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The meeting was organized by I Reiten (Trondheim) and C. M. Ringel (Bielefeld).

The main theme of the meeting was the theory of wild algebras, and several talks were related

to various aspects of this topic. Other topics covered, some of which have connections with wild

algebras, were quiver representations and their geometry, homological methods, including A

1

-

categories, Schur algebras, Lie algebras and quantum groups.

The stimulating talks presented many results and open questions, suggesting directions for

further research. They initiated interesting discussions and conversations, leading to solutions

of some problems posed in the lectures.

The talks re�ected the rich development and the liveliness of the �eld, and its interplay with

other branches of mathematics.

The inspiring atmosphere of both the location and the meeting, the growth as well as the

deepening of contacts were very stimulating for all participants, and will certainly contribute to

further progress.
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Abstracts of the talks given at the meeting

On the Flat Cover Conjecture

Lidia Angeleri Hügel

This is a report on some recent results due to Eklof and Trlifaj [1], [2]. In 1981, Enocks conjec-

tured that every module over an arbitrary ring has a �at cover. This conjecture remained open

till summer 1999, when two di�erent proof were obtained, one by Enocks, the other by Bican

and El-Bashir [3]. Enocks' proof relies on a result in [1] and was then further generalized in [2].

In the talk, I report on the generalized version of Eklof and Trlifaj [2] by presenting the

following results.

Theorem 1. [1] Let R be a ring, S a set of R-modules, C = S

?

and F =

?

C. Then for every

module X

R

there are exact sequences 0 ! X

f

�! Y ! Z ! 0 and 0 ! A ! B

g

�! X ! 0 with

Y;A 2 C, Z;B 2 F .

Corollary. Let M 2 ModR. Then every module has a special M

?

-preenvelope.

Theorem 2. [2] Let M � ModR be a class consisting of pure-injective modules. Then every

module has a special

?

M-cover.

Observe that Theorem 2 implies that every module has a �at cover, just by taking forM the

class of all pure-injective R-modules.

Here for X � ModR, X

?

= fA j Ext

1

(X;A) = 0 8 X 2 Xg and

?

X = fA j Ext

1

(A;X) =

0 8 X 2 Xg

References

[1] P. Eklof, J. Trlifaj, How to make Ext vanish, Bull. London Math. Soc. ,to appear.

[2] P. Eklof, J. Trlifaj, Covers induced by Ext, J. Algebra, to appear.
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One parameter families of modules for wild algebras

Raymundo Bautista

Let Q be any �nite quiver, k an algebraically closed �eld. By a remark of C. M. Ringel done at

the end of the talk we have:

Lemma. Take Q

0

a subquiver of Q having the same vertices as Q. Then for M , N in mod kQ:

�

Q

0

= dim

k

Ext

kQ

(M;N)� dim

k

Ext

kQ

0

(

kQ

0

M;

kQ

0

N) � 0:

Now for X 2 mod kQ

0

consider the family

S

Q

0

;X

(i) = fM 2 ind kQ j

kQ

0

M 2 Add(X) and �

Q

0

(M;M) = ig:

With this notation we obtain the following.

Theorem.

(a) S

Q

0

;X

(0) is a discrete family.

(b) S

Q

0

;X

(1) is a tame family.
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An example of wild behaviour

Thomas Brüstle, Bielefeld

The aim of this talk is to illustrate a �typical behaviour� of wild algebras by studying one

particular example, the local commutative algebra

A = k[X;Y ]=(X

3

; X

2

; Y

2

)

over an algebraically closed �eld k. By elementary methods one can classify the A-modules in

small dimensions. It turns out that for our algebra A, the indecomposable modules of dimension

at most 5 occur in a �nite number of one-parameter families, whereas in dimension 6 there exists

an a�ne plane E of pairwise non-isomorphic indecomposable A-modules, given by 6�6-matrices

X and Y as follows:

X =

2

6

6

6

6

6

6

4

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

3

7

7

7

7

7

7

5

; Y

s;t

=

2

6

6

6

6

6

6

4

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 s 0 0 0 0

0 t 1 0 0 0

3

7

7

7

7

7

7

5

; s; t 2 k:

Viewing the parameters s; t as indeterminates, this family naturally yields a khs; ti�A�bimodule

(free of rank 6 over khs; ti), and thus an exact functor

F

E

: mod khs; ti ! modA:

This functor sends the one-dimensional khs; ti�modules onto the plane E (thus proving that A

is not tame), but it fails to be a representation embedding on the higher-dimensional modules.

This e�ect is due to the existence of some commutator action t 7! t+(sa�as) on the parameters

s and t that is not visible in the �eld k, but has strong impact for higher-dimensional modules.

We �nally show how one can use Drozd's proof of the tame-wild theorem to construct a

representation embedding by composing F

E

with another functor F

M

: mod khu; vi ! mod khs; ti

which is induced by some a�ne plane E of 7-dimensional khs; ti�modules.

Large In�nitely generated tilting modules

Flávio U. Coelho (joint work with Lidia Angeleri Hügel)

We extend Miyashita's notion of a tilting module of �nite projective dimension to in�nitely

generated modules over an arbitrary ring R and characterize the classes X � ModR induced

by such tilting modules in terms of the existence of X -preenvelopes [1]. This extends results of

Auslander-Reiten [4] and Angeleri-Tonolo-Trlifaj [3].

We also study the existence of complements to a partial tilting module over an arbitrary ring.

As a consequence of our study, we show that a �nitely generated partial tilting module over an

artin algebra admits always a (possibly in�nitely generated) complement [2].

References
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Semi-invariants for quiver representations

Harm Derksen (joint work with Jerzy Weyman)

Each n-tuple (�

1

; �

2

; : : : ; �

n

) with �

1

� �

2

� � � � � �

n

and �

i

2 Z corresponds to an irreducible

representation V

�

of GL

n

. For which triples (�; �; �) does V

�

appear in V

�


 V

�

? Klyachko

proved that there exists a positive integer N such that V

N�

� V

N�


V

N�

if and only if a certain

explicit set of inequalities is satis�ed. Moreover, recently Knutson and Tao proved the saturation

problem, i.e., if V

N�

� V

N�


 V

N�

for some N � 1 then V

�

� V

�


 V

�

(the converse is easy).

In this talk I will give an alternative proof of the results of Klyachko and Knutson�Tao

using semi-invariants of quiver representations. Let Q be a quiver without oriented cycles. For a

dimension vector � we denote the ring of semiinvariants by SI(Q;�). Scho�eld introduced special

semi-invariants c

V

2 SI(Q;�) for representations V of Q. We prove that these semi-invariants

span SI(Q;�). A consequence of this is that the set �(Q;�) of all weights � with SI(Q;�)

�

6= 0

is given by homogeneous linear inequalities. In particular this set is saturated. Applied to the

triple �ag quiver, the Klyachko/Knutson�Tao results follow.

Canonical Decomposition for Quivers

Harm Derksen (joint work with Jerzy Weyman)

Let Q be a quiver without oriented cycles. Kac described the set of dimension vectors � for

which there exists an indecomposable representation. This set can be identi�ed with the positive

roots of a Kac-Moody Lie algebra (corresponding to the diagram you obtain by forgetting the

orientation of the arrows). Kac distinguishes real and imaginary roots. For real roots there

exists exactly one indecomposable representation, where for imaginary representations there

exist in�nitely many indecomposable representations. A dimension vector � is called a Schur

root if the generic representation of dimension � is indecomposable. Some slides will clarify the

structure of real and imaginary roots, and of real and imaginary Schur roots.

Following Kac, we call � = �

1

� �

2

� � � � � �

r

the canonical decomposition of � if a generic

representation V decomposes into indecomposables as V =

L

i

V

i

with the dimension of V

i

equal to �

i

for all i. Scho�eld found algorithms for computing the canonical decomposition.

I will describe a new very e�cient algorithm for computing such a canonical decomposition.

Our algorithm uses the braid group action on so-called exceptional sequences and does not use

recursion (i.e., the canonical decomposition for many smaller dimension vectors).

Tame biextensions of derived tame hereditary algebras

Peter Dräxler

If B is a derived tame hereditary algebra (i.e. there is a tame hereditary algebra H such that

D

b

(B) = D

b

(H)), then every object Y in D

b

(B) (in particular any B-module) can be decom-

posed as Y =

L

�2Z

Y [�] such that each indecomposable direct summand of Y [�] is of the form

X [�] for some indecomposable H-module X . Moreover, in D

b

(H) we �nd all the shifts R[�] of

the exact abelian subcategory R of H�mod formed by the regular modules.
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Let C

0

, B, C be �nite-dimensional algebras, R

0

a B-C

0

-bimodule and R a B-C-bimodule.

The associated biextension algebra [C

0

; R

0

]B[R;C] is the triangular matrix algebra

0

@

C 0 0

R B 0

D(R

0

)


B

R D(R

0

) C

0

1

A

endowed with the obvious addition and multiplication. Any C

0

-C-subbimoduleW of D(R

0

)


B

R

yields an ideal J(W ) of the algebra [C

0

; R

0

]B[R;C]. We call the factor algebra [C

0

; R

0

]B[R;C]=J(W )

the truncated biextension algebra with respect to W .

Theorem. Let B be a derived tame hereditary algebra of type

e

A

n

or

e

D

n

and R

0

1

; : : : ; R

0

s

,

R

1

; : : : ; R

t

be two sequences of indecomposable modules which are assumed to be of length 2 in

some abelian subcategory R[�] of the derived category D

b

(B). Moreover, the R

0

j

and R

i

lie in

non-homogeneous tubes in D

b

(B) in the case

e

A

n

and in one shift orbit of tubes of rank n� 2 in

the case

e

D

n

.

We consider the B-module R

0

=

L

s

j=1

R

0

j

as B-C

0

-bimodule where C

0

=

Q

�2Z

C

0

[�] and

C

0

[�] = End

B

(R

0

[�]) for all � 2 Z and in the same way the B-module R =

L

t

i=1

R

i

as B-C-

bimodule where C =

Q

�2Z

C[�] and C[�] = End

B

(R[�]) for all � 2 Z. Finally, we de�ne W to

be the C

0

-C-subbimodule

L

�2Z

D(R

0

[� + 1])


B

R[�] of D(R

0

)


B

R.

Then the truncated biextension [C

0

; R

0

]B[R;C]=J(W ) is tame provided that none of the mod-

ules �

�

R

0

j

[�1] is isomorphic to some R

i

.

This theorem generalises the main results of [3] and [2] and also of our talk at ICRTA 8.5

where only algebras with directed quivers where addressed.

The proof proceeds by transforming the module category into a bimodule problem which is

brought into a standard form by using the derived category.

We cannot prove the tameness of the bimodule problem itself but we �nd a degeneration into

a problem which, using the language of bushes from [1], translates immediately into a problem

of clan type.
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Boxes and Wildness

Yuriy A. Drozd

This talk is a survey on the tame/wild dichotomy for boxes and their application to �nite

dimensional algebras. I emphasize three advantages of boxes:

� Possibility of �change-of-rings� operation which leads to an equivalence of the representation

categories, that allows to construct reduction algorithms.

� Use of free boxes, when the set of representations of a �xed dimension is a total a�ne space

(like in the case of quivers without relations).

� Diverse areas of applications: to representations of �nite dimensional algebras as well as

to Cohen-Macaulay modules, vector bundles, etc.

I give the necessary de�nitions related to boxes and explain the main features of the reduction

algorithm used in the proof of the tame/wild dichotomy. In particular, I present three �minimal

wild cases� arising during this algorithm.
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On cubic functors

Yuriy A. Drozd

Let fab = addZ be the category of �nitely generated free abelian groups; Cub(R) be the

category of cubic functors F : fab! Rmod , i.e., the functors if degree � 3 in the sense of [2];

write Cub for Cub(Z) , the category of cubic modules. We show that the problem of classi�cation

of cubic modules is wild in the usual sense of the representation theory. On the contrary, we give

a complete classi�cation of the cubic functors in the following cases, all of them being tame:

1. 2-divisible cubic modules, i.e., those from Cub(Z[1=2]) .

2. Cubic vector spaces, i.e., the functors from Cub(k) , where k is a �eld (certainly, the

non-trivial case being of characteristic 2).

3. Weakly alternative cubic modules, i.e., such that F (Z) = 0 .

4. Torsion-free cubic modules, i.e., the functors F 2 Cub(Z) such that F (A) is torsion

free for all A .

In case (1), the classi�cation happens to be quite similar to that of quadratic modules given

in [1]. The description is given in terms of generators and relations and �ts the frame of �strings

and bands.� The main observation is the following:

Proposition 1. The category Cub(Z[1=2]) is equivalent to the category A-mod, where A is

the subring of Z[1=2]

2

�Mat(2;Z[1=2])

2

consisting of all quadruples

�

a; b;

�

c

1

c

2

c

3

c

4

�

;

�

d

1

d

2

d

3

d

4

��

such that a � c

1

(mod 3) c

4

� d

1

(mod 3) and d

4

� b (mod 3) .

As this result is also analogous to that for quadratic modules, one can propose the following

conjecture:

Conjecture. Let R = Z[1=(p�1)!] , where p is a prime number. The category of functors fab!

Rmod of degree � (p�1) is equivalent to B�mod , where B is the subring of R

2

�Mat(2;R)

p�1

consisting of all tuples

(a; b; C

1

; : : : ; C

p�1

) ; where C

k

=

�

c

k

1

c

k

2

c

k

3

c

k

4

�

;

such that c

k

4

� c

k+1

1

(mod p) for 1 � k < p� 1 , a � c

1

1

(mod p) and b � c

p�1

4

(mod p) .

It would imply an analogous description of such functors.

Here are some corollaries of Proposition 1 and of the description of cubic 2-divisible modules.

Corollary. For every F 2 Cub(Z[1=2])

1. If F

p

' F

0

p

for every odd prime p , then F ' F

0

.

2. pr: dimF 2 f 0; 1;1g .

3. F has a periodic projective resolution of period 6 starting from the second term.

4. If F is indecomposable and non-projective, T is its torsion part, then F=T is either 0

or a direct sum of at most 2 irreducible torsion free modules.
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Cases (2), (3) also �t the frame of strings and bands, though in case (2) the resulting de-

scription is more intricate. All of them rely upon the so called �Gelfand matrix problems�

(Crawley-Boevey's clans or Bondarenko�Nazarova�Roiter's bunches of chains).

Case (4) is the simplest one: we show that Cub(Z

2

) is equivalent to B �mod , where B is

a Bäckström order and its quiver is tame (indeed, the union of

~

D

4

; D

4

and A

3

).
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On Ringel duality of Schur algebras

Karin Erdmann (joint work with Anne Henke)

Let K be an in�nite �eld of characteristic p > 0, and let E be an n-dimensional vector space

over K. Then E


r

is a permutation module for the symmetric group S

r

. The Schur algebra

S(n; r) can be de�ned as

S(n; r) = End

S

r

(E


r

):

S(n; r)-modules are the same as r-homogeneous polynomial modules for GL(n;K).

The algebra S(n; r) is quasi-hereditary, so it has a Ringel dual S(n; r)

0

. We determine com-

pletely all degrees r for which S(2; r)

0

and S(2; r) are Morita equivalent.* For r > p

2

, this is the

case if and only if r is of the form ap

k

� 2 or ap

k

� 2� 1 where 2 � a � p and k � 2.

It is known that S(n; r)

0

is Morita equivalent to KS

r

=I

n

for n < p, here I

n

is the kernel of

the action on E


r

.

It follows that for any r, the quotient KS

r

=I

2

is Morita equivalent to an algebra of the form

eS(2;m)e where e is a 'good' idempotent of S(2;m) for some m � r such that S(2;m) is Ringel

self-dual. This gives new insight to representations of symmetric groups corresponding to 2-part

partitions, in particular also a new proof of a theorem by Kleshchev and Sheth.

* (the very last step was only done after Oberwolfach)

Blocks of enveloping algebras

Iain Gordon (joint work with A. Premet)

Let G be a connected, reductive algebraic group over K, an algebraically closed �eld of positive

charcteristic, and let g =Lie(G).

The enveloping algebra of g, U(g), has a central subalgebra isomorphic to the algebra of

regular functions on g

�

, O(g

�

). Given � 2 g

�

and m

�

2 O(g

�

) its corresponding maximal ideal,

we let

U

�

=

U(g)

m

�

U(g)

;

a reduced enveloping algebra of g. Recently, these algebras have become popular objects in Lie

theory thanks to the con�rmation, by Premet, of a long-standing conjecture and some fresh

conjectures of Lusztig on their representation theory. In particular, in the case � = 0 2 g

�

, one

recovers Lusztig's original conjecture on the characters of simple G-modules.

7



For some time it has been hoped that a mixture of induction, restriction and deformation

would yield a good understanding of the representations of U

�

.

We study the blocks of the algebras U

�

and use degenerations of algebras to prove a general

result describing the cohomology (speci�cally support varieties) of the blocks. As a consequence

we determine the representation type of any block. Besides using degenerations of algebras and

cohomology, we need to study coinvariant algebras of Weyl groups, the orbits of the action of G

on g

�

and Z-graded representation theory.

In certain cases the blocks of U

�

are related to the deformed preprojective algebras studied

by Crawley-Boevey and Holland, amongst others. This last paragraph is joint work with D.

Rumynin.

Controlled wild algebras

Yang Han

The controlled wild algebras, which are not only wild but also of Corner's type, are introduced.

A covering criterion for an algebra to be controlled wild, which is very e�ective for many wild

algebras, is given. This criterion is applied to wild radical square zero algebras, wild local

algebras and wild group algebras of non-trivial �nite p-groups over any algebras. Usually, a

controlled wild algebra is controlled by only �nite indecomposable modules, this leads to the

de�nition of controlling index. It is proved that the controlling indices of the above algebras are

bounded by �ve, fourteen and nineteen respectively.

Is wild type axiomatizable?

Stanisªaw Kasjan

Fix a number d and consider the class of all d-dimensional associative algebras with 1 over

algebraically closed �elds of �xed characteristic p. The class of all algebras of tame representation

type is characterized by a set of �rst order sentences in the language algebra.

The question whether the same is true for the class of wild algebras seems to be open. It is

shown that the positive answer is equivalent to the following assertion: for every algebraically

closed �eld K of characteristic p the class of tame algebras induces a Zariski-open subset in the

variety of d-dimensional K-algebras.

A-in�nity categories in representation theory

Bernhard Keller

J. Stashe� [9] invented A

1

-spaces and A

1

-algebras at the beginning of the sixties as a tool

in the study of `group-like' topological spaces. In the subsequent two decades, A

1

-structures

found applications and developments [5] [1] in homotopy theory; their use remained essentially

con�ned to this subject (cf. however [6]). This changed at the beginning of the nineties when

the relevance of A

1

-structures in algebra, geometry and mathematical physics became more

and more apparent (cf. e.g. [3], [10]). Of special in�uence was M. Kontsevich's talk [4] at

the International Congress in 1994: Inspired by K. Fukaya's preprint [2] Kontsevich gave a

conjectural interpretation of mirror symmetry as the `shadow' of an equivalence between two
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triangulated categories associated with A

1

-categories. His conjecture was proved in the case of

elliptic curves by A. Polishchuk and E. Zaslow [8].

In these talks, we will motivate the introduction of A

1

-structures by a problem from ho-

mological algebra: that of reconstructing a complex from its homology. We will see how the

A

1

-formalism allows us to write the set of quasi-isomorphism classes of complexes with given

homology as the set of orbits under a group action. Under suitable assumptions, it is even an

algebraic group action. We will then introduce the derived category of an A

1

-algebra and more

generally of an A

1

-category. Each algebraic triangulated category is equivalent to such a derived

category. In particular, the derived category of coherent sheaves on a smooth projective variety

may be described by an A

1

-category. For varieties that admit a mirror symmetric dual, one

choice of A

1

-category is made explicit by Kontsevich's conjecture.
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Factorisations of morphisms for wild hereditary algebras

Otto Kerner

If A is a connected tame hereditary algebra, X is a preprojective and Y a preinjective module

and T any regular tube, then each homomorpphism f : X ! Y factorises through addT . For

wild hereditary algebras, a much stronger factorisation property holds:

Theorem. Let H = kQ be a �nite dimensional connected wild hereditary algebra, X

1

6= 0 a

preprojective, X

2

6= 0 a regular and X

3

6= 0 a preinjective module. If R 6= 0 is regular, then one

has.

(a) Each homomorphism f : X

1

! X

2

factorises through �

�m

R for m� 0.

(b) Each homomorphism g : X

2

! X

3

factorises through �

m

R for m� 0.

(c) Each homomorphism h : X

1

! X

3

factorises through �

m

R for jmj � 0.

The proof is strongly related with the existence of monomorphisms respectively epimorphisms.

With the same notation as in the Theorem one additionally gets the following statements (and

their dual ones):

(a') There exists a monomorphism X

1

! �

m

X

2

for jmj � 0.

(b') There exists a monomorphism X

i

! �

m

X

3

for m� 0 and i = 1; 2.
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Some examples of injectively copresented modules

Steffen König

Let g be a semisimple complex Lie algebra and let O be the BGG�category. Enright's relative

completion (in Mathieu's version) is an endofunctor of a certain subcategory O

0

of O which

is a composition of a localisation with restriction and taking a locally �nite part. This can

be reinterpreted as an approximation functor with respect to the category of modules having

an injective copresentation by injective modules of a special kind. A consequence of this new

interpretation is a very easy proof of Enright's conjecture � asserting that relative completion

functors satisfy braid relations � which had been proven before independently by Bouaziz and

by Deodhar.

Using Auslander's 'Representation theory of Artin algebras, I', the category of (relatively or

absolutely) complete modules is identi�ed with the category of eAe�modules where A is the

algebra of the �xed block of O and e is a suitably chosen idempotent. Such an algebra eAe

always is standardly strati�ed, of in�nite global dimension, and its decomposition numbers can

be computed by a Kazhdan�Lusztig type combinatorics.

Projective A�modules are complete. Thus the algebra A is QF�3 and has dominant dimension

at least two. In particular there is a double centraliser propertyA ' End

fAf

(Af) where fA is the

unique indecomposable projective�injective A�module. This reproves Soergel's 'Struktursatz' for

O.

The last result is joint work with I.H.Slungård and C.C.Xi. Everything else is joint work with

V.Mazorchuk.

The trivial representation of a �nite group generates a subcategory of tame type

Henning Krause

Let C be a category of �nite dimensional modules over some �xed algebra. Call C of tame type

(in the sense of Jensen/Lenzing) if every non-zero direct summand of a product of modules in C

has an indecomposable direct summand. I would like to advertize the following problem which

is due to Jensen and Lenzing: Is a �nite dimensional algebra � of tame representation type in

the sense of Drozd if and only if the category of all �nite dimensional �-modules is of tame type?

In my lecture I shall discuss the following somewhat surprising joint result with Dave Benson:

Let G be a �nite group and k be a �eld. Then C = f


i

k j i 2 Zg is of tame type. The proof uses

an embedding of the prime spectrum of the cohomology ring H

�

(G; k) into the Ziegler spectrum

of the group algebra kG; it is based on methods from stable homotopy theory and provides a

complete classi�cation of the modules which arise as a direct summand of a product of modules

of the form 


i

k.

A criterion for concealed-canonical artin algebras

Dirk Kussin

The talk is on joint work of Z. Pogorzaly and the speaker. Let k be a �eld and A be a �nite-

dimensional k-algebra, denote by mod(A) the category of �nitely generated right A-modules. We

prove that A is concealed-canonical if and only if A is derived equivalent to a canonical k-algebra

(in the sense of Ringel/Crawley-Boevey) and there is an omnipresent indecomposable M 2

mod(A) such that M lies in a regular Auslander-Reiten component over A and the class of M
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in the Grothendieck group is �xed by some power of the Coxeter transformation. As application

we get that A is tubular if and only if it is derived equivalent to a tubular algebra and there

is an omnipresent indecomposable M 2 mod(A) which lies in a semi-regular Auslander-Reiten

component over A. The proof exploits the following characterization of concealed-canonical

algebras by Lenzing/de la Peña: A is concealed-canonical if and only if there is an exceptional

curve X (in the sense of Lenzing) and a torsion-free tilting object in the category of coherent

sheaves over X whose endomorphism ring is isomorphic to A.

Noncommutative geometry and quivers

Lieven Le Bruyn

One possible de�nition of "noncommutative geometry" is the study of families of commutative

varieties, connected together by some suitable axioms, and controlled by a formally smooth

noncommutative algebra (i. e. one having the lifting property for morphisms modulo nilpotent

ideals). In this talk I proposed two such possible settings from the theory of quivers:

Moduli spaces of �-semistable representations of dimension vector � of a quiver Q: M

ss

�

(Q; �).

They are connected as "sum-families", that is � induces morphisms

M

ss

�

(Q; �)�M

ss

�

(Q; �)

+

�!M

ss

�+�

(Q; �)

These varieties (projective if Q has no oriented cycles) are controlled locally by a formally

smooth algebra, a suitable universal localization C [Q]

�

determined by a determinental semi-

invariant. Moreover, this local description allows to study the étale local structure of these

moduli spaces by reducing to a quotient variety of an associated quiver situation, similar to the

case of semi-simple representations of quivers. This local description is often useful to determine

the dimension vectors � having a �-stable representation.

Another class of examples comes from quotient varieties iss

�

�

�

of semi-simple �-dimensional

representations of deformed preprojective algebras �

�

. As a �rst step one develops relative

noncommutative di�erential forms and de Rham cohomology of C

�

Q, the path algebra of the

double of Q. Using an acyclicity result one proves an exact sequence of Lie algebras

0! C

vertQ

!

C

�

Q

[C

�

Q; C

�

Q]

! Der

!

C

�

Q ! 0

where the last term are the C

vertQ

-derivations of C

�

Q preserving the canonical 'moment'-element

P

[�; ��]. The middle term is given the structure of a Lie algebra via the Kontsevich-Poisson

bracket which follows from a precise form of the 1-forms. Then one can mimic a proof of V.

Ginzburg on Calogero-Moser phase space to prove that iss

�

�

�

is a coadjoint orbit for the dual

Lie algebra

�

C

�

Q

[C

�

Q; C

�

Q]

�

�

provided iss

�

�

�

is a smooth variety. Combining Nakajima's hyper-

Kahler structure induction with results of Crawley-Boevey one can show that this happens

precisely when � is a minimal dimension vector of a simple representation of �

�

. This is joint

work with my student Raf Bockland. In general, one expects that representation spaces of quivers

and derived spaces such as those determined by (deformed) preprojective algebras are �at enough

to have an in�nite dimensional group acting transitively on them along strata determined by

the same representation type. Having a description of the coadjoint orbits among the iss

�

�

�

it

would be interesting to �nd a procedure to package them together in "adelic-like" objects such

as the adelic Grassmannian in the case of Calogero-Moser particles in the work of G. Wilson and

V. Ginzburg.
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Vanishing of the First Hochschild Cohomology Group

Shiping Liu (joint work with Ragnar-Olaf Buchweitz)

Let A be a �nite dimensional algebra over a �eld k. We are interested in the problem when H

1

(A)

vanishes. If k is algebraically closed, then A is Morita equivalent to kQ

A

=I with (Q

A

; I) a bound

quiver. It is relatively a long-standing problem if vanishing of H

1

(A) implies the non-existence

of oriented cycles in Q

A

. We have recently solved this problem. First of all, the problem has a

negative answer in general.

Theorem 1. Let Q be the quiver consisting of three vertices a; b and c, two arrows � : a! b,


 : b ! c and a loop � at b. Then there exist �nite dimensional k-algebras kQ=I such that

H

1

(kQ=I) = 0. Moreover, these algebras are necessarily of wild representation type.

Secondly the problem has an a�rmative answer for representation-�nite algebras. In fact,

combining with some of Happel's results, we have the following:

Theorem 2. Let k be algebraically closed and let A be representation-�nite. Then H

1

(A) = 0

if and only if A is simply connected.

Non-homogeneous modules over non-strictly wild algebras

Hiroshi Nagase

Crawley-Boevey shoved that for any tame algebra A, almost all indecomposable A-modules are

homogeneous and he gave a problem that the converse is true, i.e. "for any wild algebra A, there

exist in�nitely many non-homogeneous indecomposable A-modules of the same dimension."

On the other hand, Ringel conjectured that wild algebras are controlled wild algebras, which

have a functor

F : mod k(

�

//

//

//
�

) �! modA

controlled by a full subcategory C of modA. Therefore I'm interested in �nding in�nitely many

non-homogeneous indecomposable A-modules of the same dimension in ImF and I showed that

the Crawley-Boevey's problem is true if the number of indecomposable modules in C is �nite.

Stable representations of quivers

Jose Antonio de la Peña (joint work with Lutz Hille)

Let Q be a quiver without oriented cycles and k an algebraically closed �eld. We consider

representations of Q over k.

For a vector d 2 N

Q

0

we consider the set H (d) of weights with respect to d as those linear

functions � : Z

Q

0

! Z with �(d) = 0. A representation M is �-stable (resp. �-semistable =

�-ss) if �(M) = 0 and for every subrepresentation N of M , �(N) < 0 (resp. �(N) � 0). A slope

� = �=� is the quotient of a linear map � : Z

Q

0

! Z by another with �(M) > 0 for M 2 rep Q.

We have the concept of �-stable and �-ss.

Given a slope � we consider the Harder � Narasimhan �ltration 0 = M

0

� M

1

� � � � �

M

r

= M which satis�es that �(M

i

=M

i�1

) > �(M

i+1

=M

i

) and M

i

=M

i�1

is �-ss, i = 1; : : : ; r.

We construct slopes for tame quiver algebras and for wild quivers we consider the case of dis-

tinguished slopes of the form � = (b

�

�

�

� b

+

�

+

)=(a

+

�

+

+ a

�

�

�

) where �

+

=< �; y

+

> and

�

�

=< y

�

;� > are associated to the eigenvectors y

+

and y

�

of the Coxeter transformation �
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of kQ such that �y

+

= �y

+

and �y

�

= �

�1

y

�

for the spectral radius � of �. Such a slope,

in case it exists, satisfyes that �(P ) < �(R) < �(I) for any preprojective P , regular R and

preinjective I . Moreover, �(�M) > �(M) for every regular, a fact which is shown using that

Harder � Narasimhan �ltration of M .

Finally we consider the concept of walls in the space H (d) and discuss necessary conditions

for inner and outer walls.

Composition series of representations of quivers and combinatorics of words

Markus Reineke

Let Q be a �nite quiver without oriented cycles, and let k be an algebraically closed �eld of

characteristic 0.

We de�ne a monoid structure on "families of k-representations of Q"; more precisely:

For (Zariski-) closed, irreducible, GL(d)-stable (resp. GL(e) -stable) subvarieties A � R(Q; d),

B � R(Q; e) of the representation varieties corresponding to dimension vectors d (resp. e), we

de�ne A �B as the subvariety of R(Q; d+ e) consisting of extensions of representations in A by

representations in B.

This de�nes a structure of an associative monoid on the set M(Q) of all closed, irreducible,

GL(d)-stable subvarieties of all R(Q; d). We consider in some detail the submonoid C(Q) spanned

by the simple representations S

i

of Q, called the composition monoid of Q.

The relations of this monoid to the geometry of the representation varieties, to quantized envelop-

ing algebras, and to the combinatorics of the category of k-representations of Q are discussed in

the talk.

For a word ! = (i

1

: : : i

k

) in the alphabet of vertices of Q, the product E(!) = S

i

1

� : : : � S

i

k

is

the subvariety of representations possessing a composition series of type !. Various questions

about the geometry of these subvarieties are posed.

Associated to Q, there is a Kac-Moody Lie algebra g. It is shown that U

0

(g

+

), the q = 0-

specialization of the (twisted) quantized enveloping algebra of the positive part of g, maps onto

the monoid ring QC(Q). This comparison map is an isomorphism if and only if Q is of Dynkin

type.

It is shown that using work of A. Scho�eld, the algebraic structure of C(Q) can be analyzed. For

example, the relation R(d) � R(e) = R(d + e) holds in C(Q) if and only if Ext

1

(E;D) vanishes

generically for D 2 R(d); E 2 R(e). Moreover, the canonical decomposition of a dimension

vector, as considered by V. Kac, provides a �rst approach to a normal form for elements of

C(Q).

Moduli spaces of representations and vector bundles

Aidan Schofield

I talked about the moduli spaces of representations of quivers. The idea was to give an outline

of a proof that such a moduli space is always birational to a suitable number of matrices up to

simultaneous conjugacy.

There are 3 steps to this proof. The �rst step is to show that this result is true for generalised

Kronecker quivers. These are quivers with two vertices and a number of arrows from the �rst
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vertex to the second. The second step is to give a reduction for an arbitrary Schur root over a

quiver to the case of a two vertex quiver such that there are no arrows from the second to the �rst

vertex. This is accomplished by showing that if � is a Schur root then there are indivisible Schur

roots � and 
 such that � = m�+n
 and � has a unique subrepresentation of dimension vector

n
. The �nal step is to show that these two vertex cases can then be handled by combinatorial

techniques and the results of the �rst step.

I concentrated on some of the details of the �rst step. Let � be an indivisible Schur root for a

generalised Kronecker quiver. I constructed two representations S and T such that hom(S;R) =

1 =hom(T;R) and ext(S;R) = 0 =ext(T;R) for a general representation R of dimension vector

�. Further, hom(S; T ) = 1 + p where p = dim

1

(R;R) which is the dimension of the moduli

space of representations of dimension vector �. Then the functor Hom(S � T; ) sends a general

representation of dimension vector n� to a representation of dimension vector (n n) for the

1+ pth generalised Kronecker quiver and induces a birational map between their moduli spaces.

However this second moduli space is well-known to be birational to p n by n matrices up to

simultaneous conjugacy.

Nilpotent matrices

Jan Schröer

Let k be an algebraically closed �eld, M

n

(k) = the set of n�n-matrices, rkA = rank of a matrix

A.

It is a well-known problem of H. Kraft to classify the irreducible components of the a�ne

variety

V

n

= f(A;B) 2M

n

(k)�M

n

(k) j AB = BA = A

n

= B

n

= 0g:

(See Kraft, "Geometric methods in representation theory", SLN 944 (1980)).

As an answer we get the following

Theorem. Let n � 2. The irreducible components of V

n

are

f(A;B) 2 V

n

j rkA � n� i; rkB � ig:

Each component has dimension n

2

� n+ 1.

Furthermore we study properties of the map

� : V

n

! fA 2M

n

(k) j A

n

= 0g

(A;B) 7�! A:

Double Ringel-Hall algebras as a quantum group

Jie Xiao

This is joint work with B. Deng. First we verify that Ringel-Hall algebras also join the quantum

group category that �t the solutions of quantum Yang-Baxter equations. After we get the

decomposition of the double Ringel-Hall algebra D(�) induced by its skew-Hopf pairing, it

is easy to see that D(�) is a restricted non-degenerate member of some datum in the sense of

Green. As a consequence this shows that Ringel-Hall algebras are independent of the orientation

of �. It is natural to de�ne the highest weight module category O and integrable modules over

D(�). The Ringel pairing � provides a R-matrix �

+

. The action of �

+

in O induces the

D(�)-module isomorphism M 
M

0

'M

0


M for any M;M

0

2 O. Furthermore, the operator
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�

+

satis�es a fundamental symmetry: quantum Yang-Baxter equation. We also con�rm the

complete reducibility and the well-known Weyl-Kac character formulae for the integrable weight

modules with strongly dominant highest weights. Second, we present a theorem and its proof,

due to Sevenhant-van den Bergh. It claims that the Drinfeld double of Ringel-Hall algebras is

the quanti�ed enveloping algebra of a generalized Kac-Moody algebra.

Berichterstatter: I. H. Slungård
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