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The conference was organized by David Eisenbud, Joe Harris and Frank-Olaf Schreyer with

an emphasis on topics around rationality questions and explicite equations of algebraic

varieties. In selecting the speakers (as well as the participants) precedence was given to

the bright young people in the �eld, for example Hans-Christian von Bothmer, Andreas

Gathmann, Tom Graber, Mircea Mustata and Jason Starr.

The number of the talks was kept to four per day, each of 50 minutes to allow plenty of time

for discussion and to encourage questions at the end of the talks. Perhaps partly because

of these policies, the attendance at the talks was very high. There were also many lively

discussions among the members between the talks, and several research projects moved

forward in this time.

The enthusiasm of the participants, the level of activity in discussions among them, and

the quality of the talks, made us feel that this was a highly successfull conference.
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Abstracts

Factorization of birational maps

Dan Abramovich

Let X

0

and X

1

be complexe projective manifolds, and � : X

0

� ! X

1

a birational map.

Theorem. There exist complex projective manifolds X

1

; X

2

; : : : ; X

n

= X

1

,

X

01

; X

12

; : : : ; X

n�1;n
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where X

i;i+1

! X

i

and X

i;i+1

! X

i+1

are blowings-up with nonsingular center and the

composite rational map X

0

� ! X

n

= X

1

is �.

Two proofs are known, one by Jaros law W lodarczyk and one by Abramovich-Karu-

Matsuki-W lodarczyk.

The proofs have the ingredients:

(a) toric factorization (W lodarczyk, Morelli)

(b) birational cobordism: a C

�

� variety B with certain open sets B

+

; B

�

such that

B

�

=C

�

' X

0

and B

+

=C

�

' X

1

(c) decomposition of birational cobordisms into elementary pieces (closely related to

variation of GIT quotient or symplectic reduction).

W lodarczyk's proof relies also on a new theory of strati�ed toroidal embeddings and the

tori�c ideal of Abramovich- de Jong.

Geometric Syzygies of canonical Curves

Hans-Christian v. Bothmer

For any canonical curve C � P

g�1

and any linear System jDj of Cli�ordindex k with

dim jDj � 1 and dim jK � Dj � 1 Green and Lazarsfeld construct certain \geometric"

Quadrics/Syzygies in the (g � k)

th

step of the resolution of the canonical curve C.

In this context Green's Conjecture reads:

no Green-Lazarsfeld

Syzygies in step k

() no k

th

Syzygies at all
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An obvious generalisation ist

span

�

Green-Lazarsfeld

Syzygies in step k

�

= All k

th

Syzygies

This is known for the 1

st

step (i.e Quadrics) of all curves by Green and shown for the 2

nd

step (i.e 1

st

Syzygies) of the general curve in this talk.

Deformation and Semiregularity

Ragnar-Olaf Buchweitz (with H.Flenner)

We �rst discussed the general problem how to bound from below the dimension of the

base space of a semiuniversial deformation of a deformation problem such as embedded

deformations of subspaces or deformations of coherent sheaves. We presented various

bounds

1. in terms of an obstruction theory, if such exists

2. in terms of curvilinear deformations

3. through the dimension of the kernel of a natural transformation from an obstruction

theory to a left exact functor.

Our treatment streamlines and generalizes varous earlier results in this area by Ran, Kawa-

mata, Fantechi-Manetti and others. As a major application of the general theory we con-

struct a general semiregularity map

(�

n

)

n2N

: Ext

2

X

(F ;F) !

Y

n�0

H

n+2

(X;�

n

L

X

)

where X is a complex space and F a coherent O

X

-module, �

n

L

X

the indicated exterior

power of the cotangent complex. The component �

0

is the trace Ext

2

X

(F ;F) ! H

2

(X;O

X

)

and the higher components are obtained from the Atiyah-Chern character exp(�at(F)),

where at(F) 2 Ext

1

X

(F ;F
L

X

) is the Atiyah class of F . The resulting application to the

semiuniversal deformation of F generalizes results by Artamkin-Mukai and in case F = O

Z

for a closed subspace Z � X, results of Severi, Kodaira-Spencer, Bloch, Ran, Kawamata.

Focal Loci of Algebraic Varieties

Fabrizio Catanese (with Cecilia Trifogli)

The talk was devoted to illustrate some example of interplay between extrinsic di�erential

and algebraic geometry, in particular
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1. Focal Loci of Algebraic Varieties

2. Theory of Dual Varieties and Cayley Forms.

Given X

0

� C

m

, an Euclidean space with a non degenerate quadric form Q

1

, (and as-

sociated scalar product < ; >) one de�nes the Euclidean normal bundle, if X

0

is smooth,

as

f(x; y)jx 2 X

0

; (y � x) is a normal vector to X at xg

One de�nes the Euclidean normal bundle of X � P

M

, NX as the closure of the above

locus, where X

0

= (X � P

m�1

1

)

smooth

. Since NX � X � P

m

the second projection

� : NX ! P

m

is a morphism between varieties of the same dimension, and one de�nes '

X

as its rami�-

cation locus, �nally

�

X

= Focal Locus of X := �('

X

):

This notion extends the classical notion of evolute of plane curves, for which an algebraic

theory was given by Cayley, and one century later by Fantechi. In general �

X

is expected

to be a hypersurface. We classify the degenerate cases where

1. � is not surjective

2. some component of �

X

is not a hypersurface.

The theorems are too long to reproduce, as well as the formula for deg(�

X

) when �

X

is a

hypersurface. However we have the simple

Theorem. Let X be orthogonally general ( X smooth, X transversal to P

m�1

1

and Q

1

�

P

m�1

1

). Then dim �

X

< m� 1 () X is a linear space of dim > 0.

We gave the proof and remarked that if X is smooth, then for a general g 2 PGL(m+ 1),

gX is orthogonally general, and exposed many related results.

Kummer surfaces, old and new

Igor Dolgachev

Using geometry of Kummer surfaces we construct a rational self-map of degree 16 of the

moduli space M

2

of curves of genus 2. This map assigns to a curve of genus 2 another curve

of genus 2 together with one of a pair of points (p; p

0

) such that jp+p

0

j = K, j3K�5pj 6= ;,

p 6= p

0

. The number of such pairs is 16.

The construction uses two di�erent interpretations of the moduli space of principally polar-

ized abelian surfaces as the moduli space of lattice polarized K3-surfaces. The �rst moduli

space corresponds to Kummer surfaces, the second one to K3-surfaces with Picard lattices
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isomorphic to U ? E

8

? E

7

. We explained a construction of the latter surfaces as double

covers of a quadric rami�ed along a genus 2 curve of degree 6 with peculiar con�guration

of two cusps.

Complexity of ideal sheaves

Lawrence Ein

Let X be a smooth complex variety and I � O

X

be a coherent sheaf of ideal.

Theorem (Ein, Lazarsfeld, Smith). Let e = max

p2AssO

X=I

fdim(O

X=I

)

p

g. Then I

(ke)

�

I

k

for each positive integer k.

De�nition. Let X be an irreducible projective variety and H be an ample Cartier divisor

on X. Suppose that I � O

X

be a coherent sheaf of ideals. Let f : Bl

I

X ! X be the blowup

and we denote by E the exceptional divisor. The s-invariant of I with respect to I is de�ned

as

s

H

(I) = infftj�

�

tH � E is nefg:

Theorem (Cutkosky, Ein, Lazarsfeld). Let X be an irreducible projective variety over

an in�nite �eld k and H a very ample divisor on X. Then

lim

p!1

Reg

H

(I

p

)

p

= lim

p!1

d

H

(I

p

)

p

= s

H

(p):

where Reg

H

(I

p

) = minfkjH

i

(I

p


O

X

((k�i)H)) = 0 for all i > 0g and d

H

(I

p

) = minfkjI

p




O

X

((kH)) is generated by global sectionsg:

Absolute and relative Gromov-Witten invariants

Andreas Gathmann

For a smooth hypersurface Y in a smooth projective variety X, the relative Gromov-

Witten invariants are the (possibly virtual) numbers of curves in X that intersect Y with

given multiplicities and satisfy some additional incidence conditions with subvarieties. For

the case of a very ample hypersurface and curves of genus zero, we sketch an algebro-

geometric construction of these invariants and show how they are related to the (absolute)

Gromov-Witten invariants of X and Y . These relations are always su�cient to compute

the Gromov-Witten invariants of the hypersurface from those of the ambient space in a

straightforward way. This establishes a new and entirely geometric proof of the "mirror

principle" in the case of hypersurfaces with non-positive canonical bundle, and indicates

how one can try to generalize this mirror transformation to arbitrary hypersurfaces (and,

in the best of all worlds, to higher genus of the curves).
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Hurwitz Numbers and Hodge integrals

Tom Graber (with Ravi Vakil)

We prove a formula discovered by Eckedahl, Lando, Shapiro and Vainshtein expressing

Hurwitz numbers in terms of integrals over the moduli space of pointed curves. Speci�cally,

if we set

H

�

g

= #

�

branched covers of P

1

with rami�cation of type � at 1

and simple branching at r other speci�ed points

	

then

H

�

g

=

r!

#Aut(�)

�

Y

�

�

i

i

�

i

!

Z

�

M

g;n

c(E�)

Q

(1� �

i

 

i

)

Here E denotes the Hodge bundle and  

i

is the �rst Chern class of the i

th

cotangent line

bundle. Our proof is based on virtual localization on the moduli space of stable maps.

Regularity of Curves in P

3

Shigeru Mukai

A curve C in P

3

is called m� regular if H

1

(P

3

; I

C

(m� 1)) = H

2

(P

3

; I

C

(m� 2)) = 0. This

implies among all that the homogeneous ideal of C is generated by its component of degree

� m. Hence C � P

3

is an intersection of surfaces of degree m and has no (m+ 1)� secant

lines. In extremal case the converse holds:

Theorem (Castelnuovo,1893). C is (d � 1)� regular if C is not planar where d =

deg[C � P

3

].

Theorem (Gruson, Lazarsfeld, Peskine 1983). C is (d�2)� regular if C has no (d�

1)� secant lines.

In general, non-existence of (m+1)�secant lines is not su�cient but we have the following

Theorem. Assume n �

d

2

� 1 and

(A) C � P

3

has no (d� n+ 1)� secant lines,

(B) C has no g

2

n�1

, i.e. linear not of degree n� 1, and

(C) the number of g

2

n

is �nite and there are only 1� dimensional families of g

2

n+1

.

Then C � P

3

is n� regular.
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Theorems of Castelnuovo and GLP are special cases of n = 1; 2, respectively.

Jet spaces of l.c.i. rational singularities

Mircea Mustata

The m

th

jet space of a variety X parametrises the k[t]=(t

m+1

)-valued points of X. We give

a proof of the following:

Theorem. If X is a l.c.i. variety =C , then X

m

is irreducible for every m � 1 i� X has

rational singularities.

The idea of the proof is to embed X in a smooth variety Y , take an embedded resolution

of singularities

~

Y ! Y and compare suitable motivic integrals on Y and

~

Y .

We discuss applications of Eisenbud and Frenkel to the case when X is a nilpotent cone of

a simple Lie algebra.

Trigonal Curves and Spin(8) Bundles

William Oxbury

The Problem: to give a moduli interpretation of a unique Heisenberg invariant quartic

Q � j2�j = P

15

with the property that Sing(Q) contains embedded SU

C

(2), the moduli

space of rank 2 vektor bundes with trivial determinant, where C is a curve of genus 4

(Oxbury-Pauly 1999). Q is an analogue of the Kummer (g = 2) and Coble (g = 3)

quartics.

The Canidate: moduli space N

C

. C a trigonal curve (i.e. any curve of genus 4) studied

in joint work with S. Ramanan. N

C

is a moduli variety for \Chevalley bundles", that is

Spin(8) bundles on the Galois-Closure C! ! P

1

equivariant for the S

3

acts on C! and by

triviality.

Theorem. There exists an inclusion SU

C

(2) ,! N

C

as semistable boundary, and away

from SU

C

(2) N

C

is smooth of dimension 7g � 14.

Moreover there exists a natural J

C

[2]-action on N

C

, and for any nonzero � 2 J

C

[2] the �xed

point set is two copies of SU

R

�

, where R

�

is the Recillon curve. There exists a commutative

diagramm

prym(c; j)

�

Recillon

//

direct image

��

Jac(R

�

)

sing. Locus

//
SU

R

�

(2)

�xed point

��

SU

C

(2)

semistable boundary

//
N

C
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An Observation: When one projects Q � P

15

from O � O 2 K

nm

, one obtains cubics

jI

2

C

(3)j where C

jK

2

j

,! P

3g�4

. They can be identi�ed as coming by pull-back from the secant

varieties of the Severi variety P

2

(A ), A = R; C ; H ;O over k = C . This suggests:

bicanonical curve = linear section of h h h h

h

� P

26

Toric Hilbert Schemes

Irena Peeva

This is a joint work with M. Stillman. We introduce toric Hilbert schemes. Such a scheme

H

T

parametrizes all ideals with the same multigraded Hilbert function as a given toric ideal

T . We show that T lies on exactly one component of H

T

and [T ] is a smooth point. If T

has codimension 2 we prove that H

T

has one component, is 2� dimensional and smooth;

it follows that in this case H

T

is the toric variety of the Groebner fan of T .

Equations of modular curves

Sorin Popescu (with L.Borisov and P.Gunuells)

Let p � 5 be a prime number, and let X

i

(p) = X(�

1

(p)) be the modular curve for the

congruence subgroup �

1

(p) � SL(2;Z). X

i

(p) parametrises \elliptic" curves with the

choice of a non-trivial p-torsion point.

We show that the space of weight one Eisenstein series de�nes an embedding of X

1

(p) into

P

p�3

2

and show the image is scheme theoretically cut out by explicit quadrics

(p� 4)(s

a

s

b

+ s

b

s

c

+ s

c

s

a

) = 2(s

2

a

+ s

2

b

+ s

2

c

)�

4

p� 2

X

k 6=0

s

2

k

+

X

k 6=0;a

s

k

s

a�k

+

X

k 6=0;b

s

k

s

b�k

+

X

k 6=0;c

s

k

s

c�k

for all a; b; c 2 (Z=pZ)

�

with a + b + c = 0 mod p and where fs

a

g

a2(Z=pZ)

�

with s

a

= �s

a

denote the coordinates in P

p�3

2

.

Varieties of Sums of Powers of Cubics

Kristian Ranestad
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We consider varieties of presentations of cubic forms as a sum of k cubes of linear forms

for suitable k. More precisely we make a compacti�cation in the Hilbertscheme:

V SP (f; k) = f(l

1

; : : : ; l

k

) 2 Hilb

k

�

P

n

gjf =

k

X

i=1

l

3

i

g

where f 2 C [x

0

; : : : ; x

n

]

d

.

Classically, it was known what is the minimal k for which V SP is not empty when n is

small, also it was known what V SP is in those cases (n � 3). The classical methods of

apolarity have been taken up recently by Mukai and others.

In the talk I explained a strategy that has given results for general cubic 3� folds and 4�

folds, and some special results for cubic 5� folds related to canonical curves of genus 9.

This is common work with Schreyer and with Iliev, and says that V SP (f; 8) for a cubic

3� fold F = V (f) is a 5� dimensional Fano of index 1, while V SP (f; 10) for a cubic 4�

fold is isomorphic to the variety of lines in another cubic 4� fold. For cubic 5� folds we

show that those coming from canonical curves do not behave generically with respect to

the V SP question.

The Rationality of some Non-abelian Torsors

Nick Shepherd-Barron

Torsors under algebraic tori over geometrically rational surfaces S (over �elds k 6= k)

have led to the construction by Beauville et al. of irrational such surfaces that are stably

rational, and then to the construction of stably rational irrational 3-folds over C . The usual

construction of these torsors is "from the bottom up", in terms of the Galois structure of

Pic(S
k). This talk described a "top down" construction of these and other (non-abelian)

torsors, starting from a representation of the structure group G. This simpli�es some of

the known constructions, but still only leads to examples. It also raises the question of

what the examples exemplify; in the abelian case, they are (essentially) universal in the

sense of Colliot-Th�eline and Sensue, but in the non-abelian case things are less clear.

Rational Curves on Hypersurfaces

Jason Starr

For a general hypersurface X � P

n

C

of degree d �

n+1

2

and n � 6, one has the following

Theorem (Harris, Roth, Starr). For every e � 1 the space R

e

(X) parametrizing

smooth rational curves of degree e lying on X is an integral, local complete intersection

scheme of dimension (n + 1� d)e+ n� 4

Additionally, for every smooth cubic hypersurface X � P

4

C

, one has the following
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Theorem (Harris, Roth, Starr). For every e � 1 the space R

e

(X) is an integral, LCI

scheme of dimension 2e

Both of these results are proved using a "deformation and specialization" argument. The

chief tools used in the proof are

1. the Kontsevich moduli space of rational curves ,

2. Mori's bend-and-break-lemma, and

3. a detailed study of the space of lines on X.

One uses the Kontsevich space to study the deformation theory of curves on X. One uses

Mori's bend-and-break-lemma to prove that the general member of an irreducible compo-

nent of M

0;0

(X; e) specializes to a reducible curve. Repeatedly applying this argument one

reduces to the study of "con�gurations of lines" on X.

Eisenbud-Levine-Theorem and Singular Curves in P

2

(R)

Duco van Straten

The classical Eisenbud-Levine theorem states that the degree deg(F; 0) of a �nite map

germ F : (R

n

; 0) ! (R

n

; 0) is equal to the signature Sign(B

�

), where B

�

: A� A ! R is

the bilinear form �(a � b) and A = R[[x

0

; : : : ; x

n

]]=J , J = (f

0

; : : : ; f

n

), � : A ! R with

�(h) > 0 (h = det(@

i

f

j

)). An isolated hypersurface singularity f 2 R[[x

0

; : : : ; x

n

]] =: P

gives such a situation where f

i

:= @

i

f . For singularities with 1-dimensional singular locus

one can de�ne an Artinian Gorenstein module I=J where I = (J : m

1

) is the saturation

of J with respect to the maximal ideal. If h 62 IJ it seems that the composition

I=J � I=J ! I

2

=IJ ,! P=IJ

�

! R

(�(h) > 0) expresses the self-duality of I=J . In some cases we can show

sign B

�

= �(F > 0)� �(F < 0);

F 2 R[X; Y; Z]

2k

de�ning a singular curve in P

2

(R), e.g.

�

�

�

�

�

�

�

�

+

-

-

-

-

Sign = �3,

�

�

�

�

�

�

�

�

+

-

-

-

Sign = �2,

�




�

	

�

�

�

�

+

--

Sign = �1,

�

�

�

�

�

�

�

�

- -

Sign = �2,

�

�

�

�

�

�

�

�

- -

Sign = �3.

Proofs at the moment use disentanglements.
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Hilbert-Kunz multiplicity, McKay correspondence and good ideals in

2-dimensional Rational Double Points

Kei-ichi Watanabe

In this talk we prove:

Theorem. Let (A;m) be F -rational double point of dimension 2 in char p > 0. Let

f : X ! Spec(A) be the minimal resolution with Z

0

=

P

r

i=1

n

i

E

i

fundamental cycle.

(mO

X

= O

X

(�Z

0

)). Then we have:

1. If I is a good ideal (: () integrally closed and I = O

X

(�Z) invertible Z =

P

r

i=1

a

i

E

i

) then e

HK

(I) = l

A

(A=I) +

P

r

i=1

a

i

n

i

=N , where N is the order of the

\group" attached to this singularity in characteristic 0. (e

HR

is the Hilbert-Kunz

multiplicity of I)

2. If I � A is any integrally closed m-primary ideal of A, then e

HK

(I) � l

A

(A=I) =

e

HK

(I

g

)� l

A

(A=I

g

), where I

g

is the smallest good ideal (good closure) containing I.

Edited by Hans-Christian von Bothmer and Thomas Eckl
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