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Die diesj�ahrige Tagung \Komplexe Analysis" fand unter der Leitung von J.P. Demailly

(Grenoble), K. Hulek (Hannover) und T. Peternell (Bayreuth) statt. Insgesamt nahmen

44 Mathematiker aus 9 L�andern teil; es wurden 19 Vortr�age gehalten. Einige Schwer-

punkthemen waren: Calabi-Yau-Mannigfaltigkeiten, Fl�achen allgemeinen Typs, Deforma-

tion reeller Hyper
�achen in komplexen Mannigfaltigkeiten, Hyperbolizit�at, Modulr�aume.

Neben Diskussionen gab es dar�uber hinaus eine intensive wissenschaftliche Zusammenar-

beit vieler Teilnehmer.

Abstracts

Fibrations in curves of low genus, their invariants and applications

Fabrizio Catanese (Universit�at G�ottingen)

A �bration of a smooth surface X onto a smooth curve B of genus g, f : X ! B is the

object of our study. We assume moreover f relatively minimal, g � 2.

The cases with g � 2 have been amply studied in the literature, but still existence problems

for g = 2 are wide open.

Motivated by the need to �nd constructive methods, particularly suited to the classi�cation

of minimal surfaces S of general type with low invariants K

2

S

; � = �(O

S

) = 1 � q + p

g

, I

described work in progress with R. Pignatelli, concerning the case g � 4. I also reported

on some applications, concerning Godeaux Surfaces (K

2

S

= 1; p

g

= 0) and surfaces with

q = P

g

= 1.

The main tool are some invariants of the relative canonical algebra <(f) =

L

1

n=0

V

n

, where

V

n

= f

�

(!

X=B

)

n

is a semipositive vector bundle by Fujita's theorem (!

X=B

= O

X

(K

X

�

f

�

K

B

)). There are two main cases:
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(I) The general �bre is non hyperelliptic, then the algebraic structure determines a

torsion sheaf T

n

:= coker(S

n

(V

1

) ! V

n

), and for instance, as observed by Reid,

0 � h

0

(T

2

) for g = 3 yields the Horikawa inequality K

2

X

� 3�� 10(b� 1)

(II) Every F is hyperelliptic, then there exists an involution � : X ! X (�

2

= 1)

commuting with f , and we get a splitting V

n

= V

+

n

� V

�

n

, and similarly for g = 2,

torsion sheaves T

�

n

= coker(S

n

(V

1

)! V

�

n

), keeping track that V

1

= V

�

1

.

I did not have time to explain in detail how h

0

(T

2

) determines h

0

(T

n

) for g � 4, and to

describe the precise results obtained for g = 3; 4 and general F not hyperelliptic. But I

could explain the Structure Theorem.

Theorem. Let g = 2 and A the subalgebra generated by V

1

; V

2

. Then A

+

= A

even

, A

�

=

A

odd

, V

+

3

is a line bundle of degree K

2

x

� � � 7(b � 1), and <(f) is a free A� module

<(f) = A�A[�3]
 V

+

3

. The ring structure is given through a nowhere vanishing section

� 2 H

0

(B;A

6


 (V

+

3

)

�2

).

Moreover, the algebra A is completely determined by the rank 2 bundle, V

1

, and the exten-

sion

(�) 0! S

2

(V

1

)! V

2

! T

2

! 0;

where T

2

is locally principal. Thus (V

1

; (�); V

+

3

; �) determine completely <(f).

Remarks on the canonical map of surfaces of general type

Ciro Ciliberto (joint work with R. Pardini and F. Torena)

Let X be a smooth, projective, complex surface of general type. Let � 9 9 K� � P

p

g

(X)�1

be its canonical map, whose image � I assume to be a surface. Let � : S ! � be a

minimal desingularisation of �. Suppose � has degree d > 1. Then a classical result of

Babbage-Beauville says that:

(i) either p

g

(S) = 0;

(ii) or S is of general type and � : S ! � is the canonical map of S.

There are plenty of examples of case (i), which should be regarded as the standard case

in this situation. As for the non standard case (ii), few examples have been known in the

literature so far. In particular, only one family of examples with unbounded invariants, due

to Beauville. In this talk I present more families of examples with unbounded invariants

and, after having analyzed some of their common features, I prove some classi�cation

results.
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Logarithmic Jet Bundles and Applications

Gerd Dethlo� (Universit�e de Brest, France)

Jet bundles have become an important tool in complex geometry. J.P. Demailly presented a

construction of projective jets which are closer to the geometry of holomorphic curves than

the usual jets. In order to study the geometry of quasiprojective varieties, it is desirable

also to have a logarithmic version of these projective jet bundles and of strictly negatively

curved pseudometrics on them.

In the present talk we explain how one can establish this logarithmic generalization of

Demailly's construction explicitely via logarithmic coordinates. These coordinates are very

important for applications, since they admit explicit computations.

The underlying work of this talk, which is joint work with Steven Lu (University of Wa-

terloo, Canada), will appear in Osaka J. of Math.

The Poincar�e series of a quasihomogeneous surface singularity

Wolfgang Ebeling (Universit�at Hannover)

Let (X; x) be a normal surface singularity with good C

�

�action and with orbit invariants

fg; b; (�

1

; �

1

); : : : ; (�

n

; �

n

)g. We consider the Poincar�e series p

A

(t) of the coordinate algebra

A of (X; x). Write

p

A

(t) =

�

A

(t)

 

A

(t)

where  

A

(t) = (1� t)

2�r

r

Y

i=1

(1� t

a

i

):

If (X; x) is a Kleinian singularity not of type A

2n

then we derive from the McKay corre-

spondence that �

A

(t) and  

A

(t) are the characteristic polynomials of the Coxeter element

and the a�ne Coxeter element respectively.

If (X; x) is a hypersurface singularity or a certain ICIS then we can show that the poly-

nomial �

A

(t) is in a certain sense dual to the characteristic polynomial of the monodromy

operator of the singularity.

There are relations to the mirror symmetry of K3 surfaces and to automorphisms of the

Leech lattice.

Complex vector bundles and automorphic forms

V. Gritsenko (Lille, St. Petersburg)

The elliptic genus of a compact complex manifold was introduced as a holomorphic Euler

characteristic of some formal power series with vector bundle coe�cients. EG is an auto-

morphic form in two variables only if the manifold has trivial �rst Chern class. In physics

such a function appears as the partition function of N = 2 superconformal �eld theory.

3



In my talk I de�ne the modi�ed Witten genus of an arbitrary holomorphic vector bundle

over a compact complex manifold. It is a Jacobi form of weight zero for arbitrary vector

bundles. This construction gives us the Witten genus and the elliptic genus as particular

cases. We formulate also some questions about the existence of some vector bundles with

prescribed homological invariants.

Toplogical Mirror Symmetry

Mark Gross

We consider the Strominger-Yau-Zaslow conjecture in the topological category, i.e. we

study how to dualize proper continuous T

3

� �brations f : X ! B with some regularity

assumptions on the singular �bres. After classifying monodromy at semistable singular

�bres, we are able to prove that duals to such �brations exist. We then construct a torus

�bration on the quintic threefold in P

4

which has the necessary properties. and whose dual

is provably di�eomorphic to the mirror quintic.

This �bration is constructed by brute force; if � is a 4� simplex, we build a �bration with

base @� and discriminant locus supported on the 2� skeleton of �. On any 2� face, the

discriminant locus takes the form

























J

J

J

J

J

J

J

J

H�H�H�H�H�

H�H�H�H�

H�H�H�

H�H�

H�

One speci�es the monodromy of the torus �bration about this graph, and then compacti�es.

One applies Wall's theorem to prove that we have obtained the quintic and, after dualizing,

its mirror.

Moduli spaces for hypersurface singularities via Frobenius manifolds and

Gauss Manin connection

Claus Hertling (Bonn)

Theorem. Fix any isolated hypersurface singularity f . The set of right equivalence classes

in the �� homotopy class of f is an analytic geometric quotient.

The �rst step of the proof consists in writing the set as a quotient of an algebraic variety

by an algebraic group, using jets of singularities and jets of coordinate changes. The proof

that this quotient is an analytic geometric quotient uses the construction of Frobenius
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manifolds in singularity theory, which is due to K. Saito and M. Saito (1983), a result of

Scherk, and certain period maps from ��constant strata to a classifying space for polarized

mixed Hodge structures.

The base spaceM of a semiuniversal unfolding of a singularity f can be equipped with the

structure of a Frobenius manifold, that means, with a multiplication on the holomorphic

tangent bundle TM, with an Euler �eld and with a metric on TM, such that they satisfy

certain conditions. The multiplication and the Euler �eld come from Kodaira-Spencer

isomorphism and are unique. The metric is not unique. It is induced by the choice of a

primitive form of K. Saito, and that comes from the choice of an opposite �ltration to a

Hodge �ltration of a polarized mixed Hodge structure. The construction of the primitive

form uses heavily the Gauss-Manin connection.

The de�nition of a Frobenius manifold was given together with the de�nition of an F�

manifold (Manin, Hertling), a manifold with a multiplication on the tangent bundle which

satis�es a certain integrability condition.

Deforming manifolds by mean curvature and Ricci 
ow

Gerhard Huisken (T�ubingen)

Mean curvature 
ow of hypersurfaces and Ricci 
ow of Riemannian metrics are both

parabolic systems of second order with close analogies between them. The Ricci 
ow

asks to extend a given metric g

0

on a manifold N by solving the equation

d

dt

g

ij

(p; t) = �2R

ij

(p; t)

where R

ij

is the Ricci curvature of the metric g at time t, while the mean curvature 
ow

aims to deform an initial hypersurface F

0

:M

n

! (N

n+1

; g) in some Riemannian manifold

according to the equation

d

dt

F (p; t) = H(p; t) � �(p; t)

where H and � are mean curvature and unit normal. Analogies and recent results for these


ows are discussed and it is proposed to study more closely the coupled problem, where a

surface moves in a manifold obeying Ricci 
ow for its metric. It is shown that interesting

cancellation occur in this case and some convergence results are given for two dimensional

Ricci 
ow combined with curve shortening 
ow.

5



Families of singular rational curves

Stefan Kebekus (Universit�at Bayreuth)

Let X be a projective variety (not necessarily normal) and H � RatCurves

n

(X) a covering

family of rational curves. We assume that the following compactness assumption holds

which is satis�ed e.g. if the curves are of minimal degrees: if x 2 X is general point, then

the subfamily H

x

of curves which contain x is compact. In this setup we show that only

�nitely many curves associated with H

x

are singular at x, and that the singularities are

immersed. If a line bundle L 2 Pic(X) exists which intersects the curves with multiplicity

2, then all curves are smooth at x. We believe that this is interesting for the following

reasons:

(1) It gives a partial answer to the question to what extent the geometry of minimal

rational curves resembles the geometry of lines in P

n

.

(2) We can show that the tangent map H

x

9 9 KP(T

X;x

) which associates a curve with its

tangent space is �nite. This map has been studied extensively by Hwang and Mok.

(3) We show that two su�ciently general points on X de�ne at most one curve.

(4) We give a characterization of P

n

which comprises and extends the known results.

Deforming real hypersurfaces by the trace of the Levi form

W. Klingenberg

Given a closed immersed real hypersurface F

0

: M

2n�1

,! C

n

, we study the following

problem for F : N

2n�1

� [0; T )! C

n

:

d

dt

F (p; t) = L(p; t)�

F

(p; t)

F (p; 0) = F

0

(p):

Here, �

F

denotes the unit normal and L the trace of the Levi form of N

t

= F (N; t). We

prove the following in collaboration with G. Huisken:

Theorem. There exists T > 0 admitting a solution of the above initial value problem with

sup

N

t

jhj

2

+ sup

N

t

j 5 hj

2

t!T

�!1;

where h denotes the second fundamental form of N

t

.

Theorem. Let N

3

0

,! C

2

be weakly pseudoconvex. Then the solution F above has strictly

pseudoconvex surfaces N

3

t

for all t 2 (0; T ).
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The �rst theorem is proved using elliptic regularization. The second theorem uses a Hopf-

type maximum principle for the weakly elliptic operator corresponding to L.

On a non-K�ahlerian analogue of nonsingular complex projective toric variety

Laurent Meersseman

In the �rst part of the talk, a construction of compact complex \deeply" not projective

manifolds is given; the aim is to describe a large family of examples generalizing those given

by Hopf (S

2n�1

� S

1

) and those given by Calabi and Eckmann (S

2p�1

� S

2q�1

). \Deeply"

not projective means that these manifolds are not projective but moreover that they do

not admit any K�ahlerian modi�cation. They are constructed as quotient space of an open

dense subset of the n�projective space by an action of C

m

. The crucial fact is that these

non projective manifolds are entirely determined when a set of n vectors �

1

; : : : ;�

n

of C

m

is given: from this data, the action is uniquely characterized and so are the manifolds.

Besides holomorphic properties of the manifolds can be expressed in terms of these �

i

's;

for example, some Hodge numbers, the algebraic dimension, : : : .

In the second part (which is a joint work with Alberto Verjovsky), the relation to projective

toric varieties is explained.

Theorem. Let N be a manifold as in part I. Then there exists a quasi-regular projective

toric variety X and a small pertubation N

0

of N such that N

0

! X is a principal holo-

morphic bundle with a compact complex m� torus as �bre and with singular �bres above

the singular points of X.

Theorem. Conversely, given any quasi-regular projective toric variety X, for any choice

of an ample divisor on it, there exists some m 2 N

�

, and some manifold N as in part I

such that N �bres on X with m� torus as �bre as in the previous theorem.

As examples of these manifolds there are connected sums of products of spheres including

](8)s

4

� S

4

; ](9)S

3

� S

5

. As examples of �brations one can obtain a principal bundle in

elliptic curves with S

3

� S

3

(with an adequate complex structure) as total space and any

Hirzebruch surface F

a

as basis.

Complex symplectic manifolds and projective spaces

Y. Miyaoka (joint work with N. Shepherd-Barron)

A K�ahlerian manifold M of dimension 2n is said to be complex symplectic if M carries a

global holomorphic 2� form ! which is d�closed and whose highest wedge �

n

! is nowhere

vanishing.

Our main results are the following
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Theorem. Let M be a compact complex symplectic manifold and � :M !

^

M a projective

birational morphism onto a normal K�ahlerian variety. Let E � M be an irreducible com-

ponent of the exceptional locus of � and Y �

^

M its image. Then Y is a complex symplectic

variety and a general �bre of �

jE

is a pseudo-projective space after normalization

Theorem. Let M be a projective primitive complex symplectic manifold (i.e. H

0

(M;


2

M

)

is generated by the symplectic form !) and � : M ! N be a non trivial �bring. (This is

a Lagrangian torus �bration by a theorem of Matsushita). Assume that � admits a local

section at every p 2 N . Then N is a pseudo-projective space.

Here a projective, normal, uniruled variety Z is said to be a pseudo-projective space if

every rational curve C can be deformed to a rational curve C

0

which contains an arbitrarily

prescribed pair of points (z

1

; z

2

) in Z.

Pseudoconvex hypersurfaces in complex manifolds

Takeo Ohsawa (Nagoya University)

Let 
 be a complex manifold, let M be real C

1

hypersurface of 
 which is the boundary

of a domain D. M is said to be pseudoconvex if D is locally Stein. The Levi form l

M

is de�ned as that of a de�ning function � of D. Take any T 2 C

1

(M;TM) such that

d

c

�(T ) = 1 and put � = �L

T

d

c

�, where L

T

denotes the Lie derivative. If a pseudoconvex

hypersurface M contains a complex curve C, then �jC is closed, and de�nes a class in

H

1

(C;R). In view of Boas-Straube's regularity theorem and Barret's example, a natural

question is on the geometry of M along C when the cohomology class [�jC] is zero.

Theorem. dim
 = 2 and [�jC] = 0 =) l

M

vanishes to 1 order along C.

As an application we have

Theorem. dim
 = 2, M 2 C

1

, compact, almost strongly pseudoconvex =) 9� 2

PSH(D) such that � + log �

M

is bounded and � is strictly plurisubharmonic outside a

compact subset of D.

If l

M

� 0, M is said to be Levi 
at.

Theorem. 
 compact and of dimension � 2, M 2 C

1

, compact and Levi 
at =) the

normal bundle of M is not positive.

Corollary. There are no C

1

compact Levi 
at hypersurfaces in P

n

if n � 2.
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A Numerical Primary Decomposition

Andrew Sommese

Let

f =

8

>

<

>

:

f

1

(x

1

; : : : ; x

n

)

.

.

.

f

N

(x

1

; : : : ; x

n

)

be a system of polynomials on C

n

. Let V (f) denote the reduced set of zeroes of f and f

�1

(0)

the possibly non reduced zero scheme. A algorithm (joint work with J. Verschelde and C.

Wampler) is given which produces a �nite set of solutions Z of f = 0 and decompositions

Z =

dimV (f)

[

i=0

Z

i

=

dimV (f)

[

i=0

[

j2Z

i

Z

ij

with unique integers �

ij

� 1 such that if Z

i

is the union of all dimension i irreducible

components fZ

ij

jj 2 Z

i

g of V (f) and �

ij

is the multiplicity of Z

ij

in f

�1

(0), then

1) Z

ij

consists of degree Z

ij

\generic points" of Z

ij

; and

2) �

ij

� �

ij

with �

ij

= 1, �

ij

= 1.

Moreover equations cutting out any of the Z

ij

are produced if desired. The algorithm is a

"probability one" algorithm based on homotopy continuation, generic slicing, and generic

projection. One consequence is the �rst numeric algorithm to pick out the isolated solutions

and only the isolated solutions of a system f . The preprint containing the details for this

algorithm is available at www.nd.edu/~sommese.

Di�eomorphism type, Braid Monodromy type: Computational Methods

Mina Teicher

In a joint work with Kulikow in 1998 we proved that BMT ) Di� (i.e. two surfaces

which are of the same Braid Monodromy type are di�eomorphic). In the talk I presented

the BMT of a surface and presented an e�cient computer algorithm that reduced the

complexity of computing the BMT to values that make it computable.

This algorithm can also be applied for the category of 4-manifolds which have a generic

projection at a nicely behaved branch curve.
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Gauge theoretical Gromov-Witten invariants, Quot spaces and full

Seiberg-Witten invariants of ruled surfaces

Ch. Okonek (University of Z�urich), Andrei Teleman (CMI, University of Marseille I)

We introduce gauge theoretical invariants for triples (F; �;K) where F is a symplectic

almost complex manifold, � :

^

K � F ! F a symplectic almost holomorphic action of

a compact Lie group

^

K and K is a closed normal subgroup of

^

K. The invariants are

obtained by evaluating canonical cohomology classes on moduli spaces of solutions of cer-

tain vortex type equations on Riemannian surfaces. In the case K = f1g one obtains

spaces of sections on F�bundles over Riemannian surfaces, hence the new invariants can

be regarded as generalizations of the classical Gromov-Witten invariants. For the tuple

(Hom(C

r

; C

r

0

); natural action of U(r) � U(r

0

); U(r

0

)) we give explicit descriptions of the

moduli spaces in terms of moduli spaces of �� stable holomorphic pairs. In the particular

case r = 1 we compute the invariants explicitly. Algebraic geometric applications are given:

We show that, via the pushforward construction, the Seiberg-Witten invariants of ruled

surfaces can be identi�ed with the newly introduced invariants of the base curve in the

studied case r = 1.

Finally we discuss the relation of the gauge theoretical invariants associated with a tuple

(F; �;K) to the (twisted) Gromov-Witten invariants of the symplectic quotient �

�1

K

f0g=K.

Large Complex Structure Limits of K3 Surfaces

P.M.H. Wilson, University of Cambridge

The Strominger-Yau-Zaslow Conjecture leads to the question of the behaviour of the Ricci


at K�ahler metric g on a Calabi-Yau n� fold X if one approaches a large complex struc-

ture limit point in moduli. In particular, it has been conjectured that under appropriate

conditions, the corresponding Riemannian manifolds (X

i

; g

i

) will converge (in the sense of

Gromov-Hausdor�) to a compact metric space (X

1

; d

1

), with X

1

homeomorphic to S

n

and d

1

induced from a (known) Riemannian metric on X

1

n � for some codimension 2

set � { here X

1

should be thought of as the base of the special Lagrangian torus �bration

predicted by the SYZ conjecture and � as the discriminant locus.

In joint work with Mark Gross (DG/0008018), we study this conjecture for K3 surfaces.

By mirror symmetry for K3s and a standard trick, the problem may be reinterpreted in

terms of a K�ahler degeneration on some �xed elliptic K3 surface X, where the K�ahler

class approaches the wall of the K�ahler cone corresponding to the �bration { i.e. holding

the volume of X to be one, the area � of the elliptic �bres tends to zero. For small �,

we are able to construct a very accurate approximation to the Ricci 
at metric (error

= O(e

�

c

�

)) by glueing a semi-
at metric away from the singular �bres (assumed of type

I

1

) with Ooguri-Vafa metrics in a neighbourhood of each singular �bre. This glued metric

has Ric = O(e

�

c

�

); by running Yau's argument for the existence of a Ricci 
at metric with

a given K�ahler class, we can show that the glued metric is very close to the Ricci 
at one

(quantities which get large do so only polynomially in �

�1

, and these are easily dealt with
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by the factor e

�

c

�

). The above conjecture for K3 surfaces then follows, using this close

approximation to the Ricci 
at metric.

Holomorphic Curves in Semi-Abelian Varieties

J�org Winkelmann (Basel, Tokyo)

We (Junjiro Noguchi, Katsutoshi Yamanoi and me) proved a second main theorem for

holomorphic curves in semi-abelian varieties.

Theorem. Let M be a semi-abelian variety with equivariant compacti�cation M ,! M

such that 0 ! (C

�

)

g

! M ! T ! 0 and 0 ! (P

1

)

g

! M ! T ! 0, B = M nM . The

boundary B is naturally strati�ed B =

�

S

B

i

. Let D be a divisor on M such that B

i

6� D

i

for all i. Let f : C !M be holomorphic and non-constant. Then

T

f

(r; c

1

(D)) = N

k

0

(r; f

�

D) +O(log r)

if f is of �nite order and

T

f

(r; c

1

(D)) = N

k

0

(r; f

�

D) +O(logT

f

(r; c

1

(D))) +O(log r)

otherwise.

Preprint available as math.CV/9912086.

Hyperbolic surfaces in P

3

arising from symmetric squares of curves

M. Zaidenberg (Grenoble)

This is a report on a joint work with B. Shi�man, Intern. J. Math. 11:1, 2000.

After recalling main facts of hyperbolic complex analysis, we give a brief survey on the

present day situation in the Kobayashi problem of describing the class of hyperbolic hy-

persurfaces in P

n

. The main progress (Demailly-El Goul, McQuillan) is the theorem which

says that a very generic surface of degree d � 21 in P

3

is Kobayashi hyperbolic. Examples

are known starting with degree 11 (Demailly-El Goul, Siu-Yeung). These are based on a

careful analysis involving Nevanlinna theory, jet di�erentials and algebraic foliations.

Here we show how to obtain a simple example of a singular (but smooth after deforming)

hyperbolic surface of degree 16 in P

3

, taking an explicit smooth plane quartic C and

(bi-)canonically embedding the symmetric square C

2

of C into P

8

followed by a generic

projection into P

3

. Such a surface is hyperbolic if and only if so is its double curve; the latter

is indeed hyperbolic bacause it has geometric genus 142. In fact, we show (by computing

and comparing the associated numerical invariants) that 16 is the minimal possible degree

in this procedure, and that for a genus g � 3 curve C with general moduli, choosing any

very ample divisor on the symmetric square C

2

of C, we always get a hyperbolic surface.

Edited by Thomas Eckl
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