
Mathematisches Forschungsinstitut Oberwolfach

Tagungsbericht 38/2000

Niedrigdimensionale Topologie

17. September { 23. September 2000

This meeting was organized by Michel Boileau (Toulouse), Klaus Johannson (Knoxville)

and Heiner Zieschang (Bochum).

The main �eld of this conference has been di�erent aspects of classical three{dimensional

topology. In addidtion, some studies and results of two{dimensional topology and geomet-

ric group theory have been presented.
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Abstracts

A proof of the Orbifold Theorem

Daryl Cooper

(joint work with C. Hodgson and S. Kerckho�)

A geometric orbifold is the quotient of a homogeneous Riemannian manifold by a

discrete group of isometries. A (topological) orbifold has the local structure of a geometric

orbifold. It is locally modelled on the quotient of Euclidean space by a �nite group of

isometries. These models �t together in a way that resepects the local group actions.

A 3{orbifold is orbifold{irreducible if every 2{suborbifold with positive orbifold Euler

characteristic bounds the quotient of a 3{ball by a �nite group. A closed 3{orbifold is

orbifold{atoroidal if there are no orbifold{essential Euclidean 2-suborbifolds.

The Orbifold Theorem

A closed locally orientable, orbifold{irreducible, orbifold{atoroidal 3{orbifold with non{

empty 1{dimensional singular locus is geometric.

The proof of the Orbifold theorem splits into two parts depending on whether or not the

orbifold fundamental group is �nite or in�nite. The case of in�nite orbifold fundamanetal

group was completed during 1999. A geometric 3-orbifold with �nite orbifold fundamental

group is spherical. The the proof in this case has only been completed this year. The

proof of the orbifold theorem is a deformation argument. One of the possible outcomes

of the deformation is a Euclidean cone metric on the orbifold with cone angles which are

smaller than the required orbifold angles. One must show that such an orbifold has either

a spherical or S

2

�R structure. If, in addition, the orbifold has �nite orbifold fundamental

group it is called pre{spherical.

The last issue in the proof of the Orbifold Theorem has been to show that a pre{

spherical orbifold is spherical. In the case that the singular locus is a 1{manifold, this was

done using Hamilton's theorem on Ricci 
ow. However when the singular set is a graph

there are technical problems (smoothing a singular Euclidean metric to obtain one with

non{negative Ricci curvature) which seem to make this approach di�cult.

The smoothing problem in the case the singular set is a 1{manifold is basically solved

using a process which smoothes a metric on the a 2{dimensional disc with a cone point.

One just \rounds" the metric at the cone point with sandpaper. This provides a way to

smooth a product metric (disc with cone pt) x interval.

The next step is to observe that this smoothing is invariant under an involution which

reverses the interval and is a re
ection on the disc factor. In this way one is able to smooth

certain Euclidean cone metrics at certain vertices. A 3{orbifold is dihedral if every vertex

has local group a dihedral group. This leads to a proof that pre{spherical orbifolds are

spherical in the dihedral case. One now deduces the non{dihedral case from the dihedral

case by the technique of re{labelling.
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The Orbifold Theorem

Joan Porti

(joint work with M. Boileau and B. Leeb)

The purpose of this talk is to announce a complete proof of the Orbifold Theorem and

to focus on the �nal part of the proof. This talk is coordinated with the previous talk by

D. Cooper, who obtained a di�erent proof in a joint work with C. Hodgson and S. Kerckho�.

The situation at the end of the proof of the orbifold theorem is the following: we have

an orbifold O and a sequence C

n

of hyperbolic cone manifolds with the same combinatorial

type as O and increasing cone angles. The sequence C

n

collapses in a uniform way: it can

be re-scaled to converge to a compact Euclidean cone manifold with the same combinatorial

type, and its cone angles are less than the orbifold angles. We prove that in this situation

O is spherical. The di�cult case occurs when O has a singular vertex whose isotropy group

is not dihedral. We give an argument that uses comparison techniques and the variety of

representations into SU(2)� SU(2)

�

=

Spin(4).

Non{integral toroidal surgeries

and unknotting number one tangle sums

Cameron Gordon

(joint work with John Luecke)

M. Eduave{Mu~noz has constructed in�nitely many knots K such that K = T

1

[ T

2

, T

i

nonsplit tangles, i = 1; 2 and unknotting number u(K) = 1. Passing to the 2{fold branched

cover gives hyperbolic knots in S

3

with m=2{Dehn surgeries giving toroidal manifolds. We

show that any knot with this porperty must look very much like Eduave{Mu~noz's examples.

Theorem. Let K be a hyperbolic knot in S

3

such that K(m=l) is toroidal for some l � 2.

Then

(1) l = 2,

(2) K arises from the 2{fold branched covering construction outlined above,

(3) K(m=2) = X

1

[

b

T

X

2

,

b

T an incompressible torus such that j

b

T \surgery core j = 2,

(4) X

i

is a Seifert �ber space =D

2

with two singular �bers with multiplicities q

i

; q

0

i

,

i = 1; 2 and

(5) q

1

is 2 or 3.

Corollary. If K = T

1

[ T

2

, with T

i

; i = 1; 2 nonsplit tangles and u(K) = 1, then T

i

is a

sum R

i

+R

0

i

of rational tangles R

i

; R

0

i

for i = 1; 2 and R

1

= 1=2 or R

1

= 1=3.

An interesting open problem is to eliminate q

1

= 3 from (5).

The topology of limit sets

Brian Bowditch

A "Kleinian Group" is a group that acts isometrically and properly discontinually on

hyperbolic n-space H

n

. Such a group acts by homeomorphism on its limit set �� � @H

n

.

In fact, the action on �� is a "convergence action" in the sense of Gehring and Martin.

We describe some recent results which relate the algebraic structure of such groups to the

dynamics of such actions on the topology of ��. Of particular interest is the case where �

is geometrically �nite. This �ts into the more general context of "(relatively) hyperbolic

groups" in the sense of Gromov.
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The theorem states that a hyperbolic group can be characterized as a converge group

acting on a perfect metrizable compactum such that every point is a canonical limit point.

Suppose that � is a hyperbolic group (e.g. a geometrically �nite Kleinian group without

parabolics). In this context Stalling's theorem tells us that @� is connected i� � does not

split over any �nite subgroup. In this case a result of Bestvina{Mess tells us that @� is

locally connected if @� has no global cut point.

Using ideas of Levitt and Swarup, one can show that certain convergence actions on

continua have the property that every global cut point is a parabolic point. Putting this

together with Bestvina{Mess, the fact that a hyperbolic group has no parabolics, we deduce

that @� is always locally connected. With some additional work, one can deduce a similar

result in the relative case. In particular this applies to geometrically �nite Kleinian groups.

Minimal surfaces in hyperbolic 3{manifolds

Hyam Rubinstein

By recent work of Gabai, Meyerho� and Thurston it is known that a hyperbolic metric

which is complete and �nite volume is a homotopy invariant on a 3{manifold. So closed

minimal surfaces embedded or immersed in 3{manifolds with such hyperbolic metrics give

rise to interesting invariants (area, second fundamental form, etc.).

In work with T. Pitts (Texas A&M), a minimax method was developed to construct

unstable minimal surfaces in the isotopy classes of strongly irreducible Heegard splittings,

for 3{manifolds with bumpy metrics. Using techniques of B. White, this can be used to

get such minimal surfaces in the case of hyperbolic metrics. Z

2

{homology can give rise to

nonorientable surfaces with multiplicity 2, so must be avoided.

The monotonicity formula can then be used to obtain a lower bound for the Heegard

genus of a closed hyperbolic 3{manifold in terms of the injectivity radius. For cusped

manifolds or those with short closed geodesics, the injectivity radius can be computed over

a 2{complex (the Ford domain).

Thurston has suggested that closed hyperbolic 3{mainfolds may all have immersed sur-

faces with principal curvature � 1, which are �

1

{injective. A polyhedral approach (work

with I. Aitchison and S. Matsumoto) was given to the �gure eight knot space, showing

that surfaces which are immersed, normal and do not have adjacent quadrilaterals can be

smoothed to have principal curvatures � 1. B. Andrews (ANU) has recently shown that

such surfaces 
ow to unique minimal surfaces.

Universal covering spaces of closed 3{manifolds

are simply{connected at in�nity (�

1

1

f

M

3

= 0)

Valentin Po

�

enaru

The main theorem of the talk is already announced in the title. Here is a very sketchy

idea about the methods of proof.

Theorem 0. Let V

3

be an open simply-connected 3{manifold. Assume that for some

n 2 Z

+

we can �nd a geometrically simply{connected smooth manifold X

n+3

such that

V

3

� 0 � X

n+3

�

�

i

//

V

3

� B

3

;

the inclusion i being proper. Then �

1

1

V

3

= 0.
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[Here g.s.c. means without handles of index � = 1.] For any 3-manifold N

3

, with

@N

3

= ;, we denote

(1) N

3

h

def

= N

3

� fa closet tame totally disconnected subsetg:

The �rst ingredient of the proof is the construction of an \S

u

-structure" for an arbitrary

V

3

(like in theorem 0). This is a certain X

2

f

�! V

3

with certain properties not to be

developed here. Anyway, the open regular neighbourhood Nbd(fX

2

) is well de�ned, and

for jS

u

V

3

j

def

= Nbd(fX

2

)�B

n

(n high) we get a diagram

(2)

V

3

h

� 0 � jS

u

V

3

j

�

�

proper

//

V

3

h

�B

n

:

A second structure S

b

V

3

is introduced, very closely related to S

u

V

3

. An (n+3)-dimensional

manifold jS

b

V

3

j is canonically associated to S

b

V

3

. For open simply-connected V

3

's, this

jS

b

V

3

j is automatically g.s.c. but, generally speking, it fails to satisfy something like (2)

above

Theorem 1. If V

3

=

f

M

3

the S

u

f

M

3

(and hence the associated S

b

f

M

3

) can be choosen to

be �

1

M

3

-equivariant.

Hence S

u

f

M

3

, S

b

f

M

3

descend to S

u

M

3

, S

b

M

$

.

Theorem 2. Because M

3

is compact

(3) jS

u

M

3

j

DIFF

= jS

b

M

3

j:

Our constructions are functorial and so

jS

u

M

3

j e= jS

u

f

M

3

j; jS

b

f

M

3

j = jS

b

M

3

j e :

Hence, (3) imples that

(4) jS

u

f

M

3

j = jS

b

f

M

3

j:

The (n + 3)-manifold appearing in (4) above is now g.s.c. (because

f

M

3

is open simply

connected) and satis�es (2). Theorem (0) implies then that �

1

1

f

M

3

= 0.

Arithmetic knots in closed 3{manifolds

Mark D. Baker

(joint work with A. Reid (U. Texas{Austin))

Let M be a closed, orientable 3{manifold. A link l � M is called arithmetric if

Mnl

�

=

H

3

=� where H

2

is hyperbolic 3{space and � � PSL

2

(C ) is a torsion{free sub-

group commensurable with a Bianchi{group PSL

2

(O

m

).

Since the �gure eight knot complement is both arithmetric an universal, it follows thatM

contains an arithmetric link. A natural question therefore is: does every closed orientable

3{manifold contain an arithmetric knot? One motivation for this question is that an

a�rmative answer would imply the Poincar�e Conjecture!

In our talk we prove that this is not the case (alas) by giving a classi�cation of the odd

order lens spaces that contain an arithmetric knot:

Theorem. Let L be a lens space with j�

1

(L)j = r odd. If L contains an arithmetric knot

K, then r = 5 and LnK is homeomorphic to either the sister of the �gure eight complement

or the double cover of the �gure eight knot complement.
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The proof uses the topology of the principal convergence manifolds H

3

=�(I) as well as

the subgroup structure of PSL

2

(F

p

).

Circle packings on C P

1

{surfaces

Sadayoshi Kojima

(joint work with Ser Peow Tan (Singapore National Univ) and Shigeru Mizushima

(Tokyo Institute of Technology))

A C P

1

-surface, or better known as a Riemann surface with a projective structure, is

by de�nition a surface locally modeled on the Riemann sphere with the action of projec-

tive transformations. A C P

1

-structure is not a Riemannian structure, however, since a

projective transformation maps a circle to a circle, the circle does make sense.

Given a triangulation � on a surface �

g

of genus g � 2. When � is realized as a nerve

of the packing on some C P

1

-surface, assign to each edge e a real number coming from the

cross ratio of vertices of two triangular regions touched to e. We show that the set of such

cross ratio parameters, denoted by C

�

, is a real algebraic variety of dimension � 6g � 6.

If � contains only one vertex, in other words, a corresponding packing consists of single

circle, C

�

is nonsingular and of dimension = 6g � 6.

We do not know C

�

injects to the space of all C P

1

-structures on �

g

which is homeo-

morphic to the Euclidean space of dimension 12g � 12, however a further composition to

the space of PSL

2

(C )-representations by assigning holonomy is shown to be a regular map.

When g = 1, more detailed description including the relation with the uniformization can

be obtained.

Acylindrical Splittings of �nitely generated Groups

Richard Weidmann

Abstract: A splitting A of a group G is called k-acylindrical if no non-trivial element

of G �xes a segment of length greater than k in the associated Bass-Serre tree. Z. Sela

showed that the number of vertex groups of a k-acylindrical splitting of a �netly generated

group G is bounded by a constant depending on k and the group G itself.

We use the theory of foldings as develloped by Stallings, Bestvina and Feighn, and

Dunwoody to show that k-acylindrical splittings of a �nitely generated group G have at

most 2k(rank G� 1) + 1 vertex groups.

We also indicate how to show stronger results namely rank formulaes for splittings of

groups that take into account the ranks of the vertex and edge groups. In the case of a

1-acylindrical amalgamated product this yields the following:

Theorem Let G = A �

C

B with C 6= 1 malnormal in G. Then

rank G �

1

3

(rank A + rank B � 2rank C + 5)

It should be noted that the assumption that C is malnormal cannot be dropped; in

general the are examples of amalgamated products of type G = A �

C

B with rank G =

rank C = 2, rank A � n and rank B � n where nN is arbitrary.
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Gromov{norm minimizing chains and surfaces in 3{manifolds

Thilo Kuessner

We study fundamental cycles (of a compact, orientable manifold M) of l

1

-norm close to

the simplicial volume kM k, especially how they behave with respect to codimension one

objects. The applications are:

� for a codimension 1 submanifold F �M we want to compare kM

F

k to kM k, where

M

F

is M cut along F ,

� to quantify the branching of a codimension 1 foliation (or lamination) F , we consider

its Gromovnorm kM k

F

In particular, we consider �nite-volume hyperbolic manifolds of dimensions � 3, where we

extend results of Jungreis and Calegari as follows:

Theorem 1. If int (M

n

) is hyperbolic of �nite volume, n � 3, F

n�1

a closed geodesic

hypersurface, then kM

F

k>kM k.

Theorem 2. If int (M

3

) is hyperbolic of �nite volume, M

3

not Gieseking-like (i.e, there

is no regular ideal triangulation with vertices in cusps of M), and F is an asymptotically

separated lamination, then kM k

F

>kM k.

Theorem 2, together with several results of Calegari, gives strong support to the following

conjecture: If F is a foliation of a �nite-volume hyperbolic 3-manifold, then the covering

foliation

e

F of

f

M = H

3

branches in both directions if and only if kM k

F

>kM k.

Surface homeomorphisms, Reidemeister classes

and automatic structure

John Guaschi

Let � : G! G be an endomorphism of a group G. Two elements g

1

; g

2

2 G are said to

be �-conjugate if there exists h 2 G satisfying: g

2

= �(h) � g

1

� h

�1

. We wish to be able to

decide whether or not two given elements of G are �-conjugate. If one is able to solve this

problem in general then one may calculate the Nielsen number of self-maps of polyhedra.

We consider the connection with Artin's braid groups B

n

, n � 1, and look for topological

�-conjugacy invariants. Given � 2 B

n

, let � 2 Aut(F

n

) be the associated free group

automorphism, and de�ne B

n

n+1

= f� 2 B

n+1

j �(�)(n + 1) = n + 1g, where �(�) is the

induced permutation. Set U

n+1

= fT

i

j 1 � i � ng, where T

i

is the braid represented

geometrically by a full twist of the (n + 1)

st

string about the i

th

string. Then x

i

7! T

i

de�nes an isomorphism � : F

n

�

=

U

n+1

. Given w 2 F

n

, de�ne the w-extension �

w

of � by

�

w

= �(�) � �(w) 2 B

n

n+1

, where � : B

n

! B

n

n+1

denotes inclusion. Then:

Theorem 1. With �; � as above, let u; v 2 F

n

. Then u; v are �-conjugate if and only if

�

u

and �

v

are conjugate in B

n

n+1

via an element of U

n+1

.

Now given u 2 F

n

, we de�ne g

u

: (D

2

; A)! (D

2

; A) to be the Thurston homeomorphism

within its isotopy class rel. A such that the geometric braid obtained by suspending g

u

is

�

u

.

Theorem 2. If u and v are �-conjugate then g

u

and g

v

are topologically conjugate.
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Universal bounds for hyperbolic Dehn �lling

Steve Kerckhoff

(joint work with C. Hodgson)

Let M

3

be a 3{manifold with boundary whose interior has a complete, �nite volume

hyperbolic structure. For any notrivial simple curve on T

2

= @M , one can form the

Dehn{�lled manifold M




by attaching a solid torus to T

2

so that 
 bounds a disk.

Thurston proved that for all but �nitely many 
's M




is again hyperbolic. However, the

proof was not e�ective; it did not indicate which 
's could be exceptional or wether there

is a bound on the number which is independent of M .

The end of M




is foiliated by 
at, horospherical tori. There is one for which the shortest

geodesic has length at least 1. We show that if the geodesic length of 
 on this torus is

su�ciently long (roughly � 24, and not the shortest curve), then M




is hyperbolic. It

follows that the number of exceptional surgeries is bounded, independent of M .

On the geometry of cone manifolds of dimension 3

with cone angles < �

Bernhard Leeb

(joint work with M. Boileau and J. Porti)

We prove that cone manifolds of dimension 3, constant curvature k 2 R on the smooth

part, an upper cone angle bound < � and a lower diameter bound D

0

> 0 admit a

decomposition of their thin part into disjoined components which belong to a short list of

geometric models, all of them rigid.

Important consequences are that these cone manifolds

(i) are thick (with few execptions if k � 0),

(ii) have, in the case of �nite volume, a compact core with horospherical boundary,

(iii) are geometrically stable, i.e. the space of these core manifolds is compact in the

pointed Gromov{Hausdor� topology.

These results are part of our proof of the Orbifold Theorem regarding the geometrization

of 3{dimensional orbifolds, originally outlined by Thurston.

Linking the con�guration space integrals

of the Chern-Simons theory to the Kontsevich integral

Christine Lescop

The so{called perturbative expansion of the Chern{Simons theory for knots Z

CS

is a

universal Vassiliev invariant described by con�guration space integrals that generalize the

well-known Gauss integral which computes the linking number of two disjoint knots. It

has been studied by many authors including Guadagnini, Martellini, Mintchev, Kontsevich,

Bott, Taubes, Bar{Natan, Altschuler, Freidel, D. Thurston : : :

We present Z

CS

and its properties including the most recent ones due to Poirier and we

discuss the following natural unsolved problem :

Is Z

CS

equal to the Kontsevich integral ???

Recently, Sylvain Poirier made substantial progress towards the answer by proving that

if the so-called Bott and Taubes anomaly was zero in degree greater than 2, then the

answer would be YES. To do that, he de�ned a suitable limit of Z

CS

that he extended to

combinatorial tangles; and he showed that like the Kontsevich integral, his limit of Z

CS
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is a monoidal functor with some symmetry properties. I have then characterized all the

knot invariants that share the common properties of the Kontsevich integral and of the

Poirier limit of Z

CS

. These results allowed me to express Z

CS

as a function of Z

K

and

of the anomaly, to improve the denominators of the Kontsevich integral and to give new

information about the still unknown anomaly.

Endomorphisms of Kleinian groups

Leonid Potyagailo

(joint work with T. Delzaut)

A group G is called cohop�an if any injective endomorphism f : G ! G is surjective.

We study the cohop�an property of discrete (Kleinian) subgroups of the isometry group of

the hyperbolic space H

n

. We prove that a geometrically �nite, non-elementary, one-ended

Kleinian group G without 2-torsion is cohop�an if and only the following two conditions

are satis�ed:

1) G does not split as G = A �

C

B or G = A�

C

; where C is an elementary subgroup

of G such that the unique maximal elementary subgroup

e

C of G containing C is not

conjugate into A or B:

2) G does not split as G = A �

C

B or G = A�

C

; where B is elementary and the smallest

subgroup N(C) of B generated by C is an in�nite index subgroup of B:

1

On the �niteness of @{slopes of immersed surfaces of 3{manifolds

Shicheng Wang

We will present some results on the �niteness of boundary slopes of essential surfaces in

hyperbolic 3{manifolds with boundary either torus or totally geodesic.

Those results are obtained in the joint papers with Hass{Rubinstein{Wang and Hass{

Wang{Zhou.

Fibered knots and monodromy

Norbert A'Campo

A divide is the image P of a generic, relative immersion od a 1-manifold N in the unit

disk D of R

2

. The link L(P ) of the divide P is the intersection in T (R

2

) = R

2

� R

2

= R

4

of the space of vectors

T (P ) := f(x; u) 2 T (R

2

) j x 2 P; u 2 T

x

(P )g

that are tangent to P with the unit sphere

f(x; u) 2 T (R

2

) j jjxjj

2

+ jjujj

2

= 1g = S

3

:

The intersection is transversal, so L(P ) is union of embedded oriented circles in the oriented

3-sphere. We give T (P ) the natural orientation as tangent space, where we give the opposite

orientation of the unit ball in T (R

2

) to S

3

.

Links of divides are very special. For instance if P is connected, the link L(P ) admits

on its complement in S

3

a �bration over S

1

. Links of plane curve singularities appear as

links of divides. If L(P ) is a knot, i.e. if P is a generically relatively immersed interval in

D, the 4-ball genus and the unknotting number of L(P ) are equal to the number of double

points of P .

1

1991 Mathematics Subject Classi�cation. 57M50, 30F40, 20F32, 57M07
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Mikami Hirasawa has identi�ed the knots of the so called slalom divides as arborescent

knots with all plumbing numbers equal to 2. He was able to extend the computation of

the unknotting number to a larger class of arborescent knots.

For more information, please consult the papers, also at http://xxx.lanl.gov/

[AC1] Norbert A'Campo, Real deformations and complex topology of plane curve singular-

ities, Annales de la Facult�e des Sciences de Toulouse, (1999).

[AC2] Norbert A'Campo, Generic immersions of curves, knots, monodromy and gordian

number, Publ. Math. IHES (1998).

[AC3] Norbert A'Campo, Planar trees, slalom curves and hyperbolic knots, Publ. Math.

IHES (1998).

Nielsen root numbers of mappings betweeen surfaces

Elena Kudryavtseva

(joint result of Daciberg Gon�calves (Brasil), Heiner Zieschang (Germany)

and the author [GKZ])

Let f : M

1

!M

2

be a continuous map between closed (not necessarily orientable) surfaces,

and c 2 M

2

a point in the target. Let MR[f ] denote the minimal number jg

�1

(c)j of

roots of the mappings g homotopic to f , and let NR[f ] denote the number of essential

Nielsen classes of f . The so called root problem arises: to calculate the numbers NR[f ]

and MR[f ], and to �nd all mappings f for which the general inequality MR[f ] � NR[f ]

becomes equality.

We say that the map f has Wecken property if it satis�es the condition

MR[f ] = NR[f ]:

We give a criterion which maps f have Wecken property.

For a map f : M

1

! M

2

denote by A(f) its absolute degree, see [Epst,Hopf]. For

instance, A(f) = j deg f j if the both surfaces M

1

and M

2

are orientable. Put `(f) =

[�

1

(M

2

) : f

#

(M

1

)]. A map f : M

1

!M

2

is called orientation-true if orientation preserving

curves are sent to orientation preserving ones and orientation reversing curves are sent to

orientation reversing ones. According to Kneser's result [K], NR[f ] = 0 if A(f) = 0, and

NR[f ] = `(f) otherwise.

Theorem. [GKZ] The map f : M

1

! M

2

between two closed surfaces has the Wecken

property if and only if one of the following conditions is ful�lled:

1. The surface M

2

is either the sphere S

2

or the projective plane RP

2

.

2. M

2

is di�erent from S

2

and RP

2

, that is �(M

2

) � 0, and A(f) �

`(f)��(M

1

)

1��(M

2

)

.

In particular, all mappings which are not orientation-true, have the Wecken property.

The analogical result in the case, when both surfaces M

1

and M

2

are orientable, was

proved in [GZ]. In the same case the number MR[f ] was explicitely calculated in terms of

numbers deg f and `(f), see [BGZ].

In the free groups F

2g

= ha

1

; b

1

; : : : ; a

g

; b

g

i and F

g+1

= ha

0

; a

1

; : : : ; a

g

i certain quadratic

equations

h

Y

j=1

[z

2j�1

; z

2j

] = B and

h

Y

j=0

z

2

j

= B

closely related to the root problem are solved.
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Unknotting tunnels and Seifert surfaces

Martin Scharlemann

Let K be a knot with an unknotting tunnel 
 and suppose that K is not a 2-bridge

knot. There is an invariant � = p=q 2 Q=2Z, p odd, de�ned for the pair (K; 
). Although

� is de�ned abstractly, it is naturally revealed when K [ 
 is put in thin position.

We show that if � 6= 1 then there is a minimal genus Seifert surface F for K such that

the tunnel 
 can be slid and isotoped to lie on F . One consequence is that if �(K; 
) 6= 1

then genus(K) > 1. This con�rms a conjecture of Goda and Teragaito for pairs (K; 
)

with � 6= 1.

Berichterstatter: J�org St�umke
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