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As the title of the meeting suggests, the conference centered around a couple of different
but closely related topics in connection with the cohomology of finite groups. The meeting
emphasized the interaction between algebraic topology and modular representation theory
with cohomology of groups being the unifying theme. Studies such as the applications of
subgroup complexes have been the source of new developments in both areas and were
recurring subjects in several of the lectures.

The first main theme was the structure of the cohomology rings of finite groups itself,
where the term “cohomology” could include extraordinary cohomology theories applied
to BG. The results presented in this group of talks were, for example, about finiteness
properties of cohomology rings of finite p-groups, characterizations of groups having pe-
riodic cohomology, subrings of cohomology rings generated by specific representations,
or the cohomology length of finite p-groups. The second main topic was the structure
of the classifying spaces of finite groups. Here results were communicated related to the
concept of endofiniteness of classifying spaces, about finite groups having homotopy equiv-
alent classifying spaces up to completion, or the classifying space associated to a block
of a finite group, among others. Finally, a third topic that received particular attention
were actions of finite groups on spaces with predefined properties. Besides these three
main areas, other related topics were the subjects of lectures of a more topological or
representation theoretical nature.

There were 23 talks of varying length (between 30 and 60 minutes). Particularly
noteworthy is the fact that many young mathematicians were given the opportunity to
present their work at this meeting. Another point worth mentioning was the possibility to



present one’s work to the other participants in the form of a poster which one could hang
up next to the lecture room. Between the talks there was enough time to exchange ideas
with other participants, to discuss new developments or to work on some joint projects
related to the topic of the conference.

Besides the traditional hike on wednesday afternoon there was also an excellent concert
on thursday night, which featured the performances of some of the participants. The very
pleasant and stimulating atmosphere at Oberwolfach contributed to make this once again
a very successful meeting.



ABSTRACTS OF THE TALKS PRESENTED

BiLL BROWDER, PRINCETON UNIVERSITY, USA:

Constructing group actions

Given a l-connected CW complex Y of dimension less than or equal to n, how may
one construct and classify free actions of a group G on finite dimensional spaces of the
homotopy type of Y7

The method of Postnikov towers represents a space by an (infinite) sequence of fibra-
tions with fibres Eilenberg-MacLane spaces K (m,,(-), m). A related problem then is: how
large a portion of the Postnikov tower of a space is necessary to describe an n-dimensional
space with fundamental group G?

Let Y be a 1-connected n-dimensional CW complex, f : Y — Y (n+1) the term of the
Postnikov tower so that f induces an isomorphism on 7 for & < n+1 and 7 (Y (n+1)) = 0
for k >n+ 1.

Theorem: Suppose that the finite group G acts freely on Y(n + 1) with quotient
Z(n+ 1) such that the cohomology groups H*™'(Z(n + 1); A) = 0 for coefficient systems
A = F,G/K for all primes p and all p-subgroups K of G. Then there exists a Z of
dimension less than or equal to n, such that Z(n+1) is the (n+1)st term of the Postnikov
tower for Z, and such that its universal cover is homotopy equivalent to Y.

This makes possible the construction of many strange group actions on ordinary spaces,
extending the ideas of my paper: “Homologically exotic group actions” (to appear in the
birthday volume for Jim Milgram).

One may show that the homological dimension of Z (with F, coefficients) is the same
as that of Y, and if Y satisfies Poincare duality in dimension ¢, then a free G action
on some X homotopy equivalent to Y has finite dimensional quotient if and only if the
quotient satisfies Poincare duality in the same dimension.

JOHN GREENLEES, UNIVERSITY OF SHEFFIELD, UK:

Morita invariance of the Gorenstein condition for rings up to homotopy and
cohomology rings of finite groups

(Report on joint work with W.G.Dwyer and S.Iyengar.) The aim of the talk was to give
a new proof of the local cohomology theorem for the cohomology ring of a p-group G.
The Benson-Carlson CM-implies-Gorenstein theorem, and other geometric consequences
follow as described by Greenlees and Lyubeznik (JPAA (2000)).

The first ingredient is the Morita equivalence of Dwyer and Greenlees, stating

I-torsion- R-modules ~ modules-£€ ~ [-complete- R-modules.

Here R is a ring up to homotopy, I is an ideal and (in the case that R/I = k is small over
R) £ = Endg(R/I).

The next ingredient is that a ring up to homotopy is said to be homotopy Gorenstein if
Hompg(k, R) = k as £ modules. A formal argument shows that this condition is invariant
under Morita equivalence in the sense that R is homotopy Gorenstein if and only if £ is
homotopy Gorenstein.



The relevant example has R = C*(BG; k) for a p-group and R/I = k is a field of
characteristic p. By the Eilenberg-Moore theorem, £ = C,(Q2BG) = kG. Now it is well
known that kG is a Frobenius algebra and hence homotopy Gorenstein. It follows from
Morita invariance that R = C*(BG) is homotopy Gorenstein. For ‘commutative’ rings,
the local cohomology theorem follows from one formulation of the homotopy Gorenstein
condition by taking homology.

JESPER GRODAL, M.I.T., USA:

Higher limits, group cohomology, and subgroup complexes

A homology decomposition of the classifying space BG of a finite group G can be thought
of as a “topological induction theorem” telling that BG can be recovered from BP for var-
ious subgroups P together with “gluing” or “fusion” information. Topological induction
theorems are related to algebraic induction theorems via certain higher limits. I will give
a very small model for these higher limits in terms of subgroup complexes. Topologically,
this model is very useful for calculating maps between classifying spaces or addressing
rigidification issues. Algebraically, it yields refinements of classical algebraic induction
theorems, for instance in the case of group cohomology.

BERNHARD HANKE, UNIVERSITAT MUNCHEN, GERMANY:

Witt classes of inner products and actions of finite p-groups

Let a cyclic group of odd prime order p act on a finite dimensional Z,)-Poincaré duality
space X. Extending work of Alexander and Hamrick, we prove a relation between the Witt
classes associated to the F,-cohomology rings of the fixed point set of this action and of
X. This is applied to show a similar result for actions of finite p-groups on Z)-homology
manifolds.

Furthermore, we construct connecting homomorphisms on spectral sequences asso-
ciated to a short exact sequence of filtered complexes. Specializing to the case of the
Leray-Serre spectral sequence of the Borel fibration we compare the Witt classes of the
fixed point set and the total space of Z/p-actions on finite dimensional F,-Poincaré duality
spaces on which the Bockstein operator acts as the zero map.

BruNnO KAHN, UNIVERSITE PARIS VII, FRANCE:

Orthogonal and symplectic analogues of a theorem of Rector

For a finite group G, Atiyah’s work gives an isomorphism between the completion of
its complex representation ring R(G) with respect to the augmentation ideal and the
representable K-theory of BG. This theorem was generalised by Atiyah and Segal to
real representations, and also by Rector to representations over a finite field k. In a joint
work with Hinda Hamraoui, we prove an analogue of Rector’s theorem for orthogonal and
symplectic representations of G' over k, provided k is of characteristic # 2 and the order
of G is prime to the characteristic of k. Our result is an isomorphism

-Li(k[G)) = [Z'BG, .Ly(k) x B.O(k)*]
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for e = +1 and all i > 0, between the Karoubi L-groups of k[G] completed with respect to
the augmentation ideal of Ry (G) and the representable . L(k)-theory of BG. The method
is to reduce to the Rector case via a “homotopy limit theorem” whose archetype is the
following well-known result: the natural map KO — KU"”/? is a weak equivalence of
spectra, where Z /2 acts via complex conjugation. In practice, the proof involves various
technical steps, among which comparison between topologies, reduction to characteristic
0 and also a rectification process in the case of symplectic K-theory.

HENNING KRAUSE, UNIVERSITAT BIELEFELD, GERMANY:

Endofiniteness in stable homotopy theory

A CW-complex X is said to be endofinite if all stable homotopy groups 7 (X) have
finite length as module over the ring {X, X} of stable self maps. This concept was
introduced in joint work with Ulrike Reichenbach. In my talk T discussed some of the
basic properties of endofinite complexes. For example, every endofinite complex has a
stable wedge decomposition into indecomposables which is essentially unique. Moreover,
a complete classification of all indecomposable endofinite complexes in terms of certain
ideals in the category of finite spectra is possible. An example of particular interest is
the classifying space BG of a finite group . This follows from a simple criterion for
endofiniteness in terms of singular homology.

Originally, endofiniteness is a concept from representation theory of finite dimensional
algebras, which Crawley-Boevey introduced about 10 years ago: a module is endofinite
if it is of finite length as a module over its endomorphism ring. At the end of my talk I
discussed a few interesting examples of endofinite modules which arise in representation
theory of finite groups. In fact, some of Rickard’s idempotent modules are endofinite.

Ian J. LEARY, UNIVERSITY OF SOUTHAMPTON, UK:

The subring of group cohomology generated by permutation representations

(Joint work with David Green and Bjorn Schuster.) For G a finite group and X a G-set
of cardinality n there is an induced homomorphism p% : H*(%,)) — H*(G). (Throughout,
H* will denote mod-p cohomology, and X, the symmetric group.) We study the subring
of H*(G) generated by the Im(p% ), where X ranges over all finite G-sets. In the case
when G = GL(n,p) we also consider the subrings obtained by allowing X to range over
just the partial flags or partial frames in F}.

We study these subrings by comparing their varieties of ring homomorphisms to al-
gebraically closed fields of characteristic p, using the technique introduced by two of us
whilst studying the subring of H*(G) generated by Chern classes of complex represen-
tations. To each of the subrings considered, we associate a category with objects the
elementary abelian p-subgroups of (G, and morphisms a subset of the injective group ho-
momorphisms. The variety for the subring is described as a colimit over this category, by
analogy with Quillen’s description of the variety for H*(G) itself.

For the subring of H*(G) generated by the Im(p%) for X in some collection F the
category is as follows. An injective group homomorphism f : £ — F from one elementary



abelian subgroup of GG to another is a morphism in the category if and only if, for each
X in F, the E-sets X and f'X are isomorphic.

We deduce that for n large and G = G'L(2n, p), the varieties for H*(G), the subring
generated by all G-sets, and the subring generated by just the actions of G on partial
frames and partial flags are distinct.

MARKUS LINCKELMANN, UNIVERSITE PARIS VII, FRANCE:

Cohomology in functor categories

The present talk is based on common work with Peter Webb:; its content is motivated by
the question as to what should be the classifying space B(G,b) of a block b of a finite
group G over a field k of prime characteristic p. Such a space, if it exists, should certainly
have the following properties:

- if the block is the principal block, then B(G,b) should be the p—localisation of the
classifying space of G;

- in general, the cohomology of B(G,b) should be the block cohomology algebra
H*(G,b) (defined in terms of stable elements in the cohomology ring H*(P, k) of a defect
group P of b with respect to the local structure of b).

Using recent work of Broto, Grodal, Jackowski, Levi, McClure, Oliver we describe
how a possible solution for this problem comes essentially down to being able to compute
higher limits of functors defined on certain categories of p—groups. We show that the
source algebra of b gives rise to an idempotent in the stable endomorphism ring of BPI; ,
splitting off a stable summand whose cohomology is indeed H*(G,b). Thus we have a
classifying spectrum of b; whether there is an actual space behind this, is still open at this
moment.

DAGMAR M. MEYER, UNIVERSITE PARIS 13, FRANCE:

An equivariant version of the Kuhn—Schwartz non-realizability theorem

Lionel Schwartz has recently proved the following surprising theorem which goes back to
a conjecture of Nick Kuhn: if the mod p cohomology of a space is finitely generated as a
module over the Steenrod algebra A then it is finite (i.e. a finite dimensional F,-vector
space). We generalize this result to the category of spaces over a fixed base space B. The
mod p cohomology of a space X in this category is in a natural way an object in H*B —U,
i.e. an unstable H*B-A-module. We prove that under certain conditions on B we have
the following implication: if H*X is finitely generated as an object in H*B — U then it is
finitely generated over H*B. In particular, under certain conditions on the group G' we
can apply this to the case where X is the Borel construction on a G-space and B is the
classifying space BG. In this way we obtain an equivariant analogue of Schwartz’s non-
realizability result. For compact Lie groups this equivariant version has also been derived
more directly as a consequence of Schwartz’s theorem by Dorra Bourguiba (Tunis) and
myself.



DANIEL K. NAKANO, UTAH STATE UNIVERSITY, USA:

Cohomology for finite Chevalley groups via algebraic groups and Frobenius
kernels

In this talk T will present recent results with C. Pillen and C. Bendel on relating the
cohomology of finite Chevalley groups with the cohomology for their corresponding al-
gebraic groups and Frobenius kernels. Our approach uses work of Donkin, and CPS
(Cline-Parshall-Scott) to construct a spectral sequence which relates the cohomology of
the Chevalley group to cohomology for the algebraic group. This construction has many
applications. We will show how one can derive a nice Ext'-formula for extensions between
two simple modules for the finite Chevalley group. This formula can be used to show that
self-extensions vanish for simple modules when the underlying field has more than p? el-
ements. Other results on self-extensions will be given, thus answering several questions
raised by S. Smith and J. Humphreys in the mid 1980s.

BoB OLIVER, UNIVERSITE PARIS 13, FRANCE:

Homotopy equivalences of p-completed classifying spaces of finite groups

This talk summarized joint work with Carles Broto and Ran Levi. To each finite group
G and each prime p, we associate a finite category L5 ((), defined as follows. The objects

of Z;(G) are the p-centric subgroups of G: those p-subgroups P < G such that C(P) =
Z(P) x Cf(P) for some subgroup Cf,(P) of order prime to p. And for each P and @,
Morzz(G)(P, Q) = Ng(P,Q)/CL(P), where Ng(P,Q) = {z € G|zPz™" < Q}. The
following is one of our main theorems:

Theorem A: For any prime p and any finite groups G' and G', BG) ~ BG") if and
only if the categories ZZ(G) and Zg(G’) are equivalent.

Theorem A follows immediately from two propositions. The first says that for all p and
G, |£5(G)] has the mod p homotopy type of BG; i.e., that BG) ~ |£5(G)|). The second
says that there are categories L5 (X), defined for all spaces X, such that L5 (BG) ~ L5 (G)
(equivalent as categories), and L (BG)) ~ Z;(G)

Theorem A is closely related to the following conjecture, due to Martino and Priddy.
If S <G and S" < G are Sylow p-subgroups, then an isomorphism f : S — S’ is called
fusion preserving if for any isomorphism P % @ between subgroups of S, ¢ is induced by

conjugation in G if and only if the corresponding isomorphism f(P) i;’) f(Q) is induced

by conjugation in G'.
Conjecture B (Martino-Priddy): For any prime p and any finite groups G and G’,
BG, ~ BG'} if and only if there is a fusion preserving isomorphism between Sylow
p-subgroups of G and G'.
Conjecture B is known to hold in many cases; for example whenever rk,(G) < p*.

JONATHAN PAKIANATHAN, UNIVERSITY OF WISCONSIN-MADISON, USA:

On commuting and non-commuting complexes

I will discuss joint work with Ergiin Yalgin where we study various simplicial complexes
associated to the commutative structure of a finite group G. We define NC'(G) (resp.
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C(@)) as the complex associated to the poset of pairwise non-commuting (resp. commut-
ing) sets of nontrivial elements in G.

We observe that NC(G) has only one positive dimensional connected component,
which we call BNC(G), and we prove that BNC(G) is simply connected.

Our main result is a simplicial decomposition formula for BNC'(G) which follows from
a result of A. Bjorner, M. Wachs and V. Welker on inflated simplicial complexes. As a
corollary we obtain that if G has a nontrivial center or if G' has odd order, then the
homology group H, (BNC(G)) is nontrivial for every n such that G has a maximal
noncommuting set of order n.

We discuss the duality between NC(G) and C(G), and between their p-local ver-
sions NC,(G) and C,(G). We observe that C,(G) is homotopy equivalent to the Quillen
complexes A,(G), and obtain some interesting results for NC,(G) using this duality.

Finally, we study the family of groups where the commutative relation is transitive,
and show that in this case, BNC(G) is shellable. As a consequence we derive some group
theoretical formulas for the orders of maximal non-commuting sets.

GEOFF ROBINSON, UNIVERSITY OF BIRMINGHAM, UK

A cancellation theorem related to conjectures of Alperin and Dade

In a 1990 Astérisque paper, R. Staszewski and I showed that the Knorr-Robinson for-
mulation of Alperin’s weight conjecture was particularly amenable to Clifford-theoretic
reductions, and proved a number of results which could be viewed as simplifying certain
alternating sum calculations in the presence of normal subgroups, among other things.

We discuss some analogues of these results for Dade’s projective conjecture (DPC).
The main result is :

Theorem: Suppose that the formula appearing in Dade’s projective conjecture fails to
hold (for some defect d and some linear character, A, of the central subgroup Z = O,(G))
for the block B of RG, and that first [G : Z(G)], then |G|, have been minimized subject
to such a failure occurring. Then whenever N > 7 is a non-central normal subgroup of
G, the block B covers blocks of N with defect groups strictly containing Z, and we have

> OVMk(B N = Y (=1)ky(B,, A)

cEN(G,2)/G 0EN(N,Z)/G

for each linear character, A\, of Z, and each positive defect d.

BJORN SCHUSTER, UNIVERSITAT-GHS WUPPERTAL, GERMANY:

Transfers of Chern classes in BP-cohomology and Chow rings

(Joint work with Nobuaki Yagita.) Let G be a finite group and BG its classifying space.
For a complex oriented cohomology theory h one can define Chern classes of complex
representations of G in h*(BG). We are interested in studying the Mackey closure Chy,(G)
of the ring of Chern classes in h*(BG), the subring generated by transfers of Chern
classes. For ordinary mod p cohomology, Green-Leary showed that the inclusion map
ﬁHz/,, — H*(BG;Z/p) is an F-isomorphism, i.e., the induced map of varieties is a



homeomorphism. Next consider BP or K(n), the n-th Morava K-theory, at a fixed prime
p. Call a group G "h-good” if h*(BG@) is generated (as an h*-module) by transferred
Euler classes of representations of subgroups of GG. If the Sylow p-subgroup of G is good,
then so is G and one has an isomorphism h*(BG) = Chy(G). Furthermore, it follows
from work of Ravenel, Wilson and Yagita that G is good for BP if it is good for K(n)
for all n. Examples for groups that are K(n)-good for all n are the finite symmetric
groups. Another typical case are p-groups of p-rank at most 2 and p > 5, where one has
an isomorphism BP*(BG) ®@pp- Zgy = H**"(BG). However, Igor Kriz found a p-group
G with K(n)°¥(BG) # 0.

Our calculations for the BP-cohomology of extraspecial 2-groups produce examples
where BP*(BG) is not generated by transfers of Chern classes.

A second calculation gives torsion elements in the kernel of the cycle map from the
Chow ring of BG to 2-local homology, using Totaro’s factorisation of the cycle map
through B P-theory.

JEFFREY H. SMITH, PURDUE UNIVERSITY, USA:

A new F-operad

This is joint work with Jim McClure.

Let C* : & — C be the cochain functor from the category of spaces to the category
of cochain complexes. For each n > 0, let D,, be the chain complex of natural transfor-
mations from the n-fold tensor of functors C* ® --- ® C* to the functor C*. Each of the
chain complexes is contractible and together they form an operad which acts naturally on
C*X for X € § showing that C*X is an E-algebra. However the operad D has some
bad properties: it is too big as the complexes are uncountably generated in each degree,
it is not an E-operad and it is not clear that the tensor product of two D-algebras is
again a D-algebra.

McClure and Smith have constructed a suboperad of D, the minimal sequence operad
M S, which resolves these problems. The minimal sequence operad has the following
properties: the chain complexes M.S,, are of finite type and free as ¥,-modules. There
is a map of operads MS — MS ® MS and so the tensor product of two M S-algebras
is an M S-algebra. There is a filtration of MS by suboperads F,, M S for which F,MS is
quasi-isomorphic to the operad obtained by taking the chain complex of the little n-cubes
operad. An Fy M S-algebra is the same as a DGA. In an earlier paper we prove that FyM.S
acts naturally on the Hochschild cohomology complex of a DGA.

STEPHEN D. SMITH, UNIVERSITY OF ILLINOIS AT CHICAGO, USA:

Interactions of simple-group geometries with homology approximations of
group cohomology

Work of Brown and Quillen as further developed by Webb produced an alternating sum
formula for the p-part of group cohomology, summed over a suitable simplicial complex,
typically of p-subgroups.

Ryba, Smith and Yoshiara verified the condition for the p-local geometries of many
sporadic groups, and Smith and Yoshiara extended that work with general methods for
homotopy equivalences of local geometries with standard collections of p-subgroups.
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In the later 90s, homology approximations were further developed by Maginnis and
Webb; and particularly by Dwyer, with more recent work by Grodal. Dwyer’s demonstra-
tion that the collection of p-radical p-centric subgroups is ample allows the methods of
Smith-Yoshiara to show that the remaining local geometries essentially provide the min-
imal complex on which the group cohomology can be thus computed. More recent work
of Smith, and especially of Masato Sawabe, provides further methods for demonstrating
some of the homotopy equivalences in a standardized way, and hence further explaining
the minimal properties of the 2-local geometries.

PETER SYMONDS, UNIVERSITY OF MANCHESTER, UK:

The cohomology of permutation modules and the Segal conjecture

We show that the mod-p cohomology of a finite group, considered as a global Mackey
functor, contains every simple cohomological Mackey functor as a composition factor.
Our proof uses methods from stable homotopy theory in an essential way. (In particular
we use the (proved) Segal Conjecture.)

One consequence is an easy proof of Mislin’s theorem on group homomorphisms in-
ducing an isomorphism on mod-p cohomology.

For another, recall that the permutation projective (=trivial source) modules for a
group G over an algebraically closed field of characteristic p are parametrised by a pair
(P,V), up to conjugacy, where P is a p-group and V is a simple module for Ng(P).
Denote this module by Ppy .

Theorem: H*(G, Pp,y) = 0 if and only if Cs(P) acts non- trivially on V.

OLYMPIA TALELLI, UNIVERSITY OF ATHENS, GREECE:

On complete resolutions

A group G is said to have periodic cohomology with period ¢ after k-steps if the functors
H(G,—) and H""(G, —) are naturally equivalent for all i > k.

It was conjectured by G. Mislin and O. Talelli that periodicity after k-steps is the
algebraic characterization of those groups GG which admit a finite dimensional free G-
CW-complex X homotopy equivalent to a sphere, and it was proved for all groups in
HF, the class of hierarchically decomposable groups introduced by P. Kropholler, for
which there is a bound on the order of the finite subgroups.

A. Adem and J. Smith proved that if the periodicity isomorphisms for a group G are
induced by cup product with an element in H7(G,Z) then G admits a finite dimensional
free G-CW-complex X homotopy equivalent to a sphere.

Here we show that for a group G with period ¢ after k-steps to have the periodicity
isomorphisms given by cup product with an element in H?(G, Z) is equivalent to the pro-
jective dimension of the coinduced module Homyz(ZG, Z) being finite. We then show that
for a group G in HF the coinduced module Homgz(ZG, Z) has finite projective dimension
if and only if the group G' admits a complete resolution.

We know however that if a group G has periodic cohomology after some steps then
G admits a complete resolution. It now follows that if a group G in HF has period ¢
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after k-steps then the periodicity isomorphisms are given by cup product with an elment
in H1(G,Z).

JAQUES THEVENAZ, UNIVERSITE DE LAUSANNE, SWITZERLAND:

Endo-trivial modules

(Joint work with Jon F. Carlson.) We prove that the group T'(G) of endo-trivial modules
for a non-cyclic finite p-group G is detected on restriction to the family of subgroups
which are either elementary abelian of rank 2 or (almost) extraspecial. This result is
closely related to the problem of finding the torsion subgroup of T'(G). When p is odd,
we can eliminate extraspecial groups of exponent p? and almost extraspecial groups from
the detecting family. The question of eliminating the other extraspecial groups remains
an open question. We also give the complete structure of T(G) when G is dihedral, semi-
dihedral, or quaternion. Finally we deduce from our main result a detection theorem for
the Dade group of all endo-permutation modules for G.

PETER WEBB, UNIVERSITY OF MINNESOTA, USA:

Computing resolutions without computing kernels

I describe a way to produce resolutions of the trivial module over group rings which
seems to be quite effective computationally, and which also conveys with some clarity the
structural properties of group cohomology (cup products, restriction, corestriction). The
resolutions produced have polynomial growth and avoid the computation of the kernels
of boundary homomorphisms. The difficult part of the calculation is lifting maps along
resolutions, which comes down to solving equations over group rings. This procedure
has been implemented in GAP in the case of group rings of p-groups over the field of p
elements. If time permits I will describe:

1. The easiest form of the construction which works for 2-groups over a field of
characteristic 2.

2. The slightly more complicated construction which works for p-groups with p odd
(and indeed in greater generality).

3. The special properties of the resolution with regard to restriction and corestriction
maps, and cup products.

4. How to solve equations over group rings of p-groups in characteristic p. T use a
method which exploits the special properties of Jennings’ basis for the group ring. There
is available a fast algorithm for base change between the standard and Jennings’ bases.
It is analogous to the fast Fourier transform algorithm.

5. How to strip off contractible summands to obtain a minimal resolution.

6. Computational performance.

CLARENCE WILKERSON, PURDUE UNIVERSITY, USA:

Applications of generalized quaternionic tori

A generalized quaternionic torus H is a 2-compact group isomorphic to (SU(2)*)/Ey, for
some Eg C Center(SU(2)%) = (Z/27)*.
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Theorem I. a) If X is a connected 2-compact group of rank k£ and X contains a
generalized quaternionic torus of rank k&, then W (X) has a nontrivial center, represented
on its action on 7 (Tx) as multiplication by —1.

b) Conversely, if W (X') contains —1, then there is at least one choice of a generalized
quaternionic torus H C X of rank = rank X.

Applications: Recall that a Lie group or 2-compact group X is almost-simple if and
only if 7 (Tx) ® @ contains no proper Q2 (WW)-submodules.

1) Let X be a connected almost-simple 2-compact group such that X contains a
subgroup H = SU(2)* for k =rank(X), then H*(BX) ~4, H*(BSp(k)).

2) If X is a connected almost-simple 2-compact group with W (X) isomorphic to
W(G), for G one of the exceptional Lie groups Gy, DI(4), Fy, Ad(E;), or Eg, then
Nx(Tx) =~ Ng(Tg)

Items in this abstract are joint work with Antonio Viruel and Bill Dwyer.

ERGUN YALCIN, MCMASTER UNIVERSITY, CANADA:

Set covering and Serre’s theorem on the cohomology algebra of a p-group

Let G be a p-group which is not elementary abelian. The cohomology length of GG, denoted
by chl(G), is defined as the minimum number of one dimensional classes zi,...,z, €
H*(G,Z/p) such that xyzy---2, = 0 when p = 2, and §(z1)3(x2)...H(x,) = 0 when
p > 2. In this work, we study chl(G) by defining a new group theoretical invariant,
denoted by s(G), which is relatively easier to compute and closely related to chl(G).

A set S C G is called a representing set if it includes at least one non-central element
from each maximal elementary abelian subgroup of G. We define s(G) as the minimum
cardinality of a representing set for G (we assume G is not p-central.) When G is an
extra-special p-group, we prove that chl(G) < s(G), where the equality holds when G
has self-centralizing maximal elementary abelian subgroups. Studying s(G), we prove the
following:

Theorem: If G is a p-group and k = dim H'(G, Z/p), then chl(G) < p+1 if k < 3 and

chl(G) < (p® +p—1)plal=2 if k> 4.

Theorem: Let (G, be an extra-special 2-group isomorphic to an n-fold central product
of Dg’s. Then,

| if <4
chl(Gn):{ + it n <4

on=l y on—t if p > 5.

ALEXANDER ZIMMERMANN, UNIVERSITE DE PICARDIE, FRANCE:
Auto-equivalences of derived categories acting on group cohomology

Let S, 51,55 be commutative rings, let R be a complete discrete valuation ring of char-
acteristic 0 with residue field k£ of characteristic p and let G' be a finite group. In joint

work with Raphaél Rouquier I defined and studied the group of autoequivalences of stan-
dard type TrPicg(A) of an S-algebra A which is finitely generated projective over S.
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The stabilizer HDg(G) of the trivial module S in TrPics(SG) acts on H*(G,S). A
ring homomorphism S; — Sy induces a group homomorphism HDyg, (G) — HDg,(G)
and this induces an S;(H Dg, (G))-module homomorphism H*(G,S,) — H*(G, S2). Let
() be a p-subgroup of G and let HSplen,(G) be the subgroup of HDy(G) formed by
splendid equivalences. Then the Brauer construction defines a group homomorphism
HSpleni(G) — TrPicy(Ce(Q)). The action of those elements in H Spleny(G) whose im-
age still fixes the trivial module commutes this way with restriction to and transfer from
Ce(Q). If the Sylow p subgroups of G are abelian, lifting to R, a theorem of Roggenkamp
and Scott applies to characterize the action of splendid equivalences on cohomology.

Report written by Dagmar M. Meyer
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