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An der Tagung �uber Jordan-Algebren, die unter der Leitung von W. Kaup (T�ubingen),

K. McCrimmon (Charlottesville), H.P. Petersson (Hagen) und E.I. Zelmanov (New Haven)

stattfand, nahmen 42 Mathematikerinnen und Mathematiker aus Brasilien, Deutschland,

England, Frankreich, Hongkong, Italien, Kanada,

�

Osterreich, Russland, Schweden, Spa-

nien, Ungarn und den USA teil.

Die w�ahrend der Tagung gehaltenen Vortr�age behandelten die Gebiete

� Jordan-Strukturen in Algebra, Arithmetik und Geometrie,

� Jordan-Strukturen in der Analysis,

� Jordan-Superstrukturen,

� Graduierte Lie-Algebren und Wurzelsysteme,

� Allgemeine nichtassoziative Strukturen.

Neben 10

�

Ubersichtsvortr�agen, in denen der aktuelle Stand der Forschung in Teildiszipli-

nen zusammenh�angend dargestellt wurde, wurden in 28 Spezialvortr�agen k�urzlich erreichte

Resultate pr�asentiert und diskutiert.



Vortragsausz�uge

B. Allison

Simple Kantor pairs

In this talk, we report on some work in progress with Oleg Smirnov on simple Kontor

pairs. Kontor pairs generalize Jordan pairs and are related to 5-graded Lie algebras, just

as Jordan pairs are related to 3-grades Lie algebras. This relationship was established (for

triple systems rather than pairs) by I.L. Kantor in 1972-1973.

We show that any simple Kantor pair is isomorphic to one of the following: (a) A simple

Jordan pair; (b) A Kontor pair associated to a nondegenerate sesquilinear form over an

associative algebra with involution; (c) A Kantor pair associated with a nondegenerate

bilinearform; or (d) A Kantor pair of exceptional Lie type. This theorem is proved using

the work of E. Zelmanov and of Smirnov on simple Lie algebras with �nite gradings.

J.A. Anquela

Outer inheritance in Jordan systems

We show that outer ideals of Jordan algebras, pairs and triple systems inherit nonde-

generacy, strong primeness and primitivity. When dealing with pairs and triple systems,

our results are based on the use of local algebras and the results on the inheritance of reg-

ularity by ample outer ideals of Jordan algebras due to K. McCrimmon [Outer Inheritance

in Jordan Algebras, Comm. Algebra (to appear)]. As a corollary, we manage to remove

ampleness as a hypothesis when dealing with outer ideals of Jordan algebras.

G. Benkart

Extended a�ne Lie algebras

The extended a�ne Lie algebras (EALAs) are natural generalizations of the �nite-

dimensional simple complex Lie algebras and the a�ne Lie algebras. We survey their

recent classi�cation. EALAs are closed related to the Lie algebras graded by �nite root

systems (what are often called �-graded Lie algebras). The core of an EALA is a �-

graded Lie algebra, and so �-graded Lie algebras play an essential role in the classi�cation

of EALAs.

W. Bertram

The geometry of Jordan structures

The starting point of our investigations is the question whether there is a "Jordan-

functor": can we associate to a Jordan structure (algebra, triple system or pair) a geomet-

ric object in a similar way as the "Lie functor" links Lie groups and Lie algebras, resp.

symmetric spaces and Lie triple systems? In the real �nite dimensional case we gave an

a�rmative answer by using di�erential geometric methods (cf. the authors Habilitations-

schrift, to appear in Springer Lecture Notes).

In this talk we present a possible generalization to general base �elds K by introducing

the concepts of "generalized projective geometry over K " (corresponding to Jordan pairs)

2



and "generalized polar geometry" (corresponding to Jordan triple systems); to the latter

we can (in the �nite dimensional case) associate an "algebraic symmetric space over K "

[work in progress].

L.J. Bunce

Classi�cation of sequentially weakly continuous

�

-triples

(Joint work with C-H. Chu and B. Zalar)

Let Aut(D(A)) denote the group of biholomorphic automorphisms of the open unit ball

D(A) of a JB

�

-triple A. The JB

�

-triple A is said to be sequentially weakly continuous if

all members of Aut(D(A)) are sequentially weakly continuous mappings.

It can be shown that the following three conditions are equivalent:

(i) A is sequentially weakly continuous.

(ii) Every primitive ideal of A is maximal and A

��

is a Type I JBW

�

-triple with no in�nite

spin component.

(iii) For each primitive ideal P of A, A=P is an elementary JB

�

-triple that is not an in�nite

dimensional spin factor.

One consequence is that every JB

�

-triple A contains a smallest closed ideal J for which

the only sequentially weakly continuous members of Aut(D(A=J)) are the linear ones.

C.-H. Chu

Jordan algebras and harmonic functions

We show the occurence and some applications of Jordan algebras in the theory of

harmonic functions on groups.

T. Cort

�

es

Local and subquotient inheritance of simplicity in Jordan systems

We prove that the local algebras of a simple Jordan pair are simple. Jordan pairs all of

which local algebras are simple are also studied, showing that they have a nonzero simple

heart, which is described in terms of powers of the original pair. Similar results are given

for Jordan triple systems and algebras. Finally, we characterize the inner ideals of a simple

pair which determine simple subquotients, answering the question posed by O. Loos and

E. Neher in [Complementation of Inner Ideals in Jordan pairs, J. Algebra 166 (2), (1994),

255-295].

C.M. Edwards and Gottfried T. R

�

uttimann

Central structure of inner ideals in JBW*-triples

Let I(A) be the complete lattice of weak

�

-closed inner ideals in a JBW

�

-triple A and

let ZI(A) be the complete Boolean lattice of weak

�

-closed ideals in A. The annihilator

L

?

of a subset L of A consists of elements b of A for which fL bAg is equal to zero, and

the kernel Ker(L) of L consists of those elements b in A for which fL bLg is equal to zero.
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For each element J of I(A), J

?

also lies in I(A), and A enjoys the generalized Peirce

decomposition

A = J

2

� J

1

� J

0

;

where J

2

= J , J

0

= J

?

, and J

1

is the intersection of the kernels of J and J

?

. There exist

unique structural projection P

2

(J) and P

0

(J) with ranges J

2

and J

0

, respectively, and a

projection P

1

(J) onto J

1

such that

id

A

= P

2

(J) + P

1

(J) + P

0

(J):

Furthermore,

fA J

0

J

2

g = f0g; fA J

2

J

0

g = f0g:

and, for j, k and l equal to 0, 1 or 2, the Peirce relations

fJ

j

J

k

J

l

g � J

j+l�k

;

when j + l � k is equal to 0, 1 or 2, and

fJ

j

J

k

J

l

g = f0g;

otherwise, hold, except in the cases when (j; k; l) is equal to (0; 1; 1), (1; 1; 0), (1; 0; 1),

(2; 1; 1), (1; 1; 2), (1; 2; 1), or (1; 1; 1). A weak

�

-closed inner ideal J for which the Peirce

relations hold in all cases is said to be a Peirce inner ideal. Two elements J and K of I(A)

are said to be compatible if, for j and k equal to 0, 1 or 2,

[P

j

(J); P

k

(K)] = 0:

An element I of I(A) is compatible with all elements of I(A) if and only if I lies in ZI(A),

which is a Boolean sub-complete lattice of I(A). The central kernel k(L) of a subset L of

A is the largest element of ZI(A) contained in L. It is shown that

k(J) = (J

1

)

?

\ J; k(J

?

) = (J

1

)

?

\ J

?

;

and, when J is a Peirce inner ideal,

(J

1

)

?

= k(J) � k(J

?

):

An inner ideal J in A is said to be faithful if, for every non-zero ideal I in A, I \ Ker(J)

is not equal to f0g. It is shown that every element J of I(A) has a unique orthogonal

decomposition

J = I �K;

where I lies in ZI(A) and K is a faithful element of I(A). In this case I is the central

kernel k(J). When applied to the weak

�

-closed inner ideal A

2

(u), the Peirce two-space

corresponding to a tripotent u, this reduces to a result of Horn and Neher.
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A. Elduque

On algebras satisfying the adjoint identity

The commutative algebras satisfying the adjoint identity: x

2

x

2

= N(x)x, where N is

a cubic form, are shown to be related to a class of generically algebraic Jordan algebras

of degree at most 4 and to the pseudo-composition algebras. They are classi�ed under a

nondegeneracy condition.

As byproducts, the assosiativity of the norm of any pseudo-composition algebra is

proven and the unital commutative and power-associative algebras of degree � 3 are shown

to be Jordan algebras.

J. Faraut

Analysis on symmetric spaces associated to Jordan algebras

Since the work of Koecher we know that Jordan algebras provide a powerful method

for studying the geometry of Hermitian symmetric spaces. As we have seen more recently,

this method is also suited for studying geometry and analysis of a large class of symmetric

spaces. As an illustration we consider in this talk the cross ratio of four points in a simple

complex Jordan algebra V :

fx

1

; y

1

; x

2

; y

2

g =

�(x

1

� x

2

)

�(x

1

� y

1

)

�

�(y

1

� y

2

)

�(x

2

� y

2

)

;

where � is the determinant polynomial (or reduced norm), which has been introduced by

Kantor (1967). It is a conformal invariant, and satis�es a remarkable Bernstein identity:

D

�

fx; y; x

0

; y

0

g

�

= b(�)

2

fx; y; x

0

; y

0

g

��1

;

where D

�

is an invariant di�erential operator, depending polynomialy on �, and

b(�) = �

�

� +

d

2

�

� � � (� + (r � 1)

d

2

�

:

This identity is proved by using harmonic analysis (Unterberger-Upmeier,1994). In fact

the kernel of the Berezin transform on a Hermitian tube domain is essentially a power

of the cross ratio, and its Fourier transform has been computed explicitly. Then the

Bernstein identity for the cross ratio follows by using the Harish-Chandra isomorphism

from the algebra of invariant di�erential operators onto the algebra of polynomials which

are invariant under the Weyl group. Several recent results are applications of this Bernstein

identity: - A mean value theorem (Engli�s, 1997), - Formula for the Fourier transform of

the Berezin kernelon a compact Hermitian symmetric space (Zhang, 1997), - Analytic

continuation of Riesz integrals on ordered symmetric spaces (Khlif, 2000).

J.R. Faulkner

Jordan pairs, Hopf algebras and algebraic groups

If V is a vectorspace over K and A is a K -algebra �

n

: V ! A with �

n

(v) = v

(n)

is a

sequence of binomial devided power maps if

1. v

(n)

= 1
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2. (�v)

(n)

= �

n

v

(n)

3. (v + w)

(n)

=

P

i+j=n

v

(i)

w

(j)

for all extensions of K .

A devided power specialization of a Jordan pair (V

+

; V

�

) is a pair of b.d.p maps with

ad

(k)

x

y

(l)

=

8

<

:

(Q

x

(y))

(l)

for k = 2l

0 for k > 2l

for all extensions where x 2 V

�

; y 2 V

��

and ad

(k)

x

u =

P

i+j=k

x

(i)

u(�x)

(j)

:

Let U(V) be the universal devided power representation.

Theorem 1: U(V) is Z-graded cocommutative Hopf algebra with primitive elements

P = (V

�

)

(1)

� P

0

� (V

+

)

(1)

:

Theorem 2: If H is a Z-graded Hopf algebra with primitive elements P = P

�1

�P

0

�P

1

and there is a homogeneous devided power sequence (in the sense of Hopf algebras) over

each x 2 P

�1

[ P

1

, then the sequence is unique and (P

�1

;P

1

) is a Jordan pair with

Q

x

(y) = x

(2)

y � xyx+ yx

(2)

:

Let �

�

n

: V

�

!A be a devided power specialization which is homogeneous and assume

A is �nite dimensional. Let I be the kernel of the homomorphism U(V ) ! A given by

the universal property. Let F(I) be the smallest family of ideals containing I, ker � and

closed under J ^K; J \K;S

�1

(J), where J ^K is the kernel of U(J)

s

! U(V )
 U(V )!

U(V )=

J


 U(V )

K

: Let H = U(V )

F (I)

= ff 2 U(V )

�

: f(s) = 0 for some J 2 F (I)g:

Theorem 3: G = Alg(H;�) is an a�ne algebraic group scheme with G(K) a subgroup of

units in A
K:

A. Fernandez L

�

opez

Local techniques in Banach Jordan pairs

We comment in this talk on three works which illustrate the importance of local tech-

niques in the theory of Banach Jordan pairs:

1. Characterizations of the socle of a semiprimitive Banach Jordan pair.

2. Noetherian Banach Jordan pairs.

3. Derivations on Banach Jordan pairs.

W.T. Gan

Arithmetic of Jordan algebras and exceptional groups

This is a survey talk on some recent results on the arithmetic of octonion and Jordan

algeras, as well as their automorphism groups. In particular, four directions and areas of

investigations are highlighted, and references provided for the relevant papers:
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� Classi�cation and study of maximal orders in octonion or Jordan algebra V over Q

and Q

p

; c.f. [EG1] and [Gr].

� Relating arithmetic of the algebra with that of the automorphism roup G, and in

particular, over Q

p

, giving a concrete description of the Bruhat-Tits building of G in

terms of orders in the algebra; c.f. [GY1] and [GY2].

� Studying morphisms between orders in di�erent octonion or Jordan algebras. In

particular, counting the number of embeddings of one order into another; c.f. [EG2],

[EG3], [GG1] and [GG2].

� Relations with the theory of modular forms, just as the arithmetic of quadratic forms

gives rise to the theory of theta functions; c.f. [G] and [GGS].
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E. Garc

�

�a

On Hernstein's theorems relating Jordan and associative pairs and

triple systems

We obtain pair versions of Hernstein's constructions by McCrimmon [On Hernstein's

Theorems Relating Jordan and Associative Pairs, Journal of Algebra 13, (1969), 382-392],

relating ideals of R and R

(+)

(respectively, R and H(R,*)) when R is an associative pair

(respectively, an associative pair with involution *). The proof is based on the use of

homotope algebras, which allows to extend for pairs the results of McCrimmon, skipping

the combinatorial work. As a consequence, we manage to relate the simplicity of R and
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R

(+)

(respectively, R and H(R,*)) for an associative pair R (respectively, an associative

pair with involution *), also obtaining a version for triple systems by using tight double

pairs.

U. Hagenbach

Jordan algebras and analysis on non-convex cones

(Joint work with H. Upmeier)

The classical Toeplitz C

�

-algebra T (D) acting on the Hardy space H

2

(D) over the unit

disc D was a central topic of research throughout decades, not only because of being one

of the rare examples of good understandable operator algebras, but also because of their

importance in complex analysis, geometry and ingeneering.

The talk presents the �rst general treatment of Toeplitz operators over all non-connvex

cones C, arising as connected components of the regular set in a general semisimple real

Jordan algebra X. We determine the whole spectrum of the Toeplitz C

�

-algebra T (�)

by constructing facial limit representations, leading to a complete description of the C

�

-

algebraic structure of T (�) in terms of the facial boundary structure of the underlying

strati�ed tube domain �. In the sense of "Quantization philosophy" according to which

the algebra of observables and its spectrum represents a noncommutative deformation of

the underlying geometry we prove the main result:

Theorem: There is a �ltration

f0g = I

0

/ I

1

= K

�

H

2

(�)

�

/ I

2

/ : : : / I

r

/ I

r+1

:= T (�)

of T (�) into C

�

-ideals such that there are C

�

-isormophisms

I

j+1

=I

j

�

=

C

0

(F

j

)
 K(H

j

) ;

where F

j

is a locally compact Hausdor� space and H

j

a separable Hilbert space. Thus

T (�) is solvable of length r = rank(X).

In particular, H

r

is one-dimensional,

T (�)=I

r

�

=

C

0

(X)

and the C

�

-ideal of the compact operators on H

2

(�) is just the common kernel of all

constructed representations.

I.R. Kantor

On a vector �elds formula for the Lie algebra

of a homogeneous space

Let G be a group Lie and G be the corresponding Lie algebra. Consider G as a ho-

mogeneous space acting on itself by left translations. The following well known formula

gives the expression for the in�nitesimal transformations (vector�elds) of this action in

exponential coordinates

a �! a

ad(x) � e

ad(x)

e

ad(x)

� 1

8a; x 2 G ;

where a � ad(x) = [a; x]:
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The goal of the talk is to present and to prove the generalization of this formula for

arbitrary homogeneous space given (locally) by a Lie algebra G and a stationary subalgebra

H.

Let E be a supplementary subspace to H : G = H�E : Then the formula for vector�elds

is as follows:

a �!

�

a � e

ad(x)

�

E

��

e

ad(x)

� 1

ad(x)

�

E

�

�1

8a 2 G; x 2 E ;

where (b)

E

denotes the projection of b 2 G on E along H and the expression (A)

E

, where A

is a linear operator on G acting from the right, denotes a linear operator on the subspace

E which acts on b 2 E as (b � A)

E

.

W. Kaup

Continuous Peirce decompositions and the perturbation

of triple functional calculus

For the space H of all hermitian operators on a separable complex Hilbert space many

authors have studied the problem: When does a given C

1

-function f : IR! IR induce (via

the classical L

1

-functional calculus) a di�erentiable map f = f

H

: H ! H and what is

the derivative df

H

(a) at the point a 2 H?

We discuss this problem for the odd continuous triple functional calculus on JB*-

triples (which are a certain Jordan theoretic generalization of operator algebras occurring

in connection with bounded symmetric domains in complex Banach spaces). For every

�xed element a in a JB*-triple E we de�ne (in terms of the Jordan triple product of E) a

certain commutative real Banach algebra A of bounded IR-linear operators on E together

with a continuous homomorphism ' from A into the Banach algebra of all continuous

real-valued functions on a certain compact subset � � IR

2

(called the Peirce spectrum of

A). Every L 2 A can be recovered from its '-image (called the symbol of L) and may be

considered as a Schur multiplier in a certain sense. For a large class of odd C

1

-functions

f : IR! IR the induced map f = f

E

: E ! E has derivative df

E

(a) 2 A with symbol the

devided di�erence of f on �. Details will appear in a joint paper with J. Arazy.

O. Loos

Locally �nite root systems

(Joint work with E. Neher)

These are in�nite root systems in in�nite-dimensional vector spaces whose intersection

with each �nite-dimensional subspace is �nite. We discuss a number of new phenomena as

compared to the �nite theory:

� the big Weyl group W ,

� (non-) existence of bases,

� conjugacy classes of positive systems under W ,

� extremal rays of chambers,

� representation of dominant weights as series of fundamental weights.
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C. Martinez

Jordan superalgebras

This is a broad survey of the structure theory of Jordan superalgebras with the emphasis

on classi�cation problems.

First we discusses the classi�cation of simple �nite dimensional Jordan superalgebras

of zero characteristic due to V. Kac and Racine-Zelmanov classi�cation of modular Jordan

superalgebras with semisimple even part.

The theory of modular superalgebras with non semisimple even part is parallel to the

theory of superconformal algebras that has a rich physical contents. In both cases the main

objects are Kantor doubles of brackets and Cheng-Kac superalgebras.

We discussed speciality problems for these superalgebras and in particular showed that

Cheng-Kac superalgebras are special.

J. Martinez

Separate weak

�

-continuity of the triple product

in dual real JB

�

-triples

(Joint work with A. Peralta)

In 1995, J. M. Isidro, W. Kaup and A. Rodriguez introduced real JB*-triples as closed

real subtriples of complex JB*-triples and they showed that given a real JB*-triple, A,

there exists a unique complex JB*-triple, B, and a unique conjugation, j, such that A is

the set of all j-symmetrics elements of B. So A is a real form of B. Clearly the class of

real JB*-triples includes all real C*-algebras, all JB-algebras and obviously all complex

JB*-triples. Recently, a theory of real JB*-triples has been developed, extending to the

real context many results in complex JB*-triples. However the extension, to the real case,

of the important result proved by Barton and Timoney, in 1986, assuring that : If B is

a complex JB*-triple which is a dual Banach space, then B has a unique predual and

the triple product is separately weak*-continuous, was an open problem which appears in

several papers. We solve this problem. Our proof does not depend on Barton{Timoney's

Theorem. So we have a new proof of the separate weak*-continuity of the triple product

in dual complex JB*-triples. From our theorem we also deduce some classical results in

JB-algebras and JB*-algebras.

K. McCrimmon

Nathan Jacobson's legacy for Jordan algebras

I will concentrate on new insights, new concepts, and new tools which Jake brought to

Jordan algebras, focusing on 6 concepts:

1. Universal Gadgets

2. Triple Products

3. U-Operators

4. Isotopes

5. Generic Norms

6. Inner Ideals.
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(1) Jake introduced and popularized the use of the universal special envelope to

study the structure and representations of Jordan algebras. (2) He introduced triple

products into Lie and Jordan theory, and (after some uncertainty) the triple product

fxyzg � xyz + zyx was adopted as the fundamental one, especially because of its close

connection to 3-graded Lie algebras. (3) The U-operator U

x

y =

1

2

fx; y; zg � xyz and the

Fundamental FormulaU

U

x

y

= U

x

U

y

U

x

have recast our view of the Jordan landscape (so that

a general quadratic theory of Jordan rings is based on the product U

x

y). These operators

arise naturally in di�erential geometry from the inversion j(x) = �x

�1

via U

x

= (@ j

x

)

�1

.

(4) Inserting a �xed element u into the Jordan triple product gives a new Jordan algebra

J

(u)

with bilinear product fx; yg

(u)

= fx; u; yg; if u is invertible the new algebra has unit

1

(u)

= u

�1

, so we can view isotopy as change-of-unit. It can also be viewed as change-of-

involution: if A is an associative algebra with involution, H(A; �)

(u)

�

=

H(A; �

(u)

) where

the new involution is x

�

(u)

= ux

�

u

�1

. (5) Jake introduces the generic norm for any �nite-

dimensional power-associative algebra, generalizing the determinant on matrix algebras.

This norm plays a crucial role in studying the automorphisms and structure groups of a

Jordan algebra, and in di�erential geometry. (6) Inner ideals (spaces B invariant under

innermultiplication by J; U

B

J � B) play the role of one-sided ideals. Jacobson �rst ob-

tained an Artin-Wedderburn theory for Jordan rings with d.c.c. on inner ideals, and �nally

developed a structure theory for rings with capacity, which was just the formulation needed

when E�m Zelmanov ushered in the New Age of Jordan theory with his classi�cation of

the simple algebras of arbitrary dimension.

K. Meyberg

Traces

An elementary very e�ctive method is presented to deal with traces of linear operators

on �nite dimensional algebras with a non degenerate associative bilinear form. From the

wide range of applications we present only two:

At �rst we derive trace formulas in Lie algebras of linear mappings which allow the

computation of trace(ad(x))

k

in terms of trace(x

l

). And secondly we discuss - using our

trace formalism - M. Rosts proof of the dimension relation d(d� 1)(d� 3)(d� 7) = 0 for

composition algebras of dimension d+ 1.

F. Montaner

Maximal modular inner ideals in Jordan systems

(Joint work with E. Garc��a)

The Jordan notion of primitivity adapts the intrinsic characterization of primitive asso-

ciative algebras through one-sided ideals, and therefore it is based on a notion of modular

inner ideal.

We investigate that notion of modularity and the related notion of weak modularity,

and show that maximal primitizers of Jordan systems J are either maximal inner ideals

in Jordan systems with �nite capacity, or the system J is special and in any *-envelope

R of J there is a maximal modular right ideal M such that the primitizer has the form

M \ J . We also prove that maximal modular inner ideals are maximal among all inner

ideals (conjectured by Hogben and McCrimmon) and that maximal-weakly modular inner

ideals are modular (conjectured by Anquela and Cort�ez).
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A. Moreno Galindo and A. Rodr

�

�guez Palacios

Zelmanovian classi�cation of prime JB

�

- and JBW

�

-triples

The classical structure theory for complex JB

�

-triples consists of a precise classi�ca-

tion of certain prime complex JB

�

-triples (the so-called complex Cartan factors) and the

fact that every complex JB

�

-triple has a faithful family of Cartan factor representations.

We applied the techniques of E. Zel'manov to obtain classi�cation theorems for real and

complex prime JB

�

-triples [MoRo1, MoRo2].

For a C

�

-algebra A, we denote as usual by A

sa

the self-adjoint part of A, and M(A)

will stand for the multipliers of A.

Theorem 1 [MoRo2, Theorem 8.2]. If J is a prime complex JB

�

-triple, then one of

the following assertions hold for J :

(i) J is either the type V or the type VI complex Cartan factor.

(ii) J is a complex spin factor.

(iii) There exist a prime complex C

�

-algebra A and a projection e in M(A) such that J

can be regarded as a JB

�

-subtriple of the complex C

�

-algebra M(A) contained in

eM(A)(1� e) and containing eA(1� e) .

(iv) There exist a prime complex C

�

-algebra A, a projection e inM(A), and a �-involution

� on A with e+e

�

= 1 such that J can be regarded as a JB

�

-subtriple of the complex

C

�

-algebra M(A) contained in H(eM(A)e

�

; �) and containing H(eAe

�

; �) .

Theorem 2 [MoRo1, Theorem 8.4]. If J is a prime real JB

�

-triple, then one of the

following assertions hold for J :

(i) J is the type V, VI, V

�

, V

�

0

, VI

�

, or VI

�

0

generalized real Cartan factor.

(ii) J is the type IV

n

or IV

r;s

n

generalized real spin factor.

(iii) There exists a prime real C

�

-algebra A such that J can be regarded as a JB

�

-subtriple

of the real C

�

-algebra M(A) contained in M(A)

sa

and containing A

sa

.

(iv) There exists a prime real C

�

-algebra A with �-involution � such that J can be re-

garded as a JB

�

-subtriple of the real C

�

-algebra M(A) contained in S(M(A); �) \

M(A)

sa

and containing S(A; �) \ A

sa

.

Re�ning slightly the tools necessary for the above classi�cations, we obtain in [MoRo2,

Theorems 27 and 23] the corresponding classi�cation of JBW

�

-factors, that is, prime JB

�

-

triples which are Banach dual spaces.
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M. Neal

Contractive projections and operator spaces

(Joint work with B. Russo)

Parallel to the study of �nite dimensional Banach spaces, there is a growing interest

in the corresponding local theory of operator spaces. We introduce a family of Hilbertian

operator spaces H

k

n

; 1 � k � n, generalizing the row and column Hilbert spaces R

n

; C

n

and

show that an atomic subspace X � B(H) which is the range of a contractive projection on

B(H) is isometrically completely contractive to an `

1

-sum of the H

k

n

and Cartan factors

of types 1 to 4. In particular, for �nite dimensional X, this answers a question posed

by Oikhberg and Rosenthal. Since the range of a contractive projection is completely

contractive and isometric to a JC

�

-triple, Jordan algebraic techniques are used in the

proof. In addition to the above result, we classify up to complete isometry all w

�

-closed

atomic JW

�

-triples without an in�nite dimensional rank 1 summand.

E. Neher

Quadratic Jordan superpairs

In this talk, the new concept of a quadratic Jordan superpair over arbitrary superrings,

not necessarily containing

1

2

, was introduced. It was shown that examples of Jordan su-

perstructures, previously only studied in characteristic 6= 2, can in fact be de�ned over

arbitrary superrings. The classi�cation of Jordan superpairs covered by a grid was an-

nounced. Finally, Lie superalgebras graded by root systems were introduced.

Theorem. A central extension of the Tits-Kantor-Koecher algebra of a Jordan superpair

over a superring S and covered by a grid is a Lie superalgebra over S graded by a root

system without any irreducible factor of type E

8

;F

4

or G

2

. Conversely, if

1

2

2 S any Lie

superalgebra over S, graded by such a root system arises in this way.

Application. Since Jordan superpairs covered by a grid are known one simply has to

determine their Tits-Kantor-Koecher algebras in order to get a classi�cation, modulo cen-

tral extensions, of root-graded Lie superalgebras for the root systems mentioned in the

theorem.

J.M. Osborn

Z � Z-graded Lie algebras

In this talk I discuss some �rst steps toward a classi�cation theory for Lie algebras

graded by a torsion-free abelian group. Examples of such algebras include the Lie algebras

of Cartan type, and my generalizations of these algebras. A possible model for a classi�ca-

tion theory for graded Lie algebras is the classi�cation of the �nite-dimensional Lie algebras

of characteristic > 5. The structure of Lie algebras graded by the intergers Z where the

graded components are �nite-dimensional has been formed by Olivier Matthew. In this

talk I described the results which have been obtained by Kaiming Zhao and myself on the

structure of Lie algebras graded by Z� Z where the graded components have dimension

� 1.
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A.M. Peralta

Grothendieck's inequalities for real and complex JBW*-triples

(Joint work with A. Rodr��guez-Palacios)

It is a well known result of Grothendieck that there exists a universal constant G > 0

such that if 


1

and 


2

are compact Hausdor� spaces and U is a bounded bilinear form on

C(


1

)� C(


2

) then there are probability measures �

i

on 


i

such that

jU(f; g)j � GkUk

�

Z




1

jf j

2

d�

1

�

1

2

�

Z




2

jgj

2

d�

2

�

1

2

for all (f; g) 2 C(


1

)� C(


2

).

For non-commutative C

�

-algebras Pisier and Haagerup proved that there exists a uni-

versal constant G > 0 such that if A and B are two C

�

-algebras and U is a bounded

bilinear form on A� B then there are states ' on A and  on B such that

jU(x; y)j � GkUk

�

'(

xx

�

+ x

�

x

2

)

�

1

2

�

 (

yy

�

+ y

�

y

2

)

�

1

2

for all (x; y) 2 A�B.

We prove that, ifM > 4(1+2

p

3) and " > 0, if V andW are complex JBW*-triples (with

preduals V

�

andW

�

, respectively), and if U is a separately weak*-continuous bilinear form

on V �W, then there exist norm-one functionals '

1

; '

2

2 V

�

and  

1

;  

2

2 W

�

satisfying

jU(x; y)j �M kUk

�

kxk

2

'

2

+ "

2

kxk

2

'

1

�

1

2

�

kyk

2

 

2

+ "

2

kyk

2

 

1

�

1

2

for all (x; y) 2 V � W. Here, for a norm-one functional ' on a complex JB*-triple V,

k:k

'

stands for the prehilertian seminorm on V associated to ' in [BF1]. We arrive in this

\Grothendieck's inequality" through results of C-H. Chu, B. Iochum, and G. Loupias [CIL],

and a corrected version of the \Little Grothendieck's inequality" for complex JB*-triples

due to T. Barton and Y. Friedman [BF1]. We also obtain extensions of these results to

the setting of real JB*-triples.
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A. Rodr

�

�guez Palacios

Non-associative C

�

-algebras revisited

After the non-associative versions of the Gelfand-Naimark and Vidav-Palmer theo-

rems (see [10] and [11], respectively) both alternative C

�

-algebras and non-commutative

JB

�

-algebras become reasonable non-associative generalizations (the second containing the

former) of classical C

�

-algebras.

The basic structure theory for non-commutative JB

�

-algebras is concluded about 1984

(see [1], [2], [8], and [9]). Alternative C

�

-algebras are speci�cally considered in [3] and [8].
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In recent years A. Kaidi, A. Morales, and the author have revisited the theory of

non-commutative JB

�

-algebras and alternative C

�

-algebras with the aim of re�ning some

previously known facts, as well as of developing some previously unexplored aspects. In

this lecture we review the main results got in this goal.

The lecture is divided in �ve sections as follows.

1. Geometric properties of the products of alternative C

�

-algebras [4].

2. Prime non-commutative JB

�

-algebras [5].

3. Holomorphic characterization of non-commutative JB

�

-algebras [6].

4. Multipliers on non-commutative JB

�

-algebras [7].

5. Isometries of non-commutative JB

�

-algebras [7].
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G. Roos

Compacti�cation of Jordan triple systems, volume of

bounded symmetric domains and polynomial morphisms of JTS

For an irreducible complex circled homogeneous domain, there is a natural normaliza-

tion of the Euclidean volume, such that this volume is an integer, which is equal to the

degree of some projective realization of its compact dual.

We give an explanation of this phenomenon in the language of Jordan triple systems.

We �rst introduce a slightly simpli�ed version of the projective imbedding of a compacti-

�cation introduced by O. Loos. We then compute the pullback of the invariant projective

volume form by this imbedding. Finally, we prove the equality between the volume of the

domain and the degree of its compact dual, using some special real analytic isomorphism

(de�ned via the Jordan structure) between the bounded domain and its ambient vector

space.

I. Shestakov

Jordan superalgebras de�ned by brackets

(Joint work with C. Martin�ez and E. Zelmanov)

Jordan superalgebras de�ned by brackets on associative and commutative superalgebras

are studied. It is proved that any such a superalgebra is imbedded into a superalgebra

de�ned by Poisson brackets. In particular, all Jordan superalgebras of brackets are i-special.

The speciality of these superalgebras is also examined and it is proved, in particular, that

the Cheng-Kac superalgebra is special.

L. Stacho

Weighted grids in Jordan

�

triples

over commutative rings with involution

Weighted grids are linearly independent systems fg

w

: w 2 Wg of signed tripotents in

Jordan

�

triples over commutative rings with involution indexed by �gures W in modules

over the real part of the ring of scalars such that fg

u

g

v

g

w

g 2 Spang

u�v+w

; u; v; w 2 W

with the convention g

z

:= 0 for all z =2 W . Weighted grids arise naturally as systems of

weight vectors of certain abelian families of Jordan

�

derivations. A classi�cation of the

possible underlying weight systems is given on the basis of Neher's grid theory. In contrast

with the classical semisimple case, in�nite strings may occur in the weight �gure and the

Peirce matrix does not determine the triple up to isomorphisms in general. As a �rst

step toward the general structure theory of Jordan

�

triples spanned by weighted grids, we

classify the complex Jordan

�

triples spanned by non-nil weighted grids with the weight

�gure Z

2

. Finally we give an example for a complex Jordan

�

triple with non-vanishing

triple product which is spanned by weighted grid of nil tripotents.

M.L. Thakur

Kummer elements in Albert algebras

One understands the mod-2 invariants of Albert algebras fairly well, for example, the

invariant f

3

"divides" the invariant f

5

. We want to understand what symbols occur in

16



the decomposition of the invariant g

3

of a given Albert algebra J . It su�ces to do this

for Tits' �rst construction Albert division algebras, since g

3

is a decomposable element in

H

3

(k; Z=3), i.e., g

3

(J) = (a)[(b)[(c) for some a; b; c 2 k

�

, k being the base �eld. Assume

now on that k contains third roots of unity. We call an element x 2 J a Kummer element

if x

3

= � for some � 2 k

�

. We then have the equality of sets

f� 2 k

�

jJ ' J(A; �)g = f� 2 k

�

jx

3

= �; x 2 Jg:

In other words, the scalar symbols occuring in the decomposition of g

3

(J) are precisely

the norms of Kummer elements in J . This also proves that for a given Kummer element

x 2 J with norm �, there exists a central division algebra of degree 3 over k such that

J ' J(D; �).

H. Upmeier

Spectral analysis on real and complex Jordan algebras

A complex hermitian Jordan triple Z with open unit ball B, endowed with a Jordan

involution z 7! �z, gives rise to an real bounded symmetric domain B

R

:= fz 2 B : �z = zg

which can be realized as B

R

� G

R

=K

R

. Here G

R

:= fg 2 G : g(z) = g(�z)8z 2 Bg

is a reductive subgroup of G := Aut(B). Let H

�

(B) denote the �-th Bergman space

of holomorphic functions on B. Generalizing the well-known Toeplitz-Berezin operator

quantization C

1

(B)! L(H

2

�

(B)), we de�ne "vector" deformations of Toeplitz type

T : C

1

(B

R

) �! H

2

�

(B)

by

(T f)(z) :=

Z

B

R

f(�)K

�

(z)K

�

(�)

1

2

d�

0

(�)

for all f 2 C

1

(B

R

). Here K is the reproducing kernel ofH

2

�

(B) and �

0

is invariant measure.

Generalizing the Unterberger-Upmeier spectral analysis of the complex hermitian case, we

�nd (in joint work with Jonathan Arazy, University of Haifa) the spectral decomposition

of the "real" Berezin transform T

�

T on C

1

(B

R

). This is related to work by G. Zhang, van

Dijk-Perzner and Neretin. We also discuss other functional calculi such as Weyl and Wick

deformation.

X. Xu

Simple conformal algebras generated by Jordan algebras

Conformal algebras are local structures of certain in�nite-dimensional Lie algebras with

one-variable structure, whose representations are main algebraic structures in quantum

�eld theory. Simple conformal algebras of �nite type were classi�ed by Kac. In this talk,

I will give a brief introduction to conformal algebras. Then I will present my constructions

of three families of simple conformal algebras of in�nite Type generated by simple Jordan

algebras of types A, B, and C, respectively.
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Y. Yoshii

Division (�,G)-graded Lie algebras

Let F be a �eld of characteristic 0, � a �nite irreducible root system,

�

0

=

8

<

:

� if � is reduced

type B otherwise; i:e:; � has type BC;

G = F �

L

�2�

0

G

�

a split simple Lie algebra over F of type �

0

, where F is a split Cartan

subalgebra of G, �

V

� F the set of coroots and G an abelian group.

A �-graded Lie algebra L over F is called a (�,G)-graded Lie algebra if L =

L

g2G

L

g

is a G-graded Lie algebra such that G � L

0

. Then we have the double grading

L =

M

�2�[f0g

M

g2G

L

g

�

where L

g

�

= L

�

\ L

g

. Morover, a (�,G)-graded Lie algebra L is called a division (�,

G)-graded Lie algebra if for any 0 6= x 2 L

g

�

whenever L

g

�

6= (0) there exists y 2 L

�g

��

such that [x; y] � �

V

2 �

V

mod Z(L), where Z(L) is the center of L. Also, we assume

that fg 2 GjL

g

6= (O)g generates G. Then the core of an extended a�ne Lie algebra with

nullity n is a division (�;Z

n

)-graded Lie algebra over C with 1-dimensionality, that is,

dim

C

L

g

�

� 1 8� 2 �; g 2 G:

In particular, an a�ne Kac-Moody algebra (without derivation) is a division (�;Z)-graded

Lie algebra with 1-dimensionality. In one direction of generalized extended a�ne Lie

algebras, we have classi�ed division (A

2

;Z

n

)-graded Lie algebras. The coordinate algebras

of such Lie algebras are either division Z

n

-graded associative algebras or one of four types

of division Z

n

-graded octonion rings.

G. Zhang

Tensor products of minimal holomorphis representations

on bounded symmetric domains

Let D = G=K be a bounded symmetric domain with genus p and H

�

(D) the weighted

Bergman space for � > p � 1. It has analytic continuation in the parameter � and gives

also unitary representations for � in the Wallach set, the last non-trivial point � =

a

2

being

the minimal representation. We study the tensor product decomposition of H

a

2


H

a

2

, and

discover some new unitary spherical representations and �nd the expansion of the spherical

functions in terms of Jack symmetric polynomials.
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