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Introduction

This workshop was organized by J.M. Ball (Oxford), R.D. James (Minneapolis) and S.

M�uller (Leipzig) and focused on recent developments at the interface of nonlinear analysis

and continuum mechanics. It lead to a lively exchange between mathematicians (who

constituted the largest group), physicists and engineers. Topics included

Mathematical problems arising in nonlinear elasticity, in particular including phase

transitions, microstructure and mathematical concepts to capture these (weak con-

vergence, quasiconvexity, Young measures, : : : )

Mathematical tools to pass from atomistic to continuum models

Thin �lms and the derivation of two-dimensional limiting theories for thin three-

dimensional objects

General concepts of continuum mechanics to model complex materials

The meeting also included a very lively discussion session on the future role of continuum

mechanics and theory in general at a time where in parts of the applied sciences `theory'

often is almost synonymous to `large scale numerical simulation'.

1



Abstracts

Electromechanical behavior of ferroelectric ceramics

Kaushik Bhattacharya

The talk describes problems in the calculus of variations and homogenized theory mo-

tivated by a continuum mechanical model of ferroelectric materials. Ferroelectrics are

crystalline solids that are spontaneously polarized and distorted below the Curie temper-

ature; symmetry breaking at this temperature implies that the crystal may be polarized

in one of many crystallographically equivalent directions. The electromechanical behav-

ior is modeled using a variational principle, where the functional consist of a multiwell

Devonshire-type potential, an electromechanical loading potential and a nonlocal electric

�eld energy. The functional is not weakly lower semicontinuous and energy minimization

automatically predicts experimentally observed domain patterns. The model is used to

identify a novel electromechanical load path which yields large electrostriction; experimen-

tal tests stimulated by this theory have demonstrated �ve times the electrostriction of

commonly used materials. A homogenized functional that describes the e�ective of poly-

crystals (ceramics) is derived using the notion of �-convergence, and used to understand

the anamolous behavior at morphotropic phase boundaries.

Fast singular limits of mechanical systems

Folkmar Bornemann

Elimination of fast scales amounts, e.g. in molecular dynamics, for establishing the limit

of mechanical systems with a strong constraining potential:

L

�

=

1

2

h _x; _xi � V (x)� �

�2

U(x):

Here N = U

�1

(0) is assumed to be nondegenerate critical. Two questions are considered:

First, is there a limit LagrangianL

0

on TN , second, when is this Lagrangian the Lagrangian

of holonomic constraints L

hol

=

1

2

h _x; _xi � V j

N

on TN . In general it turns out that under

mild resonance condition we get L

0

= L

hol

+ U

0

, where U

0

is a Born-Oppenheimer type

of potential, which can explicitly be given. The method of proof we use is the method of

weak convergence, where we mainly use a suitable generalization of the Riemann-Lebesgue-

Lemma.
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Extension of the Monge-Kantorovich problem to classical Electrodynamics

Yann Brenier

We extend to the framework of classical Electrodynamics the Monge-Kantorovich problem

which originally comes from Continuum Mechanics and has become very popular in the

last ten years in the �eld of Nonlinear PDEs, especially because of its connection with the

Monge-Amp�ere equation (and also Porous Medium equations, Euler equation of incom-

pressible 
uids etc...).

The �rst step of the construction is to revisit the Monge-Kantorovich (MK) considering

geodesics and probability measures as in the MK problem (in its new formulation), we

consider extremal surfaces in the 5-dimensional Minkowski space. Next, we consider gen-

eralized surfaces (which can be also described with the concepts of Cartesian currents, as in

Giaquinta-Modica-Soucek book) and the corresponding action (that shares some similarity

with the Born-Infeld action of nonlinear electromagnetism). This leads to some nonlinear

Euler-Maxwell equations from which the classical Euler-Maxwell (relativistic and pressure-

less) can be recovered from a 3 point discretization of the 5

th

variable.

Rigorous bounds for the F�oppl-von K�arm�an theory of isotropically

compressed plates

Sergio Conti

with H. Ben Belgacem, A. DeSimone, S. M�uller.

We study the F�oppl-von K�arm�an theory for isotropically compressed thin plates in a geo-

metrically linear setting, which is commonly used to model weak buckling of thin �lms. We

consider generic smooth domains with clamped boundary conditions, and obtain rigorous

upper and lower bounds on the minimum energy linear in the plate thickness �. This

energy is much lower than previous estimates based on certain dimensional reductions of

the problem, which had lead to energies of order 1 + � (scalar approximation) or �

2=3

(two-component approximation).

Soft Ferromagnetic Films

Antonio DeSimone

In joint work with R.V. Kohn, S. M�uller, and F. Otto, a two-dimensional variational model

for the response of soft ferromagnetic �lms to in-plane applied �elds has been derived from

three-dimensional micromagnetics via a Gamma-convergence argument. Domain patterns

emerge from the competition between the aligning e�ect of the applied �eld and the bias

towards divergence-free patterns due to dipolar interactions.

A numerical scheme has been derived and used to compare the predictions of the theory

with experimental results.
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Some remarks on metastability in martensite under load

Alain Forclaz

A few years ago, interesting biaxial loading experiments were performed by C. Chu and

R.D. James. A mathematical treatment of these was then initiated by J.M. Ball and R.D.

James. In those experiments, it is observed that an homogeneous deformation y

1

(x) = U

1

x

is the stable state for small loads while y

2

(x) = U

2

x is stable for large loads. Crucially, it has

been proved by Ball and James that for a certain intermediate range of loads, y

1

(x) = U

1

x

remains metastable (i.e., is a local - as oppose to global - minimizer of the energy). It is

easy to get an upper bound for when metastability �nishes. However, it was also observed

that this bound (the Schmid Law) may not be sharp, but that required some geometric

restriction. In this talk, I focus on this last point and give a precise statement of what

these geometric restrictions are.

One dimensional lattice waves: rigorous continuum limit via a

renormalization group approach

Gero Friesecke

The speaker discussed recent progress in the understanding of the long-time dynamics

of Fermi-Pasta-Ulam (FPU) chains, i.e., 1D in�nite chains of nonlinear oscillators with

`generic' anharmonic nearest-neighbour interaction,

H =

1

X

j=�1

(p

2

j

=2 + V (q

j+1

� q

j

)):

These are the perhaps simplest prototypes of non-integrable Hamiltonian systems of in-

�nitely many particles where Fermi, Pasta and Ulam's fundamental (1947) question can

be investigated as to whether and how thermalization (i.e., energy transport from coherent

modes and macroscopic scales to microscopic, radiative modes) occurs.

While it has been clear for some time that these systems support exact solitary waves (G.F.,

J.A.D. Wattis, Commun. Math. Phys. 161, 391-418, 1994), it has recently been shown in

joint work with Robert L. Pego, University of Maryland, that at near-sonic wavespeed such

waves are (i) unique and rigorously approximated by a KdV continuum limit (G.F., R.L.

Pego, Nonlinearity 12, 1601-1627, 1999), (ii) stable globally in time in the sense of `start

close, stay close' (G.F., R.L. Pego, to appear). This is to our knowledge the �rst result

that establishes the large time behaviour of an open set of initial data in in�nite-D phase

space, and proves that thermalization cannot hold for generic initial data.

The precise statement on passage to a continuum limit for near-sonic solitary waves is as

follows:

Theorem. Given any interaction potential V satisfying the generic conditions V (0) =

V

0

(0) = 0, V

00

(0) > 0, V

000

(0) 6= 0, and given any wavespeed c bigger than, but su�ciently
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close to, the speed of sound c

S

=

p

V

00

(0), the following hold.

(i) The Hamiltonian system admits a unique single-pulse solitary wave solution q

j+1

(t) �

q

j

(t) = r

c

(j�ct) of speed c. (Single-pulse means the derivative of the pro�le r

c

(z) vanishes

only at a single point.)

(ii) As � :=

p

24(c=c

S

� 1)! 0, the sequence of renormalized pro�les �

�2

r

c

(�

�1

�) converges

strongly in H

1

(R) to a nonzero limit r.

(iii) The limit solves the Korteweg-de-Vries travelling wave equation

�r

x

+ r

xxx

+ 12(V

000

(0)=V

00

(0))r r

x

= 0:

Hence, by uniqueness of nontrivial solutions to this equation, the limit is given explicitly

by r = (V

00

(0)=V

000

(0))((1=2)sech(x=2))

2

.

The proof of (iii), i.e. rigorous passage to the limit assuming the scaling laws implicit

in the compactness result (ii), can be understood in a clear and simple way using the

renormalization group framework introduced by G.F. and R.L. Pego (see above reference),

in which the KdV equation emerges naturally as a �xed point of the renormalization group.

This framework also leads to a simple proof of the existence (though not the uniqueness)

result (i), by applying the implicit function theorem with the renormalization parameter

� as a parameter to show that the well known solitary wave solution to the continuum

limit equation persists into the discrete system. The proof of the compactness result (ii),

which in particular implies uniqueness and which identi�es the correct scaling laws as

� ! 0, is deeper, and requires an understanding of the lattice equation on all frequency

scales. This has been achieved via a careful study of a certain naturally arising lattice

Fourier multiplier, leading to, among other things, a new Harnack inequality for nonlinear

di�erential-di�erence equations.

On induced microstructures occurring in models of �nite-strain

elastoplasticity

Klaus Hackl

We derive a novel variational principle for a time-discretized model of the 
ow theory of

elastoplasticity at �nite strains. Within a single time-step the functional

I

P

0

;p

0

(�;P ; p) =

R




(	(FP ; p) + J

�

(�(P

0

;P ); p�p

0

))dx� `(�)

has to be minimized with respect to the total deformation F and the plastic quantities

P , p as independent variables for given initial values P

0

, p

0

, where ` is the potential of

external forces and �(P

0

;P ) denotes a discretized rate of evolution. We assume that 	

is polyconvex and J

�

convex. Elimination of P and p leads to the reduced energy density

	

red

P

0

;p

0

(F ) = min

n

	(FP ; p) + J

�

(�(P

0

;P ); p�p

0

)

�

�

�

(P ; p)

o
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which can be further investigated for its convexity properties. This allows to study the

occurrence of microstructures much in the same way as it is done when considering phase

transitions.

Finite element calculations indeed show layered microstructures. The results are, however,

mesh-dependent. To overcome this e�ect a R

1

-convexi�cation of the potentialW = 	

red

P

0

;p

0

de�ned by

R

1

W (F )

= inf

�

(1� �)W (F � �a
 b) + �W (F + (1� �)a
 b)

�

�

0 � � � 1; jaj = 1

	

is performed numerically using a gradient-line-search algorithm. The results obtained using

the relaxed potential are essentially mesh-independent.

A speci�c example based on a model of crystal-elastoplasticity with a single slip-system is

discussed.

Reference: A. Mielke, K. Hackl, C. Carstensen: Nonconvex Potentials and Microstructures

in Finite-Strain Plasticity. Manuscript, in preparation.

Multiphase Flow in Porous Media

Rudolf Hilfer

The commonly accepted microscopic and macroscopic equations for immiscible displace-

ment of two incompressible Newtonian 
uids in a rigid porous medium are critically exam-

ined. A mathematical connection between the microscopic and the macroscopic equations

appears unlikely because the latter equations are incomplete with regard to predicting

changes in residual saturations. A novel system of 10 coupled equations is presented. The

basic physical ideas are �rstly to distinguish connected and a disconnected (trapped) sub-

phase within each 
uid phase and secondly to introduce energy balance laws including

interfacial energies. As a consequence the speci�c internal surface area appears as a new

variable. The mass, momentum and energy balance equations are based on continuum

mixture theory and the pairwise character of interfacial energies is explicitly taken into

account. The constitution assumptions follow those commonly accepted for single phase


ow and include a mass exchange between connected and disconnected subphases that is

taken from experimental capillary desaturation curves. The approach obviates the need for

a capillary pressure function. Capillarity enters instead through the energy equations. One

�nds a generalized Darcy law with relative permeabilities k

r

w

(S

w

; A

w

) � (S

w

� S

�

w

i

)

3

A

�2

w

of Brooks-Corey type that depend also on speci�c internal surface area. The irreducible

water saturation S

�

w

i

is determined as part of the solution in the same way as the wa-

ter saturation S

w

and the speci�c internal surface area of the water A

w

. The change of

the relative permeability k

r

w

with wettability conditions is also found to be in qualitative

agreement with experiment.
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The 2-Well problem in 3 dimensions

Bernd Kirchheim

We discuss properties of generalized convex hulls of the set K = SO(3) [ SO(3)H with

detH > 0. The question is motivated by the consideration of energy minimizing con�gu-

rations in shape memory alloys.

If K does not contain any rank-1 connection, we show that the quasiconvex hull of K is

trivial if H belongs to a certain (large) neighbourhood of the identity. It turns out that the

polyconvex hull of K can be nontrivial if H is su�ciently far from Id, while the (functional)

rank-one convex hull is always trivial.

This is joint work with G. Dolzmann, S. M�uller, V.

�

Sver�ak.

Some Mathematical Theories on Liquid Crystals

Chun Liu

Liquid crystal materials are, in fact, di�erent intermediate phases between isotropic 
uid

and crystalline solid. The understanding of such materials is the �rst step in studying

polymers and other more complicated structured 
uids. From the 
uid aspect of the

material, liquid crystals can be described by the conservation laws: mass, linear momentum

and energy. It also requires the special constitutive equations on the stress tensor and the

balance laws for the order parameters. These are also responsible for the non-Newtonian

features of the materials. From the solid point of the view, liquid crystals can store elastic

energy due to the order parameters (e.g. the orientational director for nematic and the

layer parameter for smectic). The coupling between the 
uid properties and the solid

behaviors gives many di�culties in dealing with such systems. In this talk, I will go over

some of the theories and approaches that we used in treating these coupled systems. We

will discuss the interaction between the 
uid velocity and the parameter con�gurations,

the relations between the stability and uniqueness to the higher order energy laws, as well

as some analytical and modeling open problems.

A mathematical model for a sphalerite-chalcopyrite phase change

Stephan Luckhaus

with K. Bente, Institut f�ur Mineralogie, Universit�at Leipzig.

The model is describing a phase change in a system of ZnS-FeS, CuFeS

2

which is di�usion

induced. The phase change corresponds to a symmetry breaking of the lattice induced by

the periodic (non random) distribution of Cu and Fe on metal ion sites.
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For the description of the di�usion process, the concentrations of Zn

2+

, Fe

2+

, Fe

3+

and

Cu

+

are needed. The overall model is of Stefan type:

@

t

c

i

= r(L

ij

r�

j

) + r

i

; where 1 � i; j � 4

�

j

=

@

@c

j

f(c); f(c) = minf�f

1

(c

�

) + (1� �)f

2

(�c

�

) j 0 � � � 1; c = �c

�

+ (1� �)�c

�

g

and f

1

, f

2

are free energies for sphalerite and chalcopyrite. The reaction rate is the rate of

oxidation of iron

Fe

2+

r

 ! Fe

3+

; r = �k

1

c

2

+ k

2

c

3

(2� 2(c

1

+ c

2

)� 3c

3

� c

4

):

That is the mass action law (with Arrhenius kinetics). One observation is that the di�usion

equation can be written as a system of 4 equations

@

t

c

i

= r � J

i

+ r

i

(conservation law)

and one inequality

@

t

f � r(J

i

�

i

)�Q

J

(J)�Q

�

J

(r�)�Q

r

(r)�Q

�

r

(�) (entropy production law)

where

�

denotes the Legendre transform.

Q

J

(J) =

1

2

J � L

�1

� J; Q

�

J

(r�) =

1

2

r� � L � r�

and Q

r

contains a logarithmic expression.

Independent di�usion processes are combined by adding corresponding Q s. Therefore it

is natural to split Q

J

as

Q

I

(J

1

; J

2

+ J

3

; J

4

) +Q

II

(J

2

� J

3

)

where Q

II

and Q

r

are small corresponding to the fastest processes.

Singular perturbation arguments lead then �nally to one elliptic equation for c

2

� c

3

and

a system of three di�usion equations for the metal ion movement.

Gradient systems with wiggly energies and related averaging problems

Govind Menon

We study a two-dimensional generalization of a model for the kinetics of martensitic phase

transitions proposed by Abeyaratne, Chu and James. We derive homogenized equations

for the macroscopic motion in certain regions of phase space, but these equations typically

do not have unique solutions. Generically most of the phase space breaks into a countable

number of domains, in the interior of which the homogenized dynamics are rectilinear.
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These domains have a Cantor-like structure originating in bifurcations of two parameter

families of circle di�eomorphisms. Consequently, the homogenized equations vary on all

scales. V.P. Smyshlyaev has studied this problem independently, and some of our results

are similar.

Shape Memory Alloys - Phenomenon - Simulation - Applications

Ingo M�uller

Shape memory alloys exhibit a strong dependence of their load-deformation curves upon

temperature. Thus at low temperature they are quasiplastic; their hysteresis loop contains

the origin and the deformations are due to conversion of one variant of martensite into

another one. At high temperature the load-deformation behaviour is pseudoelastic with

hysteresis loop in the �rst and third quadrant. Yield and recovery in this case are due to

an austenitic martensitic phase transition. A model is constructed which simulates this

behaviour. The model is based on rate law for the phase fractions and the transition

probabilities are those of an activated process akin to chemical reactions. Adjusting four

parameter by simple diagnostic experiments one obtains a predictive theory of the load-

deformation-temperature behavior of speci�c shape memory alloys. The model is tested

in a feedback control experiment on a loaded wire and it is found that there is very good

agreement between theory and experiment. Application of the theory include the automatic

adaptation of the pro�le of an airplane wing to the extent, and changing 
ight conditions.

Apart from feedback control the theory can also be used for online optimal control of the

wing shape. The most recent application has been to the self-adjustment of the winglets

of an airplane for the purpose of reducing the drag at constant lift.

Ostwald ripening in thin �lms

Barbara Niethammer

We rigorously derive a mean-�eld model for Ostwald ripening in two-dimensional systems

which arise in the growth of thin metallic �lms. This extends the classical LSW-theory in

two ways. First, it shows that an LSW-type model is valid also in two dimensions, even

though the formal derivation seems less convincing than in three dimensions. Second, it

clari�es the regime of validity and provides an inhomogeneous extension.

Thin viscous �lms

Felix Otto

The capillarity-driven spreading of a thin droplet of a viscous liquid on a solid plane is

modelled by the lubrication approximation, an evolution equation for the �lm height h.
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However, as a consequence of the no-slip boundary condition for the liquid at the solid

plane, logarithmic divergences in the viscous dissipation rate occur if the support of h

changes.

This well-known singularity is removed by relaxing the no-slip condition, thereby intro-

ducing a microscopic lengthscale b. Matched asymptotics suggests a relationship (Tanner's

law) between the speed of the contact line (the boundary of the support of h) and the

macroscopic contact angle (the slope of h near the boundary of its support), modulo a log-

arithm involving b. This dynamic contact angle condition, which balances viscous forces

and surface tension, is quite di�erent from the static contact angle condition (Young's law),

which balances just the surface tensions.

Tanner's law predicts a speci�c scaling for the spreading of the droplet. In a joint work with

L. Giacomelli, we rigorously derive the scaling of the spreading, which is consistent with

the one predicted based on Tanner's law, including the logarithmic terms. Mathematically

speaking, this amounts to estimates of appropriate integral quantities of the evolution

equation, which comes in form of a nonlinear parabolic equation of fourth order.

A mathematical model for di�usion-induced grain-boundary motion

Oliver Penrose

with J.W. Cahn, C. Elliott, P. Fife.

If a thin �lm of one metal, say Fe, is placed in the vapour of another metal, say Zn, the

boundaries between the crystal grains are often observed to move. Since the Zn atoms

cannot di�use directly into the Fe crystal, they dissolve in the Fe indirectly by di�using

in along the grain boundary which then moves aside and leaves Ni atoms dissolved in the

newly formed part of the growing crystal grain.

Our continuum model consists of two P.D.E.'s, one a di�usion-type equation for the con-

centration �eld, the other a Cahn-Allen type equation for a \crystallinity" �eld which is

+1 in the growing grain, �1 in the shrinking grain, and takes intermediate values in the

grain boundary. For realistic parameter values, the P.D.E.'s can be reduced using a shape-

interface approximation to a pair of ODE's. By solving these one can predict the speed

and cross-sectional shape of the moving grain boundary. An interesting feature is that the

model predicts two completely di�erent types of geometry for the moving grain boundary,

one connecting the two sides of the specimen, the other trailing back to in�nity inside it.

Self-similar singular solutions of the complex Ginzburg-Landau equation

Petr Plech�a�c

In the joint work with V.

�

Sver�ak (University of Minnesota) we studied self-similar sin-

gular solutions to the complex Ginzburg-Landau equation. In this talk we address the

10



open problem of existence of singularities for the complex Ginzburg-Landau equation.

Using a combination of rigourous results and numerical computations we describe a count-

able family of self-similar singularities. Our analysis includes the super-critical non-linear

Schr�odinger equation as a special case, and most of the described singularities are new

even in that situation. We also consider the problem of stability of these singularities.

On Ferroelastic Microstructures

Ekhard K.H. Salje

The theoretically predicted divergence at T ! T

C

of the width of a twin wall (rank-1

connected twins) in a 2

nd

order transition was observed experimentally in LaAlO

3

. Typical

wall thicknesses at T � T

C

are some nanometers with corresponding wall energies of

� 10

�2

J=m

2

. The results are fully compatible with LG potentials of the type

G =

Z

dr

3

f

1

2

A�

S

(coth

�

S

T

� coth

�

S

T

C

)Q

2

+

1

4

BQ

4

+

1

2

g(rQ)

2

g

where Q is the structural order parameter (e.g. Q = ru)). The atomic origin of G is

discussed.

Fast di�usion along twin walls was shown for Na and O di�usion in twinned Na

x

Wo

3�x

. Su-

perconducting twin walls were generated. Complex microstructures are strain dominated,

both in displacive and ferroelastic old systems. The dominant coarsening mechanism is

the formation and retraction of needle domains. Local theories for the analysis of needle

trajectories were brie
y discussed.

On the Geometric Structure of Cauchy's Theory of Stresses

Reuven Segev

A generalization of Cauchy's theory for the existence of stresses to the geometry of di�er-

entiable manifolds is presented using the language of di�erential forms. Body forces and

surface forces are de�ned in terms of the power densities they produce when acting on

generalized velocity �elds. The velocity �elds are sections of a vector bundle W over the

m-dimensional material manifold S. Thus, a body force on a body R is an W

�

-valued,

m-form on R and a surface force is a W

�

-valued, (m� 1)-form on @R.

The balance law is written in terms of the total power expanded by forces and it is viewed

as a boundedness or regularity assumption on the force functionals for the various bodies.

The normal to the boundary is replaced by the tangent space equipped with the outer

orientation induced by outwards pointing vectors.

In the resulting Cauchy's theorem stresses are modeled as m � 1, covector valued forms.

A stress induces a surface force by restriction to the tangent space to the boundary, while
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the outer orientation of the tangent space is taken into account. This operation, to which

we refer as inclined restriction, uses a sign rule based on an orientation of the material

manifold.

The special cases of volume manifolds and Riemannian manifolds are discussed. In the case

of a volume manifold, it is shown how a tensor can represent a stress form using the volume

element. Finally, the classical Cauchy formula is recovered for Riemannian manifolds.

The above construction is used in the case where W is the trivial line bundle, S is in-

terpreted as the space manifold so a typical R is interpreted as a control region. This

situation models the balance of a certain scalar property in space. It is shown that with-

out any additional geometrical structure this setting induces body points and material

structure associated with the given scalar property.

Mathematical problems in geometrically linear theory of phase equilibrium in

solids

Gregory Seregin

We discuss recent results on existence, relaxation and regularity for variational problems

describing phase equilibrium in solids in geometrically linear setting.

Anisotropic Lagrangian Averaged Navier-Stokes Equations

Steve Shkoller

We develop a new Lagrangian averaging procedure for the incompressible Navier-Stokes

(NS) equations. The method is based on \fuzzying" the Lagrangian 
ow map by composing

the exact 
ow with near-identity volume preserving di�eomorphisms �

�

, and then averaging

the kinetic energy of the fuzzy 
ow �

�

over all possible perturbations �

�

. Performing

asymptotic expansions aboaut � = 0 in the variational principle, averaging and computing

the �rst variation yields a new model of 
uid turbulence, which we call the anisotropic

Lagrangian Averaged Navier-Stokes (LANS) equations; those equations capture the large

scale 
ow of the NS equations (for spatial scales greater than � > 0), while averaging

over spatial scales smaller than �. The LANS model is a dynamically coupled system of

equations for the Lagrangian mean velocity U and the covariance tensor F . The mean U

is the �rst term in the asymptotic expansion; our theory also provides an auxiliary linear

PDE, a corrector, whose solution gives the second term in the asymptotic expansion. After

presenting the derivation, we state our theorem on the global well-posedness of 3D classical

solutions on domains with boundary with u = 0 BCs and prove the regular limits of zero

viscosity.
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Patterned Single and Double Layer Shape Memory Films

Manfred Wuttig

Stresses in �lms can be controlled by patterning. While planar �lms are in a state of biaxial

stress thin strips with a high aspect ratio (height to width) are in a state of uniaxial

stress on a substrate. We have recently prepared NiTi �lms on Si with aspect ratios

ranging from 10

�2

to 0:6. The �lms are deposited at room temperature and subsequently

annealed at 500

�

C for crystallization. The magnitude of the thermoelastic stresses which

developed during cooling back to room temperature was E=(1� 
)@��T (@� = di�erence

of coe�cients of thermal expansivity of NiTi and Si) and E@��T for low and high aspect

ratios.

The martensitic transformation can be controlled by stresses. We have used the thermo-

elastic stress to engineer a double layer �lm consisting of the rhombohedral and tetragonal

NiTi phases. The damping of this double �lm is 10 times larger than the damping of the

individual components strongly suggesting an interactive damping mechanism. Details of

this mechanism are presently unknown.

Non-Lipschitz minimizers of smooth uniformly convex functionals

Xiaodong Yan

with Vladim��r

�

Sver�ak.

We consider variational integrals of the form

I(u) =

Z




f(Du(x))dx; (1)

where 
 is a bounded open set with smooth boundary inR

n

, u: 
! R

m

,Du is the gradient

matrix of u and f: M

m�n

! R is a smooth uniformly convex function (i.e. there exists a

constant � > 0, such that for all � 2 M

m�n

; X 2 M

m�n

, the inequality f

p

i

�

p

j

�

(X)�

i

�

�

j

�

�

�j�j

2

holds.) with uniformly bounded second derivatives. We shall consider the problem

of regularity of minimizers of I. By a minimizer we mean a mapping u 2 W

1;2

(
;R

m

)

such that for any smooth mapping � : 
 ! R

m

compactly supported in 
 the inequality

I(u + �) � I(u) holds. When f is uniformly convex with uniformly bounded second

derivatives, it is not di�cult to see that u is a minimizer of I if and only if u is a weak

solution of the Euler-Lagrange equation of I, i.e. u is a weak solution of

@

�

f

p

i

�

(Du(x)) = 0; i = 1; � � � ; m: (2)

(Here and in what follows we use the summation convention.)

It is well known that when n = 2; m � 1 or n � 2; m = 1 f is a smooth uniformly convex

function with uniformly bounded second derivatives every minimizer of I(u) is smooth.
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Here we constructed counterexamples showing, among other things, that when m > 1 in

general for n � 3 we cannot expect Lipschitz continuity of the minimizer of a smooth

uniformly convex functional. Moreover, for n = 5 we �nd a locally unbounded solution

to (2). We recall that n = 5 is the �rst possible dimension where such an example is

possible. (When n � 4 each minimizer must be H�older continuous, since it belongs to

W

2;2+�

for some � > 0.) We also construct a completely new example for n = 4, m = 3.

The important new feature in this example is the low dimension of the target space. The

construction also gives a non-Lipschitz minimizer in this case. The mapping used in that

example is derived from the Hopf �bration S

3

! S

2

. In addition, as a byproduct of our

methods, we found an example (with n = m = 3) of non-uniqueness of weak solutions of

a type of elliptic systems in the spaces W

1;p

with 1 < p < 2.

A precise statement of our results is given in the following theorem (B

n

1

denotes the unit

ball in R

n

):

Theorem 1. i) Let u

�

: B

n

1

! R

m

be given by u

�

ij

=

x

i

x

j

jxj

1+�

�

1

n

jxj

1��

�

ij

, where m =

n(n+1)

2

� 1. Then for 0 � � <

n+1�

q

3(n+1)

n�1

q

3(n+1)

n�1

+1

, there exists a smooth uniformly convex

function f

�

:M

m�n

! R such that jD

2

f

�

j � c in M

m�n

and

divrf

�

(ru

�

) = 0 in R

n

:

ii) Let v

�

: B

4

1

! R

3

be given by v

�

(z; w) =

�

<(�zw)

r

�+1

;

=(�zw)

r

�+1

;

jwj

2

�jzj

2

2r

�+1

�

. Where z = x

1

+

ix

2

; w = x

3

+ ix

4

. For 0 � � <

p

7 � 2, there exists a smooth uniformly convex

function f

�

:M

3�4

! R such that jD

2

f

�

j � c in M

3�4

and

divrf

�

(rv

�

) = 0 in R

4

:

iii) Let w

�

: B

3

1

! R

3

be given by w

�

(x) =

x

jxj

1+�

. For

3

2

< � < 3, there exists a smooth

uniformly convex function f

�

:M

3�3

! R such that jD

2

f

�

j � c in M

3�3

and

divrf

�

(rw

�

) = 0 in R

3

:

Mountain pass solutions for a two-well energy

Kewei Zhang

Under small dead-load perturbations, and the natural boundary value condition (Neumann

condition), we establish the existence of an unstable critical point (mountain pass point) for

a variational integral in the form I

�

(u) =

R




W (Du(x))+�f(x)�u(x)dx for u 2 W

1;2

(
;R

N

)

with a two-well structure. The integrand we consider is the explicit quasiconvex relaxation

W (X) = Q dist

2

(X; fA; Bg) of the squared distance function due to Kohn. We show that

14



for su�ciently small � > 0, the energy I

�

has three critical points: a global minimizer, a

local minimizer and a mountain pass point. We introduce the notion of the Weak Palais-

Smale condition (WPS) to deal with the lack of compactness of the functional I

�

.

Edited by Anja Schl�omerkemper
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