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The conference was organized by Alain Connes (Paris), Joachim Cuntz (M�unster), and Marc

Rie�el (Berkeley).

There were 24 lectures altogether. A topic of great interest was the Baum-Connes conjecture.

Recently, several counterexamples have been found to more general formulations of the conjecture.

They were explained in the talks of Yu and La�orgue. Moreover, the left hand side of the assembly

map can be computed explicitly up to torsion using appropriate Chern characters introduced in

the talks by Baum and L�uck. Another recent breakthrough is the discovery of the relationship

between exactness of the group C

�

-algebra and the Novikov conjecture explained in Kaminker's

talk.

A central issue of the conference was the relationship between non-commutative geometry and

quantum �eld theory. The recent work of Connes and Kreimer seems to turn renormalization

theory from a list of cooking recipes into a part of solid mathematics. Cattaneo's talk explained

the relationship between quantum �eld theory and Kontsevich's formula for the deformation quan-

tization of a Poisson manifold.

Several talks dealt with Hopf algebras|in particular the Connes-Kreimer Hopf algebra of rooted

trees|and the relationship between Hopf algebra cyclic cohomology and characteristic classes.
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Submitted abstracts

Non-commutative Hardy spaces and Toeplitz operators over SL(2;R)

Alexander Alldridge

For the semi-simple Lie group S = SL(2;R), L

2

(S) admits a decomposition

L

2

(S) = H

2

(S

C

+

)�H

2

(S

C

0

)�H

2

(S

C

�

)

into `non{commutative Hardy spaces'. These are associated to a decomposition

S

C

= S

C

+

�

[S

C

0

�

[S

C

�

(up to sets of zero measure)

into complex domains, of which S

C

�

are pseudoconvex.

We give a structure theory of the C

�

-algebra T (S

C

+

) generated by Toeplitz operators T (f) =

E

+

fE

+

, f 2 C

0

(S), where E

+

is the Szeg�o projection onto H

2

(S

C

+

). The main result is a

composition series LC(H

2

(S

C

+

)) / I

1

/ T (S

C

+

), where T (S

C

+

)=I

1

�

=

C

0

(S) and

I

1

=LC(H

2

(S

C

+

))

�

=

C

0

�

S � S=N �N � diag(AM)

�


LC(H

2

(N

C

+

)) :

Path integrals and deformation quantization

Alberto Cattaneo

(joint work with Giovanni Felder)

Kontsevich's formula for the deformation quantization of Poisson manifolds can be obtained as

the perturbative expansion of a certain expectation value in a topological open string theory called

the Poisson sigma model.

The �elds in this model are morphisms from the tangent bundle of the oriented disk (or more

generally a Riemann surface, possibly with boundary) to the cotangent bundle of the given Poisson

manifold. The associativity of the �-product follows in this picture from the topological nature of

the theory.

On the other hand, the Hamiltonian approach reveals that the phase space of the Poisson sigma

model is an explicit realization of the symplectic groupoid (in general, with singularities) for the

given Poisson manifold. This is an object introduced independently by Weinstein and Karasev

as a part of a program to quantize Poisson manifolds. So, in a sense, the Poisson sigma model

provides a realization of their program.

Equivariant Chern character

Paul Baum

Let � be a countable discrete group. Let X be a locally �nite simplicial complex with a proper

action of � such that the quotient space X=� is compact and: if v; v

0

are vertices of a simplex �

in X with v 6= v

0

, then there does not exist 
 2 � with 
v = v

0

. We let

^

X be the space

^

X = f(
; x) 2 � � X j 
x = xg equipped with the �-action g(
; x) = (g
g

�1

; gx). Then

^

X

satis�es the above requirements for X .

Let F be the cyclotomic �eld. In this talk (using a result of W. L�uck) a simple explicit Chern

character is constructed:

ch: K

j

(C

0

(X)o �)!

M

l

H

j+2l

(

^

X=�;F ); j = 0; 1:

Upon tensoring the left side by F , this Chern character becomes an isomorphism. By duality, one

then obtains

ch: KK

j

�

(C

0

(X); C ) !

M

l

H

j+2l

(

^

X=�;F ); j = 0; 1:
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Again this character becomes an isomorphism after tensoring the left hand side with F . In

particular, we obtain a Chern character

ch: K

�

j

(E�)!

M

l

H

j+2l

(�;F�);

where F� is the free �-module over the �-space S� of elements of �nite order in � acted upon by

conjugation. This Chern character becomes an isomorphism upon tensoring with F .

Problem: Find ? to �ll in the diagram

K

�

j

(E�) ����! K

j

(C

�

r

�)

?

?

y

?

?

y

L

l

H

j+2l

(�;F�) ����! ?

What does this have to do with the possible existence of discrete groups which do not satisfy the

Baum-Connes conjecture?

Permanence properties of the Baum-Connes conjecture (with coe�cients)

J

�

er

^

ome Chabert

(joint work with Siegfried Echterho�)

We are considering, for G a locally compact group and B a G-C

�

-algebra, the assembly map

�

G

: K

top

�

(G;B)! K

�

(Bo

r

G) and investigate the permanence properties of the bijectivity of �

G

with respect to G. We have the following results:

When H is a closed subgroup of G and �

G

is bijective (surjective), then �

H

is also bijective

(surjective).

Let N � G be a closed normal subgroup, q : G ! G=N the quotient map. Suppose that �

C

is bijective and that C has a 
-element for all C = q

�1

(

_

C) with

_

C � G=N compact. If �

G=N

is

bijective, then �

G

is bijective.

As a consequence, if N is amenable or has the Haagerup property, and �

G=N

is bijective,

then �

G

is bijective. If G = G

1

�G

2

, then �

G

is bijective (surjective) i� �

G

1

and �

G

2

are bijective

(surjective).

Using these results, the problem posed by the Baum-Connes conjecture for closed subgroups of

almost connected groups can be reduced to the class of semi-simple Lie groups.

Mathematical structures in perturbative quantum �eld theory I+II

Alain Connes and Dirk Kreimer

We show how renormalization in quantum �eld theory is a special instance of a general math-

ematical procedure of extraction of �nite values based on the Riemann Hilbert problem. The

combinatorics of Feynman graphs gives rise to a commutative Hopf algebra H. It is the dual

Hopf algebra of a Lie algebra G whose basis is labeled by one-particle irreducible graphs. The

corresponding Lie group G is the group of characters of the Hopf algebra. Using dimensional

regularization, the theory gives rise to a loop 
(z) 2 G, z 2 C, where C is a small circle of

complex dimensions around the integer dimension D of space time. The main result is that the

renormalized theory is just the evaluation at z = D of the holomorphic part 


+

of the Birkho�

decomposition 
 = 


�1

�




+

.

The group G acts naturally on the complex space X of dimensionless coupling constants. The

formula for the e�ective coupling constant viewed as a power series in the bare coupling constant

de�nes a Hopf algebra homomorphism from the Hopf algebra of coordinates on the group of formal

di�eomorphisms G

0

to H . The bare and renormalized coupling constants can be obtained from the

Birkho� decomposition of the unrenormalized coupling constant. This relates renormalization to

the theory of non-linear complex bundles on the Riemann sphere. H allows to lift both the renor-

malization group and the �-function as the asymptotic scaling in the group G

0

. Thus we obtain
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a scattering formula in G for the full higher pole structure of minimal-subtracted counterterms in

terms of the residue.

Cyclic cohomology of Hopf algebras

Marius Crainic

The aim of this talk is to explain how Cuntz-Quillen's formalism applies to the cyclic cohomology

HC

�

�

(H) of Hopf algebras. For simplicity, we restrict ourselves to the unimodular case. Thus H is

a Hopf algebra endowed with a character � such that the twisted antipode S

�

= � � S : H ! H is

an involution. The leading principle is that HC

�

�

(H) should be the target of a characteristic map

k

�

: HC

�

�

: HC

�

�

(H)! HC

�

(A)

associated to pairs (A; �), where A is an H-algebra and � is a �-invariant trace on A. We prove

that CC

�

(H)

�

=

X

�

(TH) and C

�;�

(H)

�

=

TH

\;�

, where C

�;�

(H) is the cyclic complex computing

HC

�

�

(H), CC

�

(H) is the cyclic bicomplex, X

�

is the quotient of the Cuntz-Quillen X-complex by

the coinvariants h(x) � �(h)x; TH is the tensor DG-algebra of H; and TH

\;�

is the quotient of

TH by the linear span of graded commutators and coinvariants. This immediately yields that the

Connes-Moscovici formulas work out under the minimal assumption that S

�

is an involution. We

also prove that CC

�

(H; n)

�

=

X

2n+1

�

(WH; IH), where WH is a non-commutative analogue of the

classical Weil complex, IH is the ideal generated by the curvatures, X is Cuntz-Quillen's tower of

X-complexes, and CC

�

(H; n) is a (level n) cyclic bicomplex.

We obtain the following non-trivial isomorphisms:

HC

�

�

(H)

�

=

H

�

(W

n

(H)

\;�

)

�

=

H

�

(I

n

(H)

\;�

);

where I

n

(H) = I(H)

n+1

and

\;�

denotes the quotient by commutators and co-invariants. Inspired

by the classical construction of characteristic classes for foliations due to Bott and Hae
iger, and

using the truncations of the non-commutative Weil complex, we show that HC

�

�

(H) is also the

target of a characteristic map k

�

associated to �-invariant � 's that are higher traces in Quillen's

sense or Connes's closed cocycles (
;

R

). In the case H = C , we rediscover the cyclic cocycles

constructed by Quillen. If H is the universal enveloping algebra of a Lie algebra, we obtain

characteristic maps whose target is Lie algebra homology.

Cyclic cohomology of Hopf algebras and secondary characteristic classes

Alexander Gorokhovsky

We derive higher dimensional analogues of Connes's Godbillon-Vey cocycle.

Connes's construction gives a characteristic class associated with an orientation preserving

action of a discrete pseudogroup � on an oriented manifold M . If ! is a volume form on M ,

one constructs for each g 2 � the map �

g

: M ! R

+

by the formula �

g

= !

g

=!. This induces

a 1-parameter group of automorphisms of C

1

0

(M) o � by �

t

(aU

g

) = a�(g)

t

U

g

. Using also the

transverse fundamental class, we obtain the Godbillon-Vey cocycle. If we also have a rank n �-

bundle over M , we have an action of the Hopf algebra H = C

1

(Gl(n;R)) on the cross product

algebra. We construct an extension of this action to the di�erential graded algebras. Using the

Connes-Moscovici theory of cyclic cohomology of Hopf algebras, we get a construction of all the

higher secondary classes.

Relations of exactness of C

�

r

(�) to the Novikov conjecture

Jerry Kaminker

(joint work with Erik Guentner)

Let � be a �nitely presented group with C

�

r

� exact. Then we show that � is uniformly embeddable

in a Hilbert space. This has several consequences. By Yu's theorem, one has that � satis�es the

Novikov conjecture. Gromov has shown the existence of groups which do not uniformly embed.

Thus, there exist non-exact groups. By re�ning the methods of the theorem, Ozawa showed that if

C

�

r

(�) is exact then � acts amenably on a compact space. One thus has the following equivalences:
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C

�

r

(�) is exact i� � acts amenably on �� i� � has Yu's property A. Each of these properties imply

uniform embeddability. Moreover, one now knows that the set of groups which act amenably on

a compact space is closed under group extensions because this is true for exact groups by results

of Kirchberg and Wasserman.

Some examples of �eld theories in non-commutative geometry

Thomas Krajewski

(joint work with Ludwik Dabrowski and Giovanni Landi)

In physics, classical and quantum �eld theories are used to describe the interaction of in�nitely

many degrees of freedom, as it happens in relativistic quantum �eld theory or statistical physics.

More precisely, one de�nes an in�nite dimensional manifold C called the con�guration space and

a positive function S on C called the action functional. Then classical �eld theory deals with

the extremal points of the functional S, whereas quantum �eld theory tries to make sense of the

functional integral S[�] =

R

[D�] exp(�S[�]=~). In general both C and S are geometric objects,

e.g., C is the space of connections on a bundle and S is the Yang-Mills action. We wish to extend

these to the non-commutative case.

We emphasize the case of nonlinear �-models, where the con�guration space is the space of

maps between a 2-dimensional surface � with metric g and a targetM with metric G. The action

functional is

S[X ] =

Z

�

p

gg

��

@

�

X

i

@

�

X

j

G

ij

(X)

and is conformally invariant. To de�ne the non-commutative analogue, we dualize this picture,

replacing � and M by A = C(M) and B = C(�). The conformal structure of � is encoded in a

positive Hochschild cocycle � and the metric G onM is described by a positive form G 2 


2

B. The

con�guration space is the space of algebra homomorphisms � : B ! A and the action functional is

S[�] = �� (�
�
�)(G). We can now replace A by a non-commutative torus A

�

and let B = C

2

.

Then algebra homomorphisms B ! A correspond to projections p 2 A

�

and S[�] =

R

@p@p.

Analogously one can construct models with B = C(S

1

) and add the Wess-Zumino term to the

action.

Counter-examples to the Baum-Connes conjecture

Vincent Lafforgue

(joint work with George Skandalis and Nigel Higson)

In September 1999, Gromov constructed a group whose Cayley graph does not embed uniformly

in a Hilbert space. Because of the work of Yu this group was a candidate for a counterexample

to the coarse Baum-Connes conjecture. Nigel Higson then constructed a counterexample to the

surjectivity of the coarse Baum-Connes assembly map. Then Skandalis showed that surjectivity

of the Baum-Connes assembly map fails for the bundle of groups Sl(3;Z=nZ), n 2 N [ f1g,

viewed as a (Hausdor�) groupoid. The reason for the failure of surjectivity is that the assembly

map factors through K

0

(C

�

max

(G)). One shows that a particular projection in C

�

r

(G) does not

come from C

�

max

(G). Skandalis has found an example of a foliation with non-Hausdor� holonomy

groupoid where both injectivity and surjectivity of the assembly map fail; and an example of a

Hausdor� groupoid where the assembly map is not injective.

If G is a groupoid with compact basis, are there a sequence (f

n

) in C

0

(G) with f

n

(g) ! 1

uniformly on compact subsets of G and a dense Banach subalgebra A � C

�

r

(G), stable under

holomorphic functional calculus, such that the Schur multiplication by f

n

, viewed as a map from

A to C

�

r

G, has norm � 1? Essentially, this property is known, unknown, or false in the same cases

as the injectivity of the Baum-Connes map (without coe�cients).
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Instantons on non-commutative spaces

Giovanni Landi

(joint work with Ludwik Dabrowski and Thomas Krajewski)

We study �-model type theories in noncommutative geometry. If the target space consists of

two points we obtain a theory of projectors in the algebra of the source space. Actions are of the

form S = (2�)

�1

R

@

�

p@

�

pg

��

with p a projector and g

��

is a constant metric. If p 2 A

�

, the

noncommutative 2-torus, there is an inequality S(p) � �2Q(p) with the topological quantity

Q(p) =

1

2�i

Z

p(@

1

p@

2

p� @

2

p@

1

p):

Equality occurs i� p is a solution of the self-duality or anti-self-duality equations @pp = 0, @pp = 0.

We seek self dual solutions of the form p = j i (h j  i)

�1

h j with j i 2 S(R) (the latter space

being viewed as an A

�

-A

�1=�

-bimodule) such that h j  i is an invertible element in A

�1=�

.

Then  is a solution of the equations r �  � = 0, where r = r

1

+ ir

2

and r

j

are constant

curvature connections on S(R) as constructed by Connes and Rie�el. The parameter � 2 A

�1=�

can be gauged away to a constant. For constant �, the solutions are Gaussian functions  =

A exp(���s

2

� 2i�s) and the corresponding projector is of rank �. and has topological charge

Q(p) = 1. We call it an instanton. The moduli space of solutions modulo gauge transformations

is C =(Z+ iZ). With a more general constant metric parametrized by a constant � 2 C , =� > 0,

the moduli space is C =(Z+ �Z).

The Novikov conjecture for manifolds with boundary

John Lott

(joint work with Eric Leichtnam and Paolo Piazza)

Theorem: If M is a compact manifold with boundary and �

1

(M) is virtually nilpotent or hyper-

bolic in the sense of Gromov, then the higher signatures of M are oriented homotopy invariants.

To de�ne the higher signatures of a manifold with boundary, let � : M ! B� be a continuous

map, where � is a �nitely generated discrete group. Put a Riemannian metric on M which is a

product near the boundary. De�ne

�

M

=

Z

M

L(TM) ^ ! � ~�

@M

2 H

�

(B

1

):

Here B

1

is a smooth subalgebra of C

�

r

� with C� � B

1

� C

�

r

�. ! 2 


�

M 
 


�

(C�) is a certain

closed biform. ~�

@M

2 


�

(B

1

) is the higher eta-invariant. H

�

(B

1

) is the non-commutative de

Rham homology as considered by Connes and Karoubi.

Let �

0

be the canonical 
at C

�

r

�-bundle on @M .

Assumption 1: The surjectionH

k

(@M ; �

0

)! H

k

(@M ; �

0

) is an isomorphism for k = [

1

2

(dim @M+

1)]. Here H

k

= ker d= im d and H

k

= ker d=im d.

If Assumption 1 holds, then �

M

is well-de�ned and is an oriented homotopy invariant of the

pair (M; �).

Assumption 2: Each element of H

�

(�; C ) extends to a cyclic cocycle on B

1

.

Under Assumptions 1 and 2, h�

M

; �i 2 C is an oriented homotopy invariant of (M; �) for each

� 2 H

�

(�; C ).

Chern characters for proper equivariant homology theories and applications to K-

and L-theory

Wolfgang L

�

uck

Let H

?

�

be an equivariant homology theory. It assigns to each (discrete) group G a G-homology

theory H

G

�

. For any group homomorphism � : H ! G and H-CW-complex with free action of
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ker� we have an isomorphism ind

�

: H

H

p

(X)

�

=

H

p

(G �

�

X). If the coe�cient system H 7!

H

H

p

(�) = H

G

p

(G=H) for �nite groups H is a Mackey functor, we construct an isomorphism

ch:

M

p+q=n

H

p

(C

G

HnX

H

;Q) 


Q[N

G

H=C

G

H]

S

H

H

H

q

(�)! H

G

n

(X)

for proper G-CW-complexes X , where S

H

H

G

q

(�) is

cok(

M

K�H;K 6=H

H

K

q

(�)! H

H

q

(�))

and H

p

(C

G

HnX

H

;Q) denotes the ordinary homology with rational coe�cients. This gives explicit

computations of the sources of the assembly maps appearing in the Farrell-Jones and Baum-Connes

conjectures and thus, provided these conjectures are true, of K

n

(F [G])


Z

Q, L

n

(F [G])


Z

Q, and

K

n

(C

�

r

(G)) 


Z

Q for F a �eld of characteristic 0.

Operads and the Connes-Kreimer Hopf algebra

Ieke Moerdijk

Let P be an operad in an additive symmetric monoidal category (C;
). Recall from Getzler-Jones

that P is called a Hopf operad if it is equipped with a coalgebra structure, compatible with the

operad structure. For a Hopf operad P, the P-algebras are closed under 
, and one can speak of

coalgebras in P-algebras, brie
y Hopf P-algebras.

Let P[t] be the operad whose algebras are pairs (A;�), where A is a P-algebra and � : A ! A

is a map in the category C, not necessarily an algebra map. Let (H; �) be the initial P[t]-algebra.

That is, (H; �) = P[t](0). Suppose that P is unitary, so that H has a unit u : k ! H.

By the universal property of (H; �), there is a unique augmentation � : H ! k such that �� = 0,

and any two �

1

; �

2

: H ! H give a unique \coproduct" �: H ! H
H, an algebra map satisfying

�� = (�

1


 � + � 
 �

2

)�. Now this makes H into a Hopf P-algebra whenever ��

i

= � and

(�

i


 �

i

)� = ��

i

for i = 1; 2. There are many maps satisfying these conditions. In the special

case where C is the category of vector spaces and P(n) = k for all n, so that P-algebras are just

commutative unitary algebras, and �

1

= id, �

2

= u�, one �nds that (H;�) is the Connes-Kreimer

Hopf algebra of rooted trees.

Modular Pairs and the Modular Square

Henri Moscovici

(joint work with Alain Connes)

We have recently adapted cyclic cohomology to the treatment of Hopf symmetry in non-commutative

geometry. The resulting theory of characteristic classes for Hopf algebras and their actions on al-

gebras allows to expand the range of applications of cyclic cohomology.

The goal of this talk was to illustrate the remarkable agreement between the framework which

was used to de�ne the cyclic (co)homology for Hopf algebras and the algebraic as well as the

analytic theory of quantum groups. In particular, this accord is manifest in the construction of

the modular square associated to a locally compact quantum group.

Hochschild and cyclic homology of Hecke algebras of reductive p-adic groups

Victor Nistor

There is a description of the periodic cyclic homology of the Hecke algebras of reductive p-adic

groups in terms of the representation theory of the stabilizers of simplices of the building (Schnei-

der, Higson, and Nistor). This description is useful, among other things, for the Baum-Connes

conjecture (proved for GL(n) by Baum, Higson, and Plymen). It is interesting then to identify

these periodic cyclic homology groups as explicitly as possible. In my talk, I give a description of

these groups using conjugacy classes and their stabilizers in the group, in the spirit of Burghelea's

computation for discrete groups. The result is in terms of certain commutative subgroups, called
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\standard", their regular elements, their Weyl groups, and the continuous cohomology of the space

of locally constant functions on the unipotent variety.

The bivariant Chern character of the 
-element

Michael Puschnigg

The basic properties of the local cyclic cohomology HC

l

�

bifunctors on the category of Banach

algebras were discussed and an explicit calculation was presented which leads to the following

theorem:

If � = �

1

(M) for a compact manifold M of nonpositive curvature, then the cohomological

assembly map provides an isomorphism H

�

�

�; HC

l

�

(C )

�

�

=

HC

l

�

�

`

1

(�)

�

.

Using work of Connes-Moscovici and Cowling-Haagerup, this can be applied to study the K-

theoretic assembly map. Let � = �

1

(M) for a compact manifold M of strictly negative curvature.

Then:

1. The local cyclic homology of C

�

r

� decomposes into a homogeneous part isomorphic to

H

�

�

�; HC

l

�

(C )

�

and an inhomogeneous part.

2. We have HC

�

l

(C

�

r

�; C

�

r

�) = End

�

HC

l

�

(C

�

r

�)

�

.

3. Let 
 2 KK

�

(C ; C ) be the 
-element of Kasparov, 
o� 2 KK(C

�

r

�; C

�

r

�). Then ch

biv

(
o�)

equals the canonical projection onto the homogeneous part of HC

l

�

(C

�

r

�).

As a consequence, ch

biv

(
 o �)[� ] = [� ], where � : C

�

r

� ! C is the canonical trace. Therefore

the idempotent conjecture holds for C

�

r

� (this was previously proved by La�orgue).

Gromov-Hausdor� distance for non-commutative metric spaces

Marc A. Rieffel

By a non-commutative metric space we mean an order-unit space A (e.g., the real vector space of

self-adjoint elements of a unital C

�

-algebra), together with a semi-norm L on A. The semi-norm

will usually be unbounded with respect to the norm of A. We use L to de�ne a metric �

L

on the

state space S(A) of A by

�

L

(�; �) = supfj�(a)� �(a)j j L(a) � 1g:

The main requirement on L is that the topology on S(A) from this metric should agree with the

weak-� topology.

Given two such non-commutative metric spaces (A;L

A

), (B;L

B

), we consider such L's on A�B

whose quotients on A and B are L

A

and L

B

. Since S(A); S(B) � S(A � B), we can use �

L

to

de�ne the usual Hausdor� distance dist

L

H

�

S(A); S(B)

�

between S(A) and S(B). We de�ne the

Gromov-Hausdor� distance between (A;L

A

) and (B;L

B

) by

dist

GH

�

(A;L

A

); (B;L

B

)

�

= inf

�

dist

L

H

�

S(A); S(B)

�

�

�

Lj

S(A)

= L

A

; Lj

S(B)

= L

B

	

:

We prove the following theorem:

Let � be the vector space of skew-symmetric d � d matrices. For � 2 �, let A

�

be the

corresponding non-commutative torus. Let k k be any norm on �. In terms of a length function

on T

d

, and the action of T

d

on each A

�

, we de�ne semi-norms L

�

on A

�

. Then for every � > 0

there is � > 0 such that if k� � �

0

k < �, then dist

GH

�

(A

�

; L

�

); (A

�

0

; L

�

0

)

�

< �.

Deformation theory and non-commutative geometry

Yan Soibelman

Degeneration of a complex structure gives rise to a foliation with a�ne structure on the leaves.

It is argued that the derived category of coherent sheaves \degenerates" into a derived category

of certain modules over the algebra of the foliation.

For example, the derived category of coherent sheaves on the elliptic curve E

�

corresponds

to the category of modules over the non-commutative torus, generated by unitaries x; y with

xy = exp(2�i�)yx, � = Re � , which are projective over the subalgebra generated by x.
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I suggest to consider the (derived) category of modules as a non-commutative stratum in the

compacti�cation of the universal covering of the moduli space of complex structures. I discuss this

idea from the point of view of dualities. For instance, Morita equivalences of non-commutative

tori are related to the manifest Sl(2;Z)-equivalence of elliptic curves. I conjecture that the duality

group for the quantized coordinate rings of Poisson-Lie groups is the Galois group of the maximal

Abelian extension of Q. I discuss an approach to the homological mirror symmetry of Kontsevich,

which uses degeneration in the above sense of both sides of the homological mirror symmetry to

the same category of modules over the foliation algebra. The question about Morita equivalence

of quantized Poisson manifolds is raised.

Index theorem for Poisson manifolds

Boris Tsygan

Let M be a manifold. Let P be a formal Poisson structure on M , that is, a formal series

P = tP

0

+ t

2

P

1

+ t

3

P

2

+ � � � , where P

i

are bivector �elds on M and ff; gg = hP; df ^ dgi is a

Lie bracket on C

1

(M)[[t]]. Thus P

0

is a Poisson structure on M . Kontsevich constructed a �-

product associated to P . We proved with D. Tamarkin that the space of traces on the associative

algebra A

p

= (C

1

(M)[[t]]; �) with values in C [[t]] is isomorphic to the space of classical traces

� : C

1

(M)[[t]]=f; g

P

! C [[t]]. For any � , let Tr

�

be the corresponding trace. Let i

P

: 


�

(M)[[t]]!




��2

(M)[[t]] be the contraction operator and L

p

= [d; i

P

]. The map � � exp(ti

P

) : 


�

(M)[[t]] !

C [[t]] is a morphism of complexes.

Let e; f 2 Mat

N

(A

p

) be idempotents with e � f compactly supported. There is an even

cohomology class

^

A(P

0

) 2 H

ev

(M) depending on a Poisson structure P

0

such that

Tr

�

(e� f) =

�

� � exp(ti

p

)

�

�

�

ch(�e)� ch(�f)

�

^

A(P

0

)

�

;

where �x = x mod t. This was proved by D. Tamarkin and myself.

Assume that (E ; �; [; ]; !) is a symplectic Lie algebroid on M , that is, a Lie algebroid with a

symplectic non-degenerate closed E-2-form ! 2 �

2

E

�

. Its image under the identi�cation ! : E

�

! E

composed with �

2

� : �

2

E

�

! �

2

T de�nes a Poisson structure on M . We prove with R. Nest and

P. Bressler that if P

0

comes from a symplectic Lie algebroid E , then

^

A(P

0

) =

^

A(E). One of the

approaches to the proof of the above results is founded on the ideas of Tamarkin. They would

follow from the following conjecture (of which Tamarkin proved a very particular case):

Let A be an associative algebra with a trace Tr such that Tr(ab) is a non-degenerate pairing.

Then the Hochschild cochain complex C

�

(A;A) is a strong homotopy Batalin-Vilkovisky algebra.

A partial case of the general index theorem leads to a local index formula for a Fourier integral

operator whose wave front is the graph of a contact isomorphism � : T

�

X nX ! T

�

Y n Y . With

R. Nest and E. Leichtnam we proved that ind� = Tr

�

1 for a trace Tr

�

on the deformed algebra

C

1

(M), where M is a certain Poisson manifold. The local index theorem for Poisson manifolds

then yields a local index formula for �.

Quantum subgroups?

Antony Wassermann

We explain how subfactors can be studied and constructed using the notion of algebra in a

braided category of bimodules. Subfactors associated with �nite groups H � G can all be related

to G-actions using the imprimitivity algebra A = `

1

(G=H), an ergodic Abelian G-algebra. The

structure of A can be described just as an object in the category of G-modules.

More generally, given a bimodule

N

X

M

over von Neumann factors N;M , of �nite index, we

say X has �nite depth if X � X � � � � decomposes into only �nitely many irreducibles under

Connes fusion. In this case A = X �X is a �nite dimensional ergodic algebra in the category of

N -N -bimodules if X is irreducible. The left, right, and two-sided A-modules correspond exactly

to M -N , N -M , and M -M bimodules.

Most interesting is when the category of N -N -bimodules is braided. Then an Abelian ergodic

algebra A can be used to imitate all the constructions of subfactors for �nite group and subgroups,
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so can be regarded as a \quantum subgroup". If LG

r

� LH

s

is a conformal inclusion, the

vacuum representation of LG de�nes such an algebra A in the category of LH positive energy

representations under Connes fusion. Taking LSO(3)

1

� LSU(2)

10

and LG

2

� LSU(2)

28

, one

gets the E

6

and E

8

Jones subfactors by the analogue of my \shift" construction for classical groups.

We explain Lyubashenko's Hopf algebra construction in any braided tensor category. In the

modular case, the Fourier transform S and the square of the antipode T give a projective repre-

sentation of Sl(2;Z) on this algebra. Using the induced modules

L

X

i


X 
X

�

i

in any category

of N -N -bimodules, and their manifest braiding, we explain the \quantum double construction" of

Ocneanu-Drinfeld. Its modularity can easily be read o� using Lyubashenko's Hopf algebra.

Renormalization of Yang-Mills theory on non-commutative R

4

Raimar Wulkenhaar

It has turned out to be impossible to formulate a consistent quantum �eld theory of gravity,

strong, weak, and electro-magnetic interactions based upon an ordinary Riemannian manifold.

This raises the problem to formulate quantum �eld theories on non-commutative spaces. The

simplest example inspired by quantum mechanics is obtained by assuming that the commutators

of coordinates satisfy [x

�

; x

�

] = �2i�

��

with constants �

��

. On such a space the Yang-Mills

action including BRS symmetry can be written down and it is straightforward to derive the

Feynman rules. They are those of an ordinary Yang-Mills theory with the structure constants

given by trigonometric functions of the momenta. The 1-loop calculation leads to the surprise of

a quadratic infrared divergence which destroys the classical limit �

��

! 0. The model leads to a

con�nement of size

p

j�

��

j and can therefore not be interpreted as an approach to quantum gravity.

This indicates that further terms must be added to the action, for instance, super-symmetry or

something which establishes a symmetry p

�

$ �

��

p

�

.

Expanding graphs and the (rough) Baum-Connes conjecture

Guoliang Yu

The rough Baum-Connes conjecture for bounded geometry metric spaces is a close relative of the

coarse Baum-Connes conjecture. In the case of a �nitely generated discrete group with a word

metric, the rough Baum-Connes conjecture is equivalent to the Baum-Connes conjecture for the

group with a certain coe�cient.

In this talk, we explain how the rough Baum-Connes conjecture fails for an expanding sequence

of �nite graphs. This implies that the rough Baum-Connes conjecture is almost always false in a

certain probabilistic sense. The same argument is used to show that Gromov's recent groups, which

contain an expanding sequence of graphs, are counterexamples to the Baum-Connes conjecture

with coe�cients.

This work was inspired by Higson's earlier counterexample to the coarse Baum-Connes conjec-

ture for bounded metric spaces.

This report was written by Ralf Meyer, M�unster.
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