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The meeting was organized by Gianni del Maso (Trieste), Gero Friesecke (Oxford) and

Fr�ed�eric H�elein (Cachan - ENS). Variational Methods continue to occupy an important

position at the frontier of research in di�erential geometry and partial di�erential equa-

tions. The participants represented a broad spectrum employing and developing variational

techniques in di�erent �elds such as mathematical physics, homogenization theory, opti-

mization and control, nonsmooth analysis and image analysis.

1



Abstracts

DNA molecules as elastic rods with self-contact

Heiko v. d. Mosel, Bonn

We model the mechanical behaviour of DNA molecules (bending, twisting) including

knotting and supercoiling in the framework of the Casserat theory of elastic rods. Within

the context of the calulus of variations, we have developed an existence theory for general

nonlinear stored energy densities. As a special case, we obtain an existence theorem for

ideal knots. To implement topological constraints such as a prescribed knot class, we

restrict our minimization problem to framed curves with a possible lower bound on the

global radius of curvature, a geometry condition that corresponds to a given thickness of

the centerline. This nonsmooth side condition requires the Clarke calculus of generalized

gradients to obtain the necessary Lagrange multipliers. The analysis of the Euler-Lagrange

equations leads to a qualitative description of the contact forces at points of self-contact.

Gradient 
ow for the Willmore functional

Ernst Kuwert, Freiburg

(joint work with Rainer Sch�atzle)

For a closed immersed surface in R

d

, we consider the L

2

gradient 
ow for the total squared

curvature, i.e. the Willmore energy. For this fourth order geometric evolution equation, it

is not known whether singularities occur in �nite time. We show that, if the maximal time

of existence is �nite, then the curvature must concentrate in L

2

by an a priori quantity

�

0

> 0. Furthermore, a suitable rescaling converges to a possibly noncompact Willmore

surface. If the initial surface is su�ciently round in an L

2

sense, then the 
ow exists

globally and converges to a round sphere.

New regularity results for the inverse mean curvature 
ow

Gerhard Huisken, T

�

ubingen

(joint work with Tom Ilmanen, ETH)

Let F : M

n

� [0; T )! R

n+1

be a family of hypersurfaces moving in normal direction �

with speed given by the inverse of the mean curvature H > 0 :

d

dt

F (p; t) = (1=H) � �(p; t)

for p 2M

n

, t 2 [0; T ). This is a parabolic system increasing the area exponentially at each

point, with applications in General Relativity.

We prove that a smooth solution can be extended as long as the mean curvature is

bounded away from zero, improving a result of Smozcyk for n = 2.

In addition, we prove that in the class of strictly starshaped surfaced in R

n+1

the mean

curvature satis�es a lower bound on H of the form H � c

0

t

1=2

exp (�c

1

t), which is inde-

pendent of the initial data. The estimate applies to show that weak (level-set) solutions of

the 
ow are smooth from the �rst time onward where a level set is starshaped . All results

can be extended to su�ciently starshaped hypersurfaces of asymptotically 
at Riemannian
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manifolds, ensuring that solutions of the 
ow constructed in earlier work on the Penrose

inequality are smooth outside some compact set.

Non-Lipschitz minimizers for stongly convex functionals

Xiaodong Yan, University of Minnesota

(joint work with Vladimir

�

Sver�ak)

We consider variational integrals of the form I(u) =

R




f(ru) where 
 is a smooth

bounded domain in R

n

; u = 
 ! R

m

. f is a smooth strongly convex function de�ned on

M

m�n

(i.e. f

p

i

�

p

j

�

(x)�

i

�

�

j

�

� �j�j

2

8x; � 2M

m�n

.)

It's well known for n = Z;m � 1 or n � 2; m = 1, that every minimizer of I(u) is

smooth provided f is smooth. However, the best general regularity results known for the

vector case (n � 3; m > 1) is W

2;2+�

1c

. In this paper, we construct smooth strongly convex

functionals which have minimizers that are only H�olden continuous for n � 3; m � 5 and

n = 4; m = 3. In fact, one could even construct minimizers that are unbounded when

n � 5m � 14.

Quantization results for harmonic maps

F.H. Lin and T. Rivi

�

ere, Cachan

Following a sequence of stationary harmonic maps u

m

between two Riemannian mani-

folds (M

m

; g) and (N

n

; h) (@N = ; and N noncompact), provided that this sequence has

uniformly bounded energy, we may always extract a subsequence u

n

0

so that the defect

energy converges as a Radon measure. This defect energy measure is in fact carried by

a m � 2 recti�able subset of M

m

and we prove that the amount of energy concentrating

at a point of this recti�able subset is quantized and given by the energy of a harmonic

2-sphere of S

2

. This result extends to non conformal dimension the famous result of Sacks

Uhlenbeck Jost Parker Ding Tian in 2D.

Singularities of �rst kind in the harmonic map heat 
ow

Andreas Gustel, D

�

usseldorf

Solutions to the harmonic map heat 
ow equation �u + A

N

(u)(D

u

; D

n

) = �

r

u(u :

[a; b) � R

n

! N with second fundamental from A

N

) in general can blow up in �nite

time, implying that there is no long-time existence of smooth solutions. At blow-up

time, lim

t%T

swp

x

jru(t; x)j

2

= 1, and a singularity at (T; x

0

) is called "of �rst kind" if

jru(t; x)j

2

�

c

T�t

as t % T . We construct examples of �rst kind singularities in maps

(�1; 0) � R

m

! S

n

(which have an isolated singularity at T = 0) which are explicit up

to solving an o.d.e. This works for any m � 3, provided n is chosen large enough. The

example generalizes an ansatz by Ilmanen/Fan, which worked for m = 3 > 6.

By a similar construction, we also get examples of "�rst kind" singularities for the

Yang-Mills Heat Flow in dimensions 5 � M � 9. Here it has been unknown whether such

singularities exist.
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Complete surfaces of constant mean curvature in Euclidean 3-space

Dan Pollack, Seattle

We focus on surfaces withH = 1 which are complete and embedded in Euclidean 3-space.

The fundamental building blocks for such surfaces are the classical Delannay unduloids of

revolution. The asymptotics theorem of Korevaar, Kusner and Solomon show that these

are the exact models at in�nity for such "CMC" surfaces. We survey recent results on the

existence of such surfaces and the moduli space, M

g;K

, of all such CMC sufaces with �xed

topology. The gluing techniques used to produce such surfaces fall into two categories:

those which try to join surfaces with similar geometries and those which join together sur-

faces with di�ering geometries. The former include Kapaleas' original construction as well

as constructions of Mazzeo-Pacard and Ratzkin. The latter includes recent constructions

of the author with Mazzeo and Pacard. Outlines of these constructions, together with

applications, were presented.

Mathematiccal Models for nematic elastomers

Georg Dolzmann, Leipzig

We consider the free energy density E(F; n) = r

1=3

(jF j

2

�

r�1

r

jF

T

nj

2

j � 3 for detF =

1; E(F; 1) = +1 otherwise, describing nematic elastomers. Here r > 1; F 2 M

3�3

is the

deformation gradient, n 2 S

2

the director �eld. Minimization over n leads to

~

E(F ) =

r

1=3

(

1

r

Z

2

1

+ Z

2

2

+ Z

2

3

) � 3 for detF = 1 where Z

1

� Z

2

� Z

3

are the regular values

of F (i,e. the eigenvalues of (F

T

F )

1=2

.) It follows that

~

E(F ) = 0 if and only if F 2

S

nGJ

2

SOj3)(r

1=3

n
n+

1

r

1=6

(I�n
n)) =: K. An explicit characterization of the quasiconvex

hull of K (the set of all a�ne boundary conditions for which the in�num of the energy is

zero) and the relaxation

~

E

ge

of the density

~

E are given.

Micromagnetics: Exact Solutions and Relaxation

Irene Fonseca, Carnegie Mellon University

Minima of the energy for large magnetic bodies with vanishing induced magnetic �elds,

where the energy is given by

E(m) :=

Z




('(m)� < h

e

; m >)dx+

1

2

Z

R

3

jh

m

j

2

dx;

are completely characterized in terms of the anisotropic energy density ' and the applied

external magnetic �eld h

e

2 R

3

. More generally, one considers an energy functional for a

large ferromagnetic body of the form

F (m) :=

Z

R

N

f(x; �




(x)mx; u(x);ru(x))dx

where (�




m;ru) satis�es Maxwell's equations, i.e. u 2 H

1

(R

N

) is the unique solution

of 4u + div(�




m) = 0 in R

N

. It is shown that if f is a Carath�eodory function satisfying
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very mild growth conditions then the relation at F with respect to L

1

weak* convergence

in L

1

(
;B(0; 1)) is given by

F (m) =

Z




Q

M

f(x;m(x); u(x);ru(x))dx+

Z

R

N

n


f(x; 0; u(x);ru(x))dx

where Q

M

f is the quasiconvex envelope of f relative to the underlying partial di�erential

equations. This class of integrands includes those of the type

f(x;m; u; h) = '(x;m; u) + 	(x; u; h)

with 	(x; u; �) non convex. The �rst part of this work was undertaken in collaboration

with Bernard Dacorogna and the relaxation results were obtained jointly with Giovanni

Leoni.

Remarks on Loewy spaces

Luc Tartar, Carnegie Mellon University, Pittsburgh

I described some classical properties of Lorentz spaces, which are interim spaces between

L

1

(
) and L

1

(
) and seem to be quite useful for some �ne questions considering solu-

tions of partial di�erential equations. Some of these properties follow from more precise

embedding theorem for Sobolev spaces, following an idea of Jaak Peetre and general the-

orems due to Jacques Louis Lions and Jaak Peetre. Some other properties follow from an

improvement of results of Guido Stampacchia and some examples involve compensation

properties for Jacobians, where advantages and defects of using Hardy spaces (following

ideas of Ronald Coifmann, Pierre Louis Lions, Yves Meyer and Stephen Semmes) for Ja-

cobians arise.

Some questions involving Ginzburg Landau equations seem a good �eld for applying

some of the techniques mentioned.

Quasiconvex hulls and some nonlinear pdes

B. Dacorogna, EPFL., Lausanne

(joint work with P. Marcellini and C. Tanteri)

I have discussed several examples of �rst order pdes satisfying Dirichlet boundary condi-

tion. One of them considers singular values (recall that for an n� n matrix �; 0 � �

1

(�) �

: : : � �

n

(�) denote the singular values, i.e. the eigenvalues of

p

�

T

� ). The problem is

�

�

i

(Du(�)) = a

i

(x; u(x)) a:e:x 2 


u(x) = '(x) x 2 @


This problem has a W

1;1

(
;R

n

) solution if ' 2 C

1

(

�


;R

n

) and

n

Y

i=�

�

i

(D'(x)) <

n

Y

i=�

a

i

(x; '(�) 8x 2 
:
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On crystalline motion by mean curvature in 3D

G. Bellettini, Univ. of Roma "Tor Vergata"

(joint work with M. Novaga and M. Paolini)

I have discussed how to de�ne a notion of "smooth" hypersurface in (R

n

; '), where '

is a novum such that f' � 1g is a convex polytope. Then I have shown how to de�ne a

notion of mean curvature of such smooth surfaces. This de�nition is consistent with the

current de�nition of curvature when the dimension n = 2. These are preliminary steps

to de�ne motion by crystalline curvature, which is a largely open problem in 3D. Finally

we discuss the problem of facet-breaking under motion by crystalline curvature, and we

give a necessary and su�cient condition for a facet not to break during the subsequent

evolution.

The Einstein equation and geodesic motion

D.M.A. Stuart, University of Cambridge

The gravitational �eld in general relativity is described by a pseudo-Riemannian metric.

A standing physical assumption is that a "rest particle" (i.e. a localised distribution of

matter, small in size and energy) introduced onto the space-time will move along a geo-

desic (to highest order). There are mnay possible corresponding mathematical problems

corresponding to di�erent energy-momentum tensors (which appear in the Einstein equa-

tion). I give an analytically rigorous derivation of the geodesic motion in the case when the

role of the particle is played by a complex-valued solitary wave solution to a semi-linear

wave equation. The relevant class of solitary waves are called non-topological solutions.

The construction of non-topological solutions on pseudo-Riemannian manifolds in which

the energy is concentrated on a geodesic is given. This is achieved as an outgrowth of

a new modulational approach to stability for solitary wave solutions on 
at Minkowski

space. The analysis is then extended to incorporate coupling to the einstein equation and

a solution is constructed for the initial value problem of the full system.

The abstract setting for the modulational stability analysis is the following: in the stable

case there is a symplectic submanifold foliated by integral curves of the pde. It is shown

that for small perturbations of the Cauchy data the solutions remain uniformly close to

the integral curve of a deformed vector �eld. A crucial point is that the Hession of the

augmented energy is strictly positive on the sympletic normal subspace in the stable case.

Asymptotic Analysis of Emden-Fowler equations in 2-dim.

Feng Zhou, East China Normal University, Shanghai/ ENS de Cachan

(joint work with Dong Ye)

We study the asymptotic behaviour of two-dimensional Emden-Fowler equations in di-

vergence form with exponential nonlinearity. More precisely, let 
 be a bounded regular

domain of R

2

and a(x) be a smooth positive function over 
. Let fU

x

g be a sequence of so-

lutions of �div (aru) = �ae

u

in 
 such that

R

�e

u

�

= O

(1)

and jju

�

jj

L

1

�! +1 as �! 0,

then we prove that (for a subsequence, if necessary) either u

x

�! 0 uniformly or any com-

pact subset of 
; in particular, if � = fx 2 
jra(x) = 0g = ;, this case must occur, or

there exists a �nite set � = fx; : : : ; x

k

g � 
 (the blow up set) such that u

x

�! u

�

weakly
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in W

1;p

(
)8p 2 (1; 2), where u

�

satis�es the equation �div (aru

�

) = 8��m

i

a(x

i

)�

x

i

with

Dirichlet boundary conditions m

i

2 N and S � � 6= ;: This is the "pinning" phenome-

non. We discus also the inverse problem, i.e. the construction of the singular limits in the

symmetric case.

Limiting energy for a family of functionals related to micromagnetics

Sylvia Serfaty, ENS Cachan

In a joint work with Tristan Rivi�ere, we studied the asymptotic limit as � ! 0 of the

family of functionals E

�

(u) =

R

2

�jruj

2

+

1

�

R

R

2

jHj

2

, where 
 is a domain in R

2

, (simply

connected, smooth), and u is constrained to be S

1

valued, while H is derived from

�

div (�




u+H) = 0 inR

2

curl H = 0

:

The vector-�eld u represents the local magnetization in the sample, while H is the in-

duced demagnetizing �eld. Solutions of the minimizing problem or families of bounded

energy will tend to exhibit jumps along line singularities as � ! 0. First, we prove a

compactness result for sequences u

�

satisfying E

�

(u

�

) � C: we prove that they converge

strongly in \L

q

to some limiting u (up to extraction), hence the constraint juj = 1 is

preserved in the limit.

Then, after studying the corresponding one-dimensional pro�les, we show that E

�

has a

kind of �-limit that we exhibit: this �-limit is the mass of a measure concentrated along the

singular set of admissible limiting con�gurations (which are solution of

�

div(u�




) = 0

juj = 1

�

.

This �-limit re
ects some ??? of the jump set of the con�guration. We prove that its

minimal value is the perimeter of the domain and exhibit a minimizer.

On nonconvex symmetric functions

Johannes Zimmer, TU M

�

unchen

We start with a problem arising in nonlinear elasticity (in situations with phase tran-

sition): how should one construct functions depending on the deformation gradient and

the temperature which have to satisfy symmetry conditions like crystalline symmetry and

frame invariance? The presented method gives a formal description of all C

1

-functions

being invariant under a compact Lie group. This method uses techniques which are well

known in group and representation theory, like Hilbert's theorem on the R-algebra of in-

variant polynomials. The results are discussed in the context of the calculus of variations,

a number of open questions concerning di�erent notions of convexities are addressed.

Lipschitz Functions and a mysterious vector-�eld

David Preiss, London

Given a null set in the plane, there is a Lipschitz deformation of the plane which is

di�erentiable at no point of the given set. This is a surprising statement since (1) is

would be false if we replaced deformations by real-valued functions and (2) it implies the

existence of the "mysterious vector-�eld": For every null set N one has a (Borel) vector

�eld e(x)

(x2N)

which is determined uniquely up to a purely unrecti�able set by the property
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that every Lipschitz inversion is di�erentiable in the direction e(x) on all x 2 N except a

purely unrecti�able set. (A set is purely unrecti�able if it is of 1-dimensional measure zero

on every recti�able curve.) It follows that, if � is a singular measure in the plane, which

can be written as integral of 1-recti�able measures on curves, when the direction of these

curves is determined uniquely � - almost everywhere: this, as far as I know, was the �rst

proved instance of this phenomenon and is due to G. Alberti.

Singularities in Sobolev spaces between manifolds

M. Reza Pakzad, ENS, Cachan

(joint work with T. Rivi�ere)

For a Sobolev spaceW

1;p

(M;N),M;N smooth compact manifolds, we search for de�ning

a suitable obstruction "object",

varrho

u

, for any map u 2 W

1;p

=(M;N), which characterizes the approximability of u by

smooth maps in the space. This question is of great importance in the study of variational

problems (p-harmonic maps and relaxed energies) and also is related to the sequentially

weak density of smooth maps in these spaces. The last result would be that for any map

u 2 W

1;p

(M;N), with p an integer greater than 2 and N a p-connected smooth manifold

W there exists u

n

2 c

1

0

(M;N) such that u

n

! u is the weak topology. Also for some

speci�c values of p we can describe its topological singularity (obstruction) as a �

p

(N) 
at

chain in the domain (based on the theory of Federer and Fleming on G-chains.

On the validity of the Euler Lagrange equation

Arrigo Celina, Milano

We consider minimization problems of the kind

min

Z




(f(ru(x)) + g (u(x))dx

uj

@


= uj

@


and jru(x); j � 1:

Two cases are presented: The case where f = indicator function of one unit ball "any"

g (some monotonicity required ) and the case where f =

1

2

jru(x)j

2

, g = 0. We show the

validity of the Euler Lagrange equation in the form

9 P (x) 2 @f(jru(x)	j)

such that div P (x);= g

0

u

(u(x)):

A variational formulation of phase transformation problems with rate

independent dissipation

Florian Theil, University of Oxford, U.K.

A model for the evolution of an elastically deformable body, which undergoes martensitic

phase transformations is presented. The movement of the phase boundaries is hindered

by dry friction. The model consists in an energy functional I(t; �) which varies with time,

a dissipation functional D(�; �) and a state space P . Due to the lack of compactness

the existence of solutions cannot be expected, minimizing sequences of the variational

problems associated to the time discretized systems generate microstructures. To overcome
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the di�culty a notion of relaxation is introduced. For important examples it is possible

to show that they satisfy the relaxation assumptions, i.e. they admit solutions and the

relaxed solutions can be approximated within the original system. The proof uses the idea

of H-measures, introduced by L. Tartar in 1990.

Variational elliptic systems with nowhere smooth solutions

Stefan M

�

uller, MPI Leipzig

Consider a variational integral

I(u) =

Z




f(ru) ; u : 
 � R

n

! R

m

:

We say that u is a minimizer of I if I(u+' � I(u) 8' 2 C

1

0

. For such minimizers there

is a well-developed regularity theory, as long as f satis�es suitable ellipticity or convexity

conditions.

Theorem (Evans, 1986) Suppose that

(�)

�

f 2 C

1

0

; jD

2

f j � G; f is uniformly quasiconvex, i.e.

R

u

f(A+r

 

� f(A) ��

R

jr

 

j

2

; c > 0; 8

 

2 C

1

0

; 8A 2M

m�n

and for all (smooth) open sets U . Then for every minimizer u of I there

exists an open set 


0

� 
 of full measure such that u 2 C

1

(


0

).

In this talk we show that the situation is dramatically di�erent if one considers general

solutions of the Euler-Lagrange equation instead of minimizers.

Theorem (M.-

�

Sver�ak) Let n = m = 2. Then there exist f satisfying (�)

and a Lipschitz u, which solves

�divrf(ru) = 0

such that u is nowhere C

1

.

One can also construct Lipschitz solutions with compact support. As a consequence of

these results one also obtains various counterexamples for linear elliptic systems

�div A(x)rv = 0

with L

1

coe�cients which satisfy the Legendre-Hadamard condition

A

��

ij

a

�

a

�

b

i

b

j

�� jaj

2

jbj

2

:

Hamiltonian formalism with several variables and �eld theory

F. H

�

elein (CMLA, ENS, Cachan)

During the thirties, several generalizations of the classical Hamiltonian formalism were

proposed by H. Weyl, T. De Donda, Carath�eodary, etc., for varational problems with sev-

eral variables. At this time (1935), H. Weyl and M. Born pointed out the possibility of

using these formalisms for quantizing �elds. But these theories were not developed enough

and another possibility was o�ered by physicists, namely the use of in�nite dimensional

symplectic manifolds (by slicing space-time into constant time hypersurfaces). The success
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of this second approach was so big that the approach using a "covariant Hamiltonian for-

malism" was forgotten for a long time (Beside work by Lepage, Dedecker...). After 1970,

theoretical physicists were more interested in this approach and the formalism developed

again. in the 90's Konratschikov (assuming contributions of many other people) proposed

an almost satisfying picture with a good de�nition of Poisson bracket.

In a joint work with J. Konreiher, we generalized, and improved these constructions in

order to build a formalism with a satisfactory de�nition of Poisson bracket (among other

things).

Paper is available on my internet page (you can �nd it by going to www.cmla.ens-

cachan.fr)

Convergence for functionals of Ginzburg-Landau type

Giovanni Alberti, Pisa

The results presented in this talk have been obtained in collaboration with S. Baldo

(Potenza) and G. Orlandi (Verona). We have studied the variational convergence in the

limit �! 0 of functionals of type

F

�

(u) =

1

j log �j

Z




jrj

2

+

?

�

2

W (u)

where u = (u

1

; u

2

) : 
 � R

n

! R

2

;W : R

2

! [0;+1] and W (u) = 0 , juj = 1. More

precisely we have shown the following:

(i) [compactness] if F

�

(u

�

� C < +1, then, up to subseq., the Jacobians

Ju

�

:= du

�

1

;^du

�

2

converge to an integral current T of codimension 2 without

boundary in 
 (in the 
at sense).

(ii) In this case, we also have lim

�!0

F

�

(u

�

) � CjjT jj

(iii) and the convergence is sharp for suitably chosen seq. (u

�

). This is essentially

a �-convergence result, only the limit of the energies is now a functional

of T , the limit of Jacobians, rather than a functional of u, due to a lack

of compactness for the sequence (u

�

). From this result we deduce that in

case of local minimizers u

�

of F

epsilon

, then the limit jT j correspond to the

concentration of energies, and T is a local minimizer of the area (or mass).

Similar results are proved for more general functionals with the same method.

We recall that the �rst complete description of the asymptotic behaviour of

minimizers in dimension 2 was carried out by F. Bethuel, H. Brezis, F. H�elein,

and generalized to higher dimension by T. Rivi�ere, F.H. Liu (and others). A

variational approach quite similar to ours has been proposed independently

by R. Jerrard and H.M. Soner.
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A convexi�cation approach for calibrations

Guy Bochitte, University of Toulon

In the talk, we present a general convexi�cation argument which enables to write pos-

sibly non convex functional F : u 2 L

1

(
) ! [0;1] in the form F (u) = G � '(u)

with G convex and ' : L

1

(
) ! y continuous embedding. Here y = L

1

(
 � R) and

' : u! 1

u

(x; t) =

�

1 ifu(x) > t

0 otherwise:

Writing the Euler equation for G at '(u) provides necessary and su�cient conditions

for minimality of u which can be stated as existence of calibrations. This work is in col-

laboration with A. Chambolle (Paris C�eremade).

In a second part of the talk, we present a calibration method for free-disconuity func-

tionals (in particular Mumford Shah functional) which leads to su�cient conditions for

minimality. Examples are given namely the triple junction con�guration conjecture by

De Giorgi. This part has been in collaboration with G. Alberti (Pisa) and G. Dal Maso

(Trieste).

Curvature 
ows on surfaces

Michael Struwe, ETH Z

�

urich

Inspired by a recent new approach of Xiuxiong Chen to the Calabi 
ow of metrics

g = g(t) = e

Zu(t)

g

0

on a closed, compact surface (M; g

0

), we give an elementary proof for

global existence and exponential convergence of solutions to the Hamilton-Ricci 
ow

@g

@t

= (r � R)g;

where R = 2K; r = 2K

0

(with no loss of generality) are the scalar curvature and its mean.

Our proof avoids the use of the maximum principle and instead is based only on estimates

for the Liouville and Calabi energies

F (u) =

1

2

Z

M

(jruj

2

+ 2K

0

u)d�

0

; Ca(g) =

Z

M

jK �K

0

j

2

d�

g

and concentration - compactness results for conformal metrics with bounded Calabi

energy and volume.

Deformations with �nitely many gradients

Bernd Kirchheim, MPG Leipzig

How does the range of the gradient map of a Liptschitz mapping (de�ned on a domain)

look like? Here we focus on �nite sets as candidates for the range. In particular, one wants

to understand if such sets are necessarily trivial, e.e. contain a rank one connection.

We construct the �rst counterexamples and give a precise estimate of their minimal car-

dinality.
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In fact, we show that in distinction to the Gradient Young Measure problem, we have

rigidity for exact solutions if 4 non-rank one connected gradients are considered. The

construction of our counterexample for 5 gradients is presented in a new framework unifying

and simplifying the present convex integration and Baire category approaches to existence

results for partial di�erential inclusions. The work was to a large extent joint with M.

Chebik (Bratislava) and D. Preiss (London).

Probabilistic approach to some problems in conformal geometry

Michael Kiessling, Rutgers University

It is shown that Nirenberg's problem of prescribed Gauss curvature on S

2

and all its

higher-dimensional variants of Paneitz type, �nds some answers in form of a law of large

numbers of a Hamiltonion system of point particles with logarithmic pair interactions on

S

2

(resp.S

n

) in statistical equilibrium. This characterization is (currently) restricted to

Gauss (Paneitz) curvature functions that do not change sign; also, only those metrics can

be found which maximize a (relative) entropy functional.

Passage from discrete to continuous variational problems

Andrea Braides, SISSA, Trieste

(joint work with M.S. Gelli and L. Truskinovsky)

We �rst consider K-neighbour interaction discrete energies on the real line with K 2 N ,

(0)

E

n

(u) =

k

X

j=1

n�k

X

c=0

�

n

	

n

j

(

u

i+j

� u

i

j�

n

);

where �

n

= L=n, u : I

n

! R, where I

n

= f0 : : : ng. Each function u

is identi�ed with a function (still denoted by u) de�ned by u(i�

n

) = u

i

on

f0; �

n

; 2�

n

; : : : ; Lg and as its precise-a�ne interpolation elsewhere. We then

may view E

n

as functionals de�ned on (subsets of) L

1

(O;L), and study their

�-convergence as n ! 1. We single out two main "principles" which de-

scribe the limit: "clustering" and "separation of scales".

A. Clustering. Note preliminarily that if K = 1 then the �-limit is given by:

(1)

F (u) =

Z

(O;L)

	(u

0

)dt

(suppose all functions are of p-growth), where 	 = lim

n

	

n

1

��

(which exists

upon extracting a subsequence). If all functions are of p-growth and K > 1

then the "clustering principle" reads as follows: There exists N 2 N and

�

	

n

such that, set �

n

= N�

n

and
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(2)

�

E

n

(u) =

[u=N ]�1

X

i=0

�

n

�

	

n

(

u

i+1

� u

i

�

n

)

Then � � lim

n

E

n

= � � lim

n

�

E

n

(up to a small error). By the observation

above, the limit can be represented as (1) with 	 = lim

1

�

	

n

��

. The general

formula to compute

�

	

n

is of "homogenization type":

(3)

�

	

n

(z) = inf �f

8

<

:

I

N

K

X

j=1

N�j

X

i=0

	

n

j

(

u(i+ j)� u(i)

j

) :

u : f0; : : : Ng ! R

u(i) = iz

i = 0 : : :K and i 2 N �K; : : : ; N

9

=

;

B. Separation of scales. If 	

n

j

are not of p-growth, the limit energy is not of

the form (1) but

(4)

F (u) =

Z

O;L

f(u

0

)dt+

X

S(u)

g(u

+

� u

�

)

de�ned on precise -W

1=p

functions and (if necessary) relaxed to BV . Con-

sider for simplicity the case K = 1 and that  

n

1

(z) = +1 if z � 0. Then

the way to compute f and g reads as follows: choose T

n

with the property

T

n

!1 and �T

n

! 0, set

(5)

f

n

(z) =

	

n

1

(z) if z � Tn

%

&

+1 otherwise

g

n

(z) =

�

n

(	

n

1

(

z

�

u

)�min	

n

1

) z � �

n

T

n

%

&

+1 otherwise

Then

(6)

f = �� lim

n

f

��

n

g = �� lim

n

(sub g

n

) (sub = "subadditive envelope")

The case K > 1 is obtained by combining the two "principles above".

Finally, we remark that the case K = K

n

!1 cannot be treated directly in this

way since we may have limit energies of the form

(7)

F (u) =

Z

f(u

0

)dt+

X

S(u)

g(u

+

� u

�

) +

Z Z

	(u(x)� u(y))d�(x; y)

Some results extend to lattice engergies in R

n

.
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