the spaces of forms. We are interested in a suitable L

2

theory. In �nite
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dimensions the L

2

theory has especial signi�cance because of its relationship with Hodge theory

and its associated geometric analysis. For analogous analysis on in�nite dimensional manifolds,

we need a suitably de�ned Hilbert tangent subspace of `admissible directions'. The Bismut

tangent spaces H

1

�

= fv

t

= ==

t

(�)h

t

j h

�

2 L

2;1

0

(T

x

0

M)g, where ==

t

(�) : T

x

0

M ! T

�(t)

M is

parallel translation of the Levi-Civita connection, has played an important role in the work of

Jones-L�eandre and Driver. To have a satisfying L

2

theory of di�erential forms on C

x

0

M the

obvious choice would be to consider `H-forms' i.e. for 1-forms these would be � with �

�

2 (H

1

�

)

�

,

� 2 C

x

0

M , and this agrees with the natural H-derivative df for f : M ! R. For L

2

q-forms

the obvious choice would be � with �

�

2 ^

q

(H

1

�

)

�

. An L

2

-deRham theory would come from the

complex of spaces of L

2

sections

� � �

�

d

! L

2

� ^

q

(H

1

�

)

�

�

d

! L

2

� ^

q+1

(H

1

�

)

�

�

d

! : : :

where

�

d would be a closed operator obtained by closure from the usual exterior derivative. From

this would come the deRham-Hodge-Kodaira Laplacians

�

d

�

d

�

+

�

d

�

�

d and an associated Hodge

decomposition. However the brackets [V

i

; V

j

] of sections of H

1

�

are not in general sections of

H

1

�

, and the formula for d does not make sense for �

�

de�ned only on ^

q

H

1

�

, each �. The project

fails at the stage of the de�nition of exterior di�erentiation. We �rst studied the Itô map by

gradient 
ows. The Itô map and the technique of �ltering of Elworthy-Yor are used to give

an admissible space H

2

of di�erential 2-forms. The corresponding Laplacian operator is then

investigated leading to a Hodge decomposition theorem for di�erential 1-forms. Below is the

result for di�erential 1-forms. Denote by I : C

0

(R

m

) ! C

x

0

M the Itô map by gradient stochastic

di�erential equations, and H the Cameron-Martin space over R

m

. Let TI()

�

: H !H

1

�

denote

the map

h 7! E fTI

�

(h

�

) jx

�

(!) = �g

de�ned for �

x

0

almost all � 2 C

x

0

M , where H

1

is the same as the Bismut tangent space with

a di�erent inner product induced by the Itô map. We shall denote by L

2

�H

1

the space of L

2

sections of H

1

-valued vector �elds.

Theorem 1. The map h 7! E fTI(h) jF

x

0

g determines a continuous linear map

TI(�) : L

2

(C

0

(R

m

);H) ! L

2

�H

1

;

which is surjective. The pull back map I

�

on 1-forms extends to a continuous linear map of

H-forms:

I

�

: L

2

�(H

1

�

�

) ! L

2

(C

0

(R

m

) ;H

�

) ;

which is the co-joint of TI(�). It is injective with closed range.

Theorem 2. The space H

2

�

consists of elements of ^

2

T

�

C

x

0

M of the form V + Q(V ) where

V 2 ^

2

H

1

�

and Q : ^

2

H

1

�

! ^

2

�

C

x

0

M is the continuous linear map determined by

Q(V )

(s;t)

=

1

2

(1
W

t

(W

s

)

�1

) W

(2)

s

Z

s

0

(W

(2)

r

)

�1

R(V

(r;r)

) dr; 0 � s � t � T
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where (i) W

t

: T

x

0

M ! T

�(t)

M is the damped parallel translation satis�es:

D

@t

W

t

(v) =

�

1

2

Ric

#

(W

t

(v)), W

0

(v) = v. Here Ric denotes the Ricci curvature. (ii) W

(2)

t

: ^

2

T

x

0

M !

^

2

T

�(t)

M is the the damped translation of 2-vectors on M given by

D

@t

W

(2)

t

(u) = �

1

2

R

(2)

�(t)

�

W

(2)

t

(u)

�

W

(2)

0

(u) = u; u 2 ^

2

T

x

0

M;

for R

(2)

�(t)

the Weitzenb�ock curvature on 2-vectors and (iii) R : ^

2

TM ! ^

2

TM denotes the

curvature operator.

Theorem 3. The space L

2

�(H

1

�

) of H 1-forms has the decomposition

L

2

�(H

1

�

�

) = Ker�

1

� Image

�

d� Image d

1

�

:

In particular every cohomology class in L

2

H

1

(C

x

0

M) has a unique representative in Ker�

1

.

Bundle of orthonormal frames : old and new

Paul Malliavin

Di�rential Geometry on based Path spce was founded in Cruzeiro-Malliabvim (JFA 1996) on

two tools Parallelization of the Path Spaces obtained by Stochastic parallel transport Renormal-

isation of divegent sums through a systemeatik use of stochastic integrals A impoant forward

step is made in a forthcoming paper in the JFA.

Fistly a reasonnable bundle of orthonormal frame id constructed above path space; its struc-

tural group is the paths spsce above the orthogonal group; this bundle of frame pemit to cinstruct

a fully general cvarant derivative valid for general tensor �elds. FRom this tensorial analysis is

deduced easily the structural equqtion of the frame bundle.

Secondly a new type of renormalization is introduced . Renormalization by restriction inside

the ADAPTED CATEGORY. Under thisful renormlization procedure it is shown that the Ricci

tensor of a the Path space above a Ricci 
at manifold vanishes and a corresponding Weitzenbock

identity is obtained for di�rential 1-di�ferntial forms coupled with adapted vector �eld.

Gradient 
ows on nonpositively curved metric spaces and harmonic maps

Uwe F. Mayer

The notion of gradient 
ows is generalized to nonpositively curved metric spaces in the sense

of Alexandrov. The metric spaces considered are a generalization of Hilbert spaces, but without

any linear structure or local compactness assumptions, and the properties of such metric spaces
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are used to set up a �nite-di�erence scheme of variational form. The proof of the Crandall{

Liggett generation theorem is adapted to show convergence. The resulting 
ow generates a

strongly continuous semigroup of Lipschitz-continuous mappings, is Lipschitz continuous in time

for positive time, and decreases the energy functional along a path of steepest descent. In case

the underlying metric space is a Hilbert space, the solutions resulting from this new theory

coincide with those obtained by classical methods. As an application, the harmonic map 
ow

problem for maps from a manifold into a nonpositively curved metric space is considered, the

setting being the Sobolev space theory by Korevaar and Schoen. The existence of a solution to

the initial boundary value problem is established.

Weak Convergence of Laws of Stochastic Processes on Riemannian Manifolds

Yukio Ogura

1. Introduction

The convergence of analytic items for a class of Riemannian manifolds is studied extensively

in these several years. Among them, Kasue and Kumura [4] introduced a class of Riemannian

manifolds with heat kernels uniformly bounded by a constant on each compact set of the time

parameter and with bounded volumes, and obatined limit theorems for analytic items for the

manifolds in this class(see also [2], [5]). In this note, we give limit theorems for stochastic

processes in that class, that is, the weak convergence of the laws on the space of cadlag paths.

We also give a convergence theorem for the �-martingales induced by the harmonic maps studied

in [3].

2. Statement of Results

Let M be the collection of all connected compact Riemannian manifold (M; g) with the

nornalized volume element �

M

= �

g

=vol

g

(M). For each �; � > 0, we denote by M(�; �) the

space of all M = (M; g) 2M satisfying

p

M

(t; a; b) �

�

(t ^ 1)

�=2

; t > 0; a; b 2M;

where p

M

(t; a; b) is the heat kernel associated with M = (M; g) 2 M. Let (Y

n

(t); P

a

) (t >

0; a 2 M

n

) be the Brownian motion on M

n

= (M

n

; g

n

), that is the di�usion process on M

n

determined by the transition function p

M

n

(t; a; b)�

n

(db), where �

n

= �

M

n

.

Theorem 1. (i) Suppose that fM

n

= (M

n

; g

n

)g � M(�; �) and there exist a compact

Hausdor� space X, a continuous pseudo-distance function � on X and measurable mappings

f

n

: M

n

! X such that

sup

a;b2M

n

jd

g

n

(a; b)� �(� � f

n

(a); � � f

n

(b))j < "

n

holds for a positive sequence "

n

# 0. Let X

�

be the quotient space X= �

�

, where �

�

is the

equivalent relation induced by the pseudo-distance function �, and � the natural projection from

X to the metric space (X

�

; �). Then, for each � 2 (0; 2� + 2), the laws of processes f(� �
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Y

n

('

n

(t)); P

a

n

)g are tight in P(D([0;1) ! (X

�

; �))), where '

n

(t) = [t="

�

n

]"

�

n

with the symbol

[t] being the greatest integer which is less or equal to t.

(ii) Suppose, in addition, that there exist a Radon measure � on X and a continuous transition

density p

X

(t; x; y) (t > 0; x; y 2 X) such that

lim

n!1

sup

a;b2M

n

jp

M

n

(t; a; b)� p

X

(t; f

n

(a); f

n

(b))j = 0; t > 0;

the image measures f

n�

�

n

converge to � weakly, and f

n

(a

n

) converge to x

0

in X. Then the laws

of (��Y

n

('

n

(t)); P

a

n

) converge to that of (��Y (t); P

x

0

) weakly in P(D([0;1) ! (X

�

; �))), where

(Y (t); P

x

) is the di�usion process on X determined by the transition function p

X

(t; x; y)�(dy).

Theorem 2. Suppose, in addition to the assumptions in Theorem 1 (i), that there exist a

Radon measure � on X and a transition density p

X

(t; x; y) (t > 0; x; y 2 X) such that the

image measures f

n�

�

n

converge to � in B(X)

�

and

lim

n!1

kp

M

n

(t; �; �) � p

X

(t; f

n

(�); f

n

(�))k

L

1

(M

n

�M

n

;�

n

��

n

)

= 0; t > 0;

holds, where B(X) is the space of all bounded Borel measurable functions on X. Then the laws

of (� � Y

n

('

n

(t)); P

�

n

) converge to (� � Y (t); P

�

) weakly in P(D([0;1) ! (X

�

; �))), where in

general P

�

stands for the law of the process with the initial distribution �.

Let next N 2 M have nonpositive sectional curvature. For each M 2 M, denote by

�

i

(M;N), i = 0; 1; � � � �

M;N

the connected components of hamonic maps from M to N oredered

by the height of their energies.

Theorem 3. Let fM

n

= (M

n

; g

n

)g � M with dimM

n

= m and Ric

g

n

� �(m � 1). Suppose

also that diamM

n

� D for some D > 0, and assume the assumptions in Theorem 1 (i) and (ii).

If �

n;i

2 �

i

(M

n

; N) and �

i

2 �

i

(X;N) satisfy

lim

n!1

sup

a2M

n

d

N

(�

n;i

(a); �

i

(a)) = 0;

then the laws of processes f(�

n;i

(Y

n

(t)); P

a

n

)g converge to that of (�

i

(Y (t)); P

x

0

) weakly in

P(C([0;1) ! (N; d

N

))).
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Existence and smoothness of harmonic maps with stochastic method

Jean Picard

In classical analysis, there are mainly two types of techniques which enable the construction

of harmonic maps h : M ! N between Riemannian manifolds:

� By taking the limit of the solution of the heat equation as time tends to in�nity.

� By minimizing an energy functional associated to the Laplacian on M .

These techniques can be extended to a more general framework and have probabilistic counter-

parts. Consider for instance a manifold M with boundary @M , endowed with a di�usion X

t

stopped at the exit � of M , and a manifold N endowed with a connection; if g is a map from

@M into N , the Dirichlet problem consists in �nding a map h : M ! N which is harmonic in M

and coincides with g on @M . The probabilistic problem consists in �nding a map h such that

h(X

t

) is a N -valued martingale with �nal value g(X

�

). The analogues of the above analytical

techniques are:

� Proving the existence of N -valued martingales with prescribed �nal value; this can be done

under convexity assumptions on N and is now well known.

� When the di�usion is symmetric and N is Riemannian, one can minimize an energy func-

tional associated to the Dirichlet form of the di�usion (this can be done under a weak

non degeneracy condition on the di�usion); then one has to verify that the solution of this

minimization problem is a solution of the probabilistic Dirichlet problem; to this end, an

important tool is the theory of Dirichlet processes.

When we have found a probabilistic solution h, we want to know whether it is a solution

in the classical sense; this is equivalent to proving the smoothness of h. This problem can be

divided into:

� Proving the existence of a continuous modi�cation of h.

� Proving the C

1

smoothness of this modi�cation.

For the �rst point, one needs some convexity conditions on N . The second point is much more

technical, and one can prove the smoothness under H�ormander's condition on the di�usion; an

important step is the study of martingales on the tangent bundle of N . Moreover it can be

interesting to �nd a priori estimates for the derivatives of h; this problem can be solved when

the di�usion is elliptic, but the general case seems to be much more di�cult.
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Global analysis of foliations and group actions

Ken Richardson

We consider a generalization of the trace of the heat kernel to Riemannian foliations, and

we will observe asymptotic behavior similar to the results for group actions. Suppose that a

compact, Riemannian manifold M is equipped with a Riemannian foliation F ; that is, the

distance from one leaf of F to another is locally constant. For simplicity, we assume that M is

connected and oriented and that the foliation is transversally oriented.

A natural question to consider is the following: if we assume that the temperature is always

constant along the leaves of (M;F), how does heat 
ow on the manifold? To answer this

question, we must restrict to the space of basic functions C

1

B

(M) (those that are constant on

the leaves of the foliation) and more generally the space of basic forms 


�

B

(M) (smooth forms

! such that given any vector X tangent to the leaves, i(X)! = 0 and i(X)d! = 0, where i(X)

denotes the interior product with X). The exterior derivative d maps basic forms to basic forms;

let d

B

denote d restricted to 


�

B

(M). The relevant Laplacian on forms is the basic Laplacian

�

B

= d

B

�

B

+ �

B

d

B

, where �

B

is the adjoint of d

B

on L

2

(


�

B

(M)). The basic heat kernel

K

B

(t; x; y) on functions is a function on (0;1) �M �M that is basic in each M factor and

that satis�es

�

@

@t

+ �

B;x

�

K

B

(t; x; y) = 0

lim

t!0

+

Z

M

K

B

(t; x; y) f(y) dV (y) = f(x)

for every continuous basic function f . The existence of the basic heat kernel allows us to answer

the question posed at the beginning of this paragraph. The basic heat kernel on forms is de�ned

in an analogous way. Many researchers have studied the analytic and geometric properties of

the basic Laplacian and the basic heat kernel. A point of di�culty that often arises in this area

of research is that the space of basic forms is not the set of all sections of any vector bundle,

and therefore the usual theory of elliptic operators and heat kernels does not apply directly to

�

B

and K

B

.

It is natural to try to prove the existence of asymptotic expansions for the basic heat kernel.

We remark that the basic heat operator is trace class, since the basic Laplacian is the restriction

of an elliptic operator on the space of all functions (see lower bounds for eigenvalues in [3] and

[2]). In [4], it was shown that, as t ! 0, we have the following asymptotic expansion for any

positive integer k:

K

B

(t; x; x) =

1

(4�t)

q

x

=2

�

a

0

(x) + a

1

(x)t+ : : : + a

k

(x)t

k

+O

�

t

k+1

��

;

where q

x

is the codimension of the leaf closure containing x and a

j

(x) are functions depending

on the local transverse geometry and volume of the leaf closure containing x. The �rst two

nontrivial coe�cients were computed in [4]. In general, the power q

x

may vary, but its value is

minimum and constant on an open, dense subset of M . One might guess that the asymptotics

of the trace of the basic heat operator could be obtained by integrating the expansion (), similar
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to the standard case. However, the functions a

j

(x) for j � 1 are not necessarily bounded or

even integrable over the dense subset. Simple examples exhibit this precise behavior.

Despite these obstacles, we prove that an asymptotic expansion for the trace of the basic

heat operator exists. Let q be the minimum codimension of the leaf closures of (M;F). As

t ! 0, the trace K

B

(t) of the basic heat kernel on functions satis�es the following asymptotic

expansion for any positive integer J :

K

B

(t) =

1

(4�t)

q=2

0

B

B

@

a

0

+

X

1�j�J

0�k<K

0

a

jk

t

j=2

(log t)

k

+O

�

t

J+1

2

(log t)

K

0

�1

�

1

C

C

A

;

where K

0

is less than or equal to the number of di�erent dimensions of leaf closures in F , and

where

a

0

= V

tr

=

Z

M

1

Vol

�

L

x

�

dV (x):

The idea of proof is as follows. We rewrite the integral K

B

(t) =

Z

M

K

B

(t; x; x) dV (x) in terms

of an integral over W �SO(q), where W is the basic manifold, an SO(q)-manifold associated to

(M;F). Then, we apply the results of [1]. In addition, we obtain the Weyl asymptotic formula

for the eigenvalues of the basic Laplacian.

We remark that these asymptotic expansions yield new results concerning the spectrum of

the basic Laplacian. We can show that the eigenvalues of the basic Laplacian determine the

minimum leaf closure codimension and the transverse volume V

tr

of the foliation. The results

also give more speci�c information in special cases. For example, if the leaf closure codimension

is one, then the spectrum of the basic Laplacian determines the L

2

norm of the mean curvature

of the leaf closure foliation. Therefore, the spectrum determines whether or not the leaf closure

foliation is minimal.
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Central Gaussian semigroups on compact groups

Laurent Saloff-Coste (joint work with Alexander Bendikov )

On any compact connected group G with neutral element e, call Brownian motion any process

X = ((X

t

)

t>0

;P) such that X

0

= e, X has stationary independent increments, continuous paths
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and is symmetric, bi-invariant and non-degenerate. If G is a simple Lie group (e:g:; SO(n)) there

is essentially one such process up to change of time, and its generator is the Laplace-Beltrami

operator for the Killing Riemannian metric on G.

Let �

t

be the law of X

t

, t > 0, where X is a Brownian motion on G. These one-dimensional

marginals form a central symmetric Gaussian convolution semigroup (�

t

)

t>0

. If G is a Lie group,

�

t

admit a smooth positive density x 7! �

t

(x) w.r.t Haar measure and we have

log�

t

(e) �

n

2

log(1=t) as t! 0

where n is the tological dimension of G.

Assume now that G is in�nite dimensional. Can we �nd, on any compact connected group

G, a Brownian motion having absolutely cointinuous one dimensional marginals �

t

, t > 0? The

answer is no in this generality. Necessary conditions are that G be locally connected and have

a countable basis for its topology. See [2]. We have the following converse statement.

Theorem Let G be a compact connected locally connected group having a countable basis for

its topology. Then there are Brownian motions on G whose one dimensional marginals are

absolutely continuous and have continuous densities, for all t > 0.

It is natural to investigate the behavior �

t

(e) as t ! 0 in such cases. It is not hard to see

that if G is not �nite dimensional,

lim

t!0

log �

t

(e)

log(1=t)

= +1:

Theorem Let G be a compact connected locally connected group having a countable basis for

its topology. Let  be a positive contiuous increasing function on (0;+1). Then there exists

a Brownian motion X on G whose one dimensional marginals are absolutely continuous, have

continuous densities x 7! �

t

(x), t > 0, and satisfy

8 t 2 (0; 1); log�

t

(e) � log(1 + 1=t) (1=t)

In words, on any G as above, we can achieve a behavior which is very close, in some sense,

to what happens on Lie groups. To go further, one would like to understand how the behavior

of �

t

(e) for small t relates to the structure of G. We have results in this direction which imply

the following.

(a) There are groups G as in the theorems above on which no Brownian motion X can satisfy

8 t 2 (0; 1); t

�a

� log �

t

(e) � t

�b

for any 0 < a < b < +1.

(b) If G admits a Brownian motion X such that 8 t 2 (0; 1); c � t

a

log�

t

(e) � C; Then, for

any b 2 (0;1), it also admits a Bronwian motion X

b

such that 8 t 2 (0; 1); c

b

� t

b

log �

t

(e) �

C

b

:

Details and other results can be found in [1].
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Convergence of spectral structures:

A functional analytic theory and its applications to spectral geometry

Takashi Shioya (joint work with Kazuhiro Kuwae)

The classical perturbation theory of linear operators tells us that if we perturb a Riemannian

metric on a �xed manifold, then the spectral objects such as the spectral measure, the spectrum

of the Laplacian etc. are continuous in metrics with respect to a suitable topology. What if

we perturb not only the metric but also the topology of a manifold? In this case, there are no

more natural identi�cation between L

2

spaces of Riemannian manifolds and so we cannot rely

on the standard perturbation theory. Nevertheless, we obtain some asymptotic correspondence

between them under convergence of Riemannian volume measures. In this direction, Fukaya

�rst de�ned the measured Gromov-Hausdor� topology on the set of metric spaces with Radon

measures, and studied the asymptotic behavior as i!1 of the eigenvalues of the Laplacian of

Riemannian manifolds M

i

, i = 1; 2; : : : , with a uniform bound of sectional curvature, when M

i

is

convergent with respect to the measured Gromov-Hausdor� topology. After that, Kasue-Kumura

introduced a natural distance, called the spectral distance, between Riemannian manifolds under

a uniform bound (in some sense) of heat kernels. The spectral distance expresses how close the

analytic structures are and is a powerful tool to study convergence of Riemannian manifolds

and their analytic structures. In our current work, we present a systematic and functional

analytic framework of topology on the set of spectral structures, which is much more general

than the spectral distance. In particular, we do not need the existence of the integral kernels

of the semigroups, and also the spectrum is not needed to be discrete. Our topologies are

indeed de�ned on the set of spectral structures on general Hilbert spaces, so that it can also be

applied to that de�ned on L

2

di�erential forms, L

2

sections of vector bundles, L

2

functions on

graphs, etc. Our theory can be applied to shrinking, blowing-up, and degeneratiing sequences

of (possibly noncompact, incomplete) Riemannian manifolds.

Large Time Asymptotics for the Heat Kernel on a Periodic Manifold

Toshikazu Sunada

The aim of this talk is to show asymptotic properties of the heat kernel on a Riemannian

manifoldX with a free co-compact abelian group action, including the local central limit theorem

and the asymptotic expansion. Emphasis is put on the underlying ideas and concepts such as

Albanese tori and Albanese maps which originate in classical algebraic geometry. This a joint

work with Motoko Kotani.
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Let k(t; x; y) be the heat kernel on X. It is rather easy to establish the following theorem,

by a perturbation technique for the eigenvalues of the twisted Laplacians.

Theorem 1 (Local central limit theorem) There are a constant C(X) and a function d

0

(x; y)

on X �X such that

(4�t)

k=2

k(t; x; y)� C(X) exp(�

d

0

(x; y)

2

4t

) ! 0

as t " 1, uniformly in x; y. Here k is the polynomial growth rate of the geodesic balls in X.

Theorem 2 (Asymptotic expansion)

(1)

k(t; x; y) � (4�t)

�k=2

C(X)

1

X

i=0

a

i

(x; y)t

�i

as t " 1.

(2) a

i

(x; y) �

�

�

d

0

(x; y)

2

4

�

i

as d(x; y) " 1 (d(x; y) being the Riemannian distance).

In this talk, I shall discuss the geometric nature of C(X) and d

0

(x; y) in terms of Albanese

tori and Albanese maps associated with X.

The detail can be seen in M. Kotani and T. Sunada, Albanese maps and o� diagonal long time

asymptotics for the heat kernel in Comm. Math. Phys. 209(2000), 633-670. For a similar result,

see J. Lott, Remarks about heat di�usion on periodic spaces, Proc. A.M.S. 127(1999), 1243-1249.

A similar idea is applied to asymptotics of the transition probability of the simple random walk

on a crystal lattice, a discrete version of periodic manifolds (see the above mentioned paper and

A. Kr�amli and D. Sz�asz, Random walks with internal degree of freedom, I. Local limit theorem,

Z. Wahrscheinlichkeittheorie 63(1983), 85-95).

Heat Equation Derivative Formulas for Vector Bundles

Anton Thalmaier (joint work with Bruce K. Driver)

We use martingale methods to give Bismut type formulas for di�erentials and co-di�erentials

of heat semigroups on forms, and more generally for sections of vector bundles. The formulas

are mainly in terms of Weitzenb�ock curvature terms, in most cases derivatives of the curvature

are not involved. In particular, our results improve the formula in Driver (JMPA 76, 1997) for

logarithmic derivatives of the heat kernel measure on a Riemannian manifold. Our formulas also

include the formulas in Elworthy and Li (CRAS 327, 1998).

Let M be an n-dimensional oriented Riemannian manifold (not necessarily complete) without

boundary and E a smooth Hermitian vector bundle over M . Denote by �(E) the smooth

sections of E. Further assume that L is a second order elliptic di�erential operator on �(E)

whose principle symbol is the dual of the Riemannian metric on M tensored with the identity

section of Hom(E).

Our aim is to develop stochastic calculus formulas for De

tL

� and e

tL

D� where � 2 �(E)

and D is an appropriately chosen �rst order di�erential operator on �(E).
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As an example of the kind of formula found in our paper, let us consider one representative

special case. Namely suppose that M is a compact spin manifold, E = S is a spinor bundle over

M , D is the Dirac operator on �(S) and L = �D

2

. Let scal denote the scalar curvature of M .

Then

�

e

�tD

2

=2

D�

�

(x) =

�

De

�tD

2

=2

�

�

(x)

=

1

t

E

h

e

�

1

8

R

t

0

scal(X

s

(x))ds




B

t

==

�1

t

�(X

t

(x))

i

;

where X

t

(x) is a Brownian motion on M starting at x 2M , ==

t

is stochastic parallel translation

along X

.

(x) in S relative to the spin connection, B

t

is a T

x

M -valued Brownian motion associated

to X

t

(x) and 


B

t

is the Cli�ord multiplication of B

t

on S

x

.

It is also possible to deal with higher order derivatives. For instance, iterating a minor

generalization of the previous formula gives a formula for D

2

e

�tD

2

=2

�. To formulate the simplest

case, let 0 < t

1

< t, then

�

D

2

e

�tD

2

=2

�

�

(x) =

1

t

1

(t� t

1

)

E

h

e

�

1

8

R

t

0

scal (X

s

(x))ds




B

t

1




B

t

�B

t

1

==

�1

t

�(X

t

(x))

i

:

Axiomatic Sobolev Spaces on Metric spaces

1

Marc Troyanov (This is common work with V. Gol'dshtein)

Recent years have seen important activities devoted to geometric analysis on metric spaces.

Motivations came from such �elds as analysis on singular Riemannian manifolds and recti�able

sets; Carnot-Caratheodory geometries and H�ormander system of vector �elds; weighted Sobolev

spaces and applications to PDE; graphs and discrete groups, combinatorial Laplacian; analysis

on fractal sets; Gromov hyperbolic spaces and their ideal boundaries.

What is particularly interesting is the fact that a number of analytical problems transit from

one theory to another one. For instance the notion of p-capacity of a subset F of a metric

space X is more or less de�ned as the in�mum p�energy E

p

(u) =

R

X

jruj

p

among all functions

u : X ! R which vanish at the boundary of X (in some sense) and such that u � 1 on F . A

precise de�nition can be given in each special case.

We may then consider a number of classical problems such as

1) Prove the existence and uniqueness of an extremal function for the p-capacity Cap

p

(F;X).

2) Prove that if Cap

p

(B;X) = 0 for some ball B � X, then Cap

p

(F;X) = 0 for every

bounded subset F � X.

3) Prove that Cap

p

( ) is a Choquet capacity.

4) Give necessary and su�cient geometric or capacitary conditions implying the embedding

W

1;p

(X) � C(X).

1

The paper is available at http://dmawww.ep
.ch/ troyanov/recents.html
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A natural program is thus to obtain precise theorems and proofs which holds in any reason-

able theory.

An important step was made in 1993 when Piotr Haj lasz introduced a notion of Sobolev

space W

1;p

(X) which makes sense on all measured metric spaces. However Haj lasz's de�nition

does not always coincide with more classic Sobolev spaces. In fact it is important to realize that

given a measure metric space (X; d; �), there is in general not one but several natural notions

of Sobolev space W

1;p

(X). The corresponding notions of capacities will also di�er.

To ful�ll the proposed program, we develop an axiomatic construction of the Sobolev spaces

W

1;p

(X) for any measure metric space X. This construction turns out to be wide enough to

cover all known example and yet rich enough so that we can prove signi�cant theorems.

In the metric measure space (X; d; �), we select a Boolean ring K of bounded Borel subsets

which generates the Borel �-algebra. (typical examples are the ring of all bounded Borel subsets

of X and the ring of all relatively compact Borel subsets if X is locally compact and separable.)

The ring K and the measure � will be asssumed to satisfy the following conditions:

M1) every ball B � X is measurable and 0 < �(B) <1 if B has positive radius;

M2) for every A 2 K there exists a �nite sequence of open balls fB

1

; B

2

; :::B

m

g � K such

that A � [

m

i=1

B

i

and �(B

i

\B

i+1

) > 0 for 1 � i < m.

We then associate (by some way) to each function u : X ! R a set D[u] of functions called

the pseudo-gradients of u; intuitively a pseudo-gradient g 2 D[u] is a function which exerts

some control of the variation of u (for instance in the classical case X = R

n

, D[u] := fg 2

L

1

loc

(R

n

) : g � jruj a:e:g). A function u belongs then to W

1;p

(X) if there exists a pseudo-

gradient g 2 D[u] \ L

p

(X). Depending on the type of control required the construction yields

di�erent versions of Sobolev spaces in metric spaces

The correspondence u! D[u] is supposed to satisfy the following six axioms:

Axiom A1 (Non triviality) If u : X ! R is non negative and k-Lipschitz, then the function

g = k sgn(u) belongs to D[u].

Axiom A2 (Upper linearity) If g

1

2 D[u

1

], g

2

2 D[u

2

] and g � j�jg

1

+ j�jg

2

almost

everywhere, then g 2 D[�u

1

+ �u

2

].

Axiom A3 (Leibniz rule) If u : X ! R is any measurable function and g 2 D[u], then for

any bounded Lipschitz function ' : X ! R the function g

1

(x) = (sup j'jg(x) + Lip(')ju(x)j)

belongs to D['u].

Axiom A4 (Lattice property) Let u := maxfu

1

; u

2

g and v := minfu

1

; u

2

g where u

1

; u

2

2

L

1

loc

. If g

1

2 D[u

1

] and g

2

2 D[u

2

], then g := maxfg

1

; g

2

g 2 D[v] \D[u].

Axiom A5 (Completeness) Let fu

i

g and fg

i

g be two sequences of functions such that

g

i

2 D[u

i

] for all i. Assume that u

i

! u in L

p

loc

topology and g

i

! g in L

p

, then g 2 D[u].
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We now de�ne the notion of Dirichlet and Sobolev spaces based on Axioms 1{5:

De�nitions

i) The p�Dirichlet energy of a function u is de�ned by

E

p

(u) = inf

�

Z

X

g

p

d� : g 2 D [u]

�

ii) The p-Dirichlet space is the space L

1;p

(X) of functions u 2 L

p

loc

(X) with �nite p-energy.

iii) The Sobolev space is then de�ned as W

1;p

(X) = W

1;p

(X; d; �;D) := L

1;p

(X) \ L

p

(X) :

Theorem W

1;p

(X) is a Banach space with norm

kuk

W

1;p

(X)

=

�

Z

X

juj

p

d�+ E

p

(u)

�

1=p

:

Our �nal axiom states that if the energy of a function is small, then this function is not far

from being constant.

Axiom A6 (Energy controls variation) Let fu

i

g � L

1;p

(X) be a sequence of functions

such that E

p

(u

i

) ! 0. Then for any metric ball B there exists a sequence of constants a

i

= a

i

(B)

such that ku

i

� a

i

k

L

p

(B)

! 0.

Exterior di�erentiation on metric measure spaces

Nik Weaver

Our starting point is a de�nition of \bounded measurable vector �eld" that makes sense on

any metric measure space (a metric space which is equipped with a �-�nite Borel measure).

In the classical case of a Riemannian manifold M , the smooth vector �elds on M can be

identi�ed with the derivations

� : C

1

(M) ! C

1

(M);

that is, those linear maps � which satisfy �(fg) = f�(g) + �(f)g for all f; g 2 C

1

(M). Such a

map can be produced from a smooth vector �eld X by de�ning �(f)(p) to be the derivative of

f at p in the direction X(p). Every derivation of C

1

(M) arises in this way.

This de�nition can be modi�ed so as to make sense on a general metric measure space. By

Rademacher's celebrated theorem, Lipschitz functions on a Riemannian manifold are di�eren-

tiable almost everywhere, so that a smooth vector �eld X also gives rise to a derivation

� : Lip(M) ! L

1

(M):

Indeed, for this construction one only needs X to be a bounded measurable vector �eld. Con-

versely, every bounded, weak*-continuous derivation from Lip(M) to L

1

(M) arises from some

bounded measurable vector �eld. This motivates the following de�nition:
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De�nition: Let M be a metric measure space. Then the module of bounded measurable vector

�elds on M is the set

X (M) = f� : Lip(M) ! L

1

(M)j � is a bounded, weak*-continuous derivationg:

Using general functional-analytic techniques, one can then de�ne \tangent" and \cotangent"

spaces at almost every point of M , such that X (M) is identi�ed with the set of bounded

measurable sections of the tangent bundle. We also de�ne, for every f 2 Lip(M), an exterior

derivative df by the simple formula

(df)(�) = �(f):

Then df belongs to the dual module X (M)

0

, and is identi�ed with a bounded measurable section

of the cotangent bundle.

A related constuction has recently been given by Cheeger [2]. That approach requires a dou-

bling condition and a Poincar�e inequality, and correspondingly it gives more detailed local struc-

ture. But our de�nition is more general, and makes sense, for instance, in in�nite-dimensional

spaces. When Cheeger's construction is de�ned the two agree.

The tangent bundle can be explicitly computed in a large number of examples. In the classical

Riemannian case, or more generally on any Lipschitz manifold or recti�able set, the result is

standard; namely, the tangent space at almost every point is R

n

where n is the (Hausdor�)

dimension of M . For Carnot-Caratheodory spaces, Hilbert cubes, and Banach manifolds we

again produce the expected result.

For those recently introduced exotic metric spaces with non-integral Hausdor� dimension but

su�cient recti�able curves to be geometrically interesting, it is less clear what the tangent space

at a point ought to be. In this category are Laakso's tangled Cantor sets [4], the boundaries of

hyperbolic buildings studied by Bourdon and Pajot [1], and Hanson and Heinonen's limit spaces

[3]. But in all of these cases, the tangent bundle and exterior derivative can be computed using

our de�nition.

Another large class of examples arise from Dirichlet spaces. It has long been known that local

Dirichlet forms typically give rise to \intrinsic metrics," and the geometry of these spaces has

been investigated by Sturm [6]. In a separate development, Sauvageot [5] bypassed the metric

and de�ned an exterior derivative directly from the Dirichlet form. Our construction, via the

intrinsic metric, does not exactly duplicate Sauvageot's, but does always contain it. Examples

arising in this context include in�nite-dimensional spaces such as Weiner space, where we recover

the Gross-Sobolev derivative.
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