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Die Arbeitsgemeinschaft zum aktuellen Thema “Operaden und ihre Anwendungen” stand
unter der Leitung von C.-F. Bédigheimer (Bonn), J.-L. Loday (Strasbourg) und B. Richter
(Bonn). Die Leiter hatten ein Programm mit 17 Vortragen zusammengestellt und nach dem
Eingang der Anmeldungen an die Teilnehmer verteilt. Die Vortrage wurden wahrend der
Tagung noch durch rege Diskussionen, Anmerkungen und Ausblicke sowie durch weitere kurze
Vortrage und Diskussionsrunden erganzt. Die von den Sprechern verfassten Kurzfassungen der
Vortrage sind in diesem Tagungsbericht zusammengestellt.

Es war das Ziel der Arbeitstagung, moglichst viele (inbesondere junge) Wissenschaftler mit
der “Operadensprache” vertraut zu machen, die Anwendungsergebnisse in den verschiedenen
Zweigen der Mathematik und Physik vorzustellen und einen Rahmen fiir die Kommunikation
zu schaffen, um die offenen Probleme anzugehen.

Folgende inhaltliche Schwerpunkte wurden diskutiert:

e Algebraische Operaden und die Koszul-Eigenschaft

e Die Struktur von Schleifenrdumen (die Urspriinge der Operadentheorie)

e Operaden in der Theorie der Modulraume und der Abbildungsklassengruppen
e Anwendungen auf Vertexalgebren und die Grothendieck-Teichmiiller Gruppe

Wahrend der Tagung wurde durch Abstimmung das Thema der néchsten Arbeitsgemeinschaft
festgelegt. s wird die “Stringtheorie” sein.



Vortragsausziige

Michael Brinkmeier

Operads and Monads

Let (C,®,k) be an arbitrary complete and cocomplete symmetric monoidal category, such
that the left and right distributivity laws

(AUB)®C~(A®C)U(B®C)and A® (BUC) ~ (A® B)U(A® C)

hold. Furthermore let 3 the category of finite sets n = {1,...,n}, including the empty set
0, and bijections. A symmetric object A in C is a functor A : 3’ — C. A morphism of two
symmetric objects is natural transformation of the two functors.
On the category XC of symmetric objects and morphisms between them, a monoidal (but not
symmetric) structure can be defined, whose product is given by

(ADB)[n] == | | A[m] ®x,, Blm,n]
m>0

where Y, denotes the symmetric group and

B[m,n] = |_| (® Bln] Q0 XXy, 2n> )

ni+-+nm=n \i=1

or, in more algebraic terms

B[m,n] := Indgzlx---xznm < |_| ®B[nz]> .

nitetnm=n i=1
The unit object of this monoidal structure on 3C is the symmetric object I given by

] = {k ifn =1

() otherwise
where () is the initial object of C.

Definition: An operad (A,u,n) is a monoid in the monoidal category (3C,0,T), i.e. it
consists of a symmetric object A, a multiplication y : ADA — A and a unit n: I — A, such
that the following diagrams commute.

A
A0A0A"™ 2D 404 104224 A0a 220 4or
|
M(A®u)l lﬂ \ﬂ/
~ \L ~
ADA—— A A

To each symmetric object A an endofunctor A(—) : C — C, the Schur functor, is assigned,
which is given on objects by
AX) = | | Aln] ®s, X
n>0



For this functor we have natural isomorphisms
(AOB)(X) ~ A(B(X)) and I(X) ~ X.

If A is an operad this functor is a monad in C, i.e. a monoid in the monoidal category of
endofunctors of C with the composition as product.

Definition: An algebra (X, €) over an operad A consists of an object X in C and a morphism
€: A(X) — X, such that the following diagrams commute.

A(A(X)) ~ (ADA)(x) “EL

A morphism f: (A,e) — (A',€) is a morphism x : A — A’ in C, which is compatible with the
strucutres, i.e.

foe=¢éoA(f).

Stephan Mohrdieck
Important Examples of Operads

Operads are thought to encode certain structure. If an object A of the underlying category
C carries this structure the corresponding operad should act on it. This is the notion of an
algebra over an operad.

To be more precise let C(k)ren be an operad in C. An object A € Ob(C) is a C'(k),en-algebra,
if for all natural numbers & there are morphisms

0: Ck)® A% = A, (1)

fulfilling the conditions of associativity, equivariance with respect to the symmetric groups
Yk, k € N and unitality.

The basic algebraic examples are in the category C = R—mod of modules over a commutative
ring R with unit 1. They are called Ass, Com and Lie corresponding to the associative,
commutative and Lie-algebras.

In particular we have:

Ass(k) = R[Xg], the group ring of the symmetric group, which acts on Ass(k) by the naural
right action.

Com/(k) = R furnished with the trivial X;-representation.

Now, A € R — mod is an associative resp. commutative Lie-algebra, iff A is an Ass(k)ken,
Com/(k)ren resp Lie(k)ren-algebra.

An important topological example is the operad of little n-cubes C, (k)gen-

Here C,, (k) is given by the embedding of & copies of the unit cube I in R™ into I" such that
the images of the different copies of the unit cube are disjoint. Furthermore we require each
embedding to be affine linear and such that the axes of the small cubes are parallel to axes
of the big cube.



This operad acts in the category of pointed topological spaces. One easily sees that the n-fold
loop space Q"X := Hom¢(S™, so; X, xo) is a Cy, (k) gen-algebra. (Here, S™ is the n-dimensional
sphere).

A theorem, the so called recognition principle for n-fold loop spaces states that in a way the
inverse is also true:

Recognition Principle: If a pointed connected space (Y,yp) is an algebra over the operad
of little n-cubes, then it is weakly homotopy equivalent to an n-fold loop space 2" X for a
suitable (X, z).

Jorg Sixt, Fabian Theis
Koszul Duality I

After introducing Hochschild (co)homology for graded k-algebras over a field k, we start
studying quadratic algebras. A quadratic algebra is of the form A := A(V,R) := T(V)/(R)
with V' a finite dimensional k-vectorspace, T'(V') its tensor algebra and R a subspace of
V®2, The advantage of graded algebras lies in the fact that they have quadratic duals A' :=
A(V*,R1Y). Here, R+ denotes the perpendicular subspace. By analyzing the classical Cobar
complex, one sees that the diagonal cohomology of A is A', i.e.

A is called Koszul if the cohomology vanishes everywhere else. This is equivalent to saying
that H{(A) already generates H* as a bigraded algebra.

By using what Loday calls a twisting cochain we equip the tensor product of a d.g. coalgebra
and a d.g. algebra with a differential. This is then applied to define the Koszul complex
K(A) := A% ® A and to show that K(A) is a subcomplex of the Bar Hochschild complex
B(k, A, A).

In the main theorem of our talk, we prove that the following are equivalent:

(i) K(A) is acyclic, i.e. a free resolution of k and hence a smaller resolution than the Bar
resolution.

(ii)) A is Koszul
(iii) A'is Koszul

(iv) The canonical inclusion of A™* in the (cohomologically written) B(k, A, k) is a quasi-
isomorphism.

From (iv), one gets immediately that B(k, A, k)* is a minimal model of the algebra A'. A
corollary then is the Koszul duality for Koszul algebras:

H*"H*'A=A



Ulrich Bunke, Thomas Lehmkul
Koszul Duality IT

We introduced linear operads and collections. There is a forgetful functor mapping operads to
collections, which admits an adjoint, the free operad on a collection. Its existence was shown
using a construction, which involved labeled trees. Working in the differential graded case
we defined the dual operad (cobar construction) as the free operad on a suitable collection
derived from the original operad. Applying the cobar construction twice we proved that the
operad obtained in this way is quasi isomorphic to the original one.

We introduce the concept of a quadratic operad and its quadratic dual. The latter is the image
of the cobar construction. If this projection is a quasi-isomorphism, the quadratic operad is
called Koszul. For any algebra over a quadratic operad we construct a complex, which is the
usual Hochschild complex in case of the associative operad. The main theorem states that a
quadratic operad P is Koszul if and only if for any free P-algebra this complex is exact in
degree < —1.

Lutz Hille

Classical Homology Theories

Quadratic operads. All operads are k—linear, where k is a ground field of characteristic
zero. We consider the free operad F(FE) generated by elements in degree two, that is the
collection E consists only of E(2), all other spaces F(i) for i« > 2 are zero. Moreover, let
R be a 33 invariant subspace in Ind gi(E) We form the quotient of the free operad F(F)
by the ideal generated by R and denote the resulting operad by P(E, R). Such an operad is
called quadratic. For any quadratic operad we can form the quadratic dual operad P(EY, R1Y),
where EV denotes the dual space twisted with the sign representation and R denotes the
perpendicular subspace.

The cobar complex associated with a quadratic operad. To any quadratic operad
and any n > 2 we can ssociate a complex, called the cobar complex,

P@det(k") — P PO @det(T) — -+ @ P(T)* @ det(T).
nf‘trleesT 7|zf‘treesT
T|=1 T|l=n—-2

Moreover, we define a dual operad D(P) by twisting the complexes C), with the determinant
operad A(n). The collection of complexes D(P) has a natural structure of a dg-operad and
there exists a natural isomorphism

D(D(P)) — P.

Homology of algebras over a quadratic operad. Let P = P(E,R) be a quadratic
operad and A an algebra over P. We define a complex

Cn(A) := (A®" ® P’(n)v)

n

The differential is defined similar to the differential in the cobar complex, where first we
replace P by its quadratic dual and second we replace the trees T by its induced action on



A. This way C, becomes a complex and we can speak about the homology of the algebra A
over the operad P.

An operad is called Koszul if the canonical map D(P) — P' induced by the isomorphism
HOD(P)) — P' is an isomorphism of dg-operads.

This is equivalent to the vanishing of the homology of the complex C),(A) for any free algebra
A over the operad P.

Examples of quadratic operads. The main examples of k-linear operads we are inter-
ested in are the operads Lie, Ass, and Com. Algebras over these operads are Lie algebras,
associative algebras and commutative algebras, respectively, in the usual sense, however pos-
sibly without unit element. There are further examples of k-linear operads like the operad of
Gerstenhaber algebras and the operad of Poisson algebras.

Proposition: The operads Lie, Ass, and Com are quadratic and its quadratic dual is Com,
Ass, and Lie, respectively. Moreover, these three operads are Koszul.

Classical homology theories. Lie algebra homology. Let g be a finite dimensional Lieal-

gebra of dimension n. The Chevalley-Eilenberg complex for the trivial g—module & is
0— A"g— - — A2g—g—F

The homology of this complex coincides with the groups Tor 49 (k, k). Moreover, this complex
coincides with the complex defined above for the operad Lie. Thus its homology is the usual
Lie algebra homology for the Lie algebra g.

Hochschild homology. Let A be an associative algebra viewed as an algebra over the operad
Ass. The Hochschild complex is

3 AP s s AR A — A — 0.

This can be seen as a resolution of the algebra A as a A ® A°%—algebra (that is as an A-
bimodule. For any A-bimodule M one gets a resolution of M as an A-bimodule just by
tensoring the complex with M (from the left). For an augmented algebra A we consider the
trivial bimodule k£ via the augmentation map A — k. This way we obtain a resolution of k

e AL L 3 A — k— 0.

Again this complex coincides with the complex defining the homology of A over the operad

Ass.

André-Quillen homology and Harrison homology. Let A be a commutative algebra, that is
an algebra over the operad Com. Let Q. be a free (commutative) resolution of A and let

Ln(A) :=Qh ®g, A
be the cotangent complex of A. For any A-module M, André-Quillen homology is defined as
Dy (A; M) 1= Hy (L (4) ©4 M).

It is known that D, (A; M) = 0 for any smooth algebra A. In particular, this holds for A a
polynomial ring. This implies that the André-Quillen homology coincides with the homology
defined above for the operad Com, however to get an isomorphism on the level of complexes
one must use so-called Harrison homology, which is isomorphic to André-Quillen homology:

Harr,(A; M) = Dy,—1(A4; M).



Peter Schneider
Homotopy Algebras

The central task of this lecture was to explain the notion of minimal models and to sketch
the proof of their existence. We first reviewed the classical theory for graded-commutative
differential graded algebras over a field of characteristic zero. The minimality requirement
says that the image of the differential should consist of decomposable elements. A minimal
model for a d.g.a. A is a map of d.g.a’s M —> A which is a quasi-isomorphism and where M
is minimal and, as a graded algebra, is free. Such a minimal model exists if A is connected
and simply connected. Moreover, if M — A and M' — A are two minimal models then
M = M’ by an isomorphism which is compatible with the maps up to homotopy.

It then was explained how his notion extends to differential operads over a field of characteris-
tic zero k. The simply connectedness assumption here becomes the requirement that the first
space of the operad is equal to k. The proof of the existence of minimal models was given. In
the case of Koszul operads a functorial construction of minimal models is possible through
the cobar complex of the Koszul dual.

By definition, a homotopy algebra over an operad S is an algebra over a minimal model
of §. Two examples of this were discussed. Homotopy associative algebra are the same as
Aso-algebras. Secondly, (homotopy) Gerstenhaber algebras are (homotopy) algebras over the
homology operad of the little squares operad.

Sigrid Wortmann

Loop spaces

In this talk we explained how operads may be used to identify H —spaces as loop spaces.
H —spaces were introduced as a generalization of topological groups, they are spaces X en-
dowed with a continuous multiplication and a unit. In 1956 Milnor showed that the loop space
QX of a space X (which is here and in the sequel assumed to be of the homotopy type of
a (connected) countable CW —complex) has the homotopy type of a topological group. Ex-
tending his methods Dold and Lashof proved in 1959 a delooping result for certain associative
H —spaces. These construction led Stasheff to the definition of an A, —structure on a space
(X, %), i.e. an n—tuple of maps

X = FEF, C Ey C ... C FE,
J/pl \I/P2 \Lpn
x = By C By C ... C B,

such that the maps (p;)« : mq(E;, X) = m4(B;) are isomorphisms, together with a contracting
homotopy h : CE,_1 — E, satisfying h(CFE;_1) C E; for all i. Here, CE,,_; is the cone over
E,_.

On the other hand the concept of homotopy associativity is generalized by the concept of
Ap—spaces. To define them we introduced (the underlying cell complex of) Stasheff’s non-
symmetric operad {Kj;}i>o :

Koy=%and K; =CL;, L; = Ur+s:i+1 Ulgkgr(KT X Ks)k for ¢ > 2.

The (K, x Ky)j, are copies of K, x K, corresponding to the insertion of one pair of parentheses
()indsymbols: 12...(kk+1...k+s—1)...i. The intersection (K, x K;);N (K, x K¢ ) cor-
responds to inserting two pairs of parentheses : ... (...(...)...)... or ...(...) ... (L. )onn s



(The relation with the operad C; of little intervals is easily seen.) The complex K, is in fact
isomorphic to I*72. An A, —space is now defined to be a space (X, *) together with forms
(Mz')2§i§na Mz : Kz X XZ — X such that

- M> is multiplication with unit,
- Mj3 defines homotopy associativity for Mo,
- M;, i > 4 define higher homotopy associativity involving (M}),<;.

The main result of our talk was

Theorem: (Stasheff) A space (X, ) admits an A, —structure if and only if it is an A, —space.
This implies in particular that (X, x) is a loop space if and only if it admits an As—form
(M;)i>2.

The proof was sketched. The first step is to construct an A, —structure from (X, (M;)2<i<n)-
The spaces are just & = K11 X X and B; = itl X X1 and the inclusions are de-
fined using the forms (M;)a<j<;. This construction is used in the second step again. Starting
with an A, —structure one defines inductively forms M; together with commutative diagrams

Ej — Ej
i} 4 forj <.
Bj — Bj

Alexander Schmidt
Iterated loop spaces 1

The talk introduced the little n-cube operad C,, and gave an idea how to prove the Recognition

Principle: Every n-fold loop space is a C,-space and every connected C,-space has the weak
homotopy type of an n-fold loop space

In the remainder of the talk the Dyer-Lashof operations on the homology H.(X,F,) of a
Cn-space X where introduced, where we restricted to the case p = 2. Finally, a sketch of their
construction was given.

Stefan Schwede
Iterated Loop Spaces II

The operad C,, of little n-cubes can be embedded into the operad of (n 4 1)-cubes by taking
product with the additional coordinate direction. This way every C,11-space becomes a Cp,-
space. The Browder operation is an obstruction for a given C,-action to extend to a Cpy1-
action. For n > 2 the Browder operation and the multiplication make the homology of a
Cr-space into a Gerstenhaber-algebra.

The operad C is defined as the colimit of the operads C,,. The recognition principle says that
every grouplike Cyo-space is an infinite loop space. The operad Co, is an “ E,-operad”, i.e.,
an operad whose k-th space is Yg-free and non-equivariantly contractible for every £ > 1. We
give two further example of E,-operads, the translation operad of the symmetric groups and
the linear isometries operad.



Thomas Wenger
Formality and the Deligne conjecture

The subject of the talk was the problem of defining the structure of a homotopy Gerstenhaber
algebra on the Hochschild cochains C*(A) of an associative algebra over a field of characteristic
zero. Its existence can be interpreted as an answer to a question posed by P. Deligne in a
letter, which has since then been called the Deligne conjecture. He asked if the action of
homology operad of the little discs operad on HH*(A) coming from the isomorphism of this
operad with the operad describing Gerstenhaber algebras (denoted by G) can be lifted to the
cochain level.

The proof of existence was sketched along the lines of the preprint QA /0003052 by V. Hinich,
which presents the existence proof of D. Tamarkin including some simplifications. To begin
with, it uses an operad B., describing B., algebras in the sense of H. Baues, i.e. graded
vector spaces X such that the cofree coalgebra cogenerated by X[1] is equipped with the
structure of a differential graded bialgebra. The analogous notion for dg Lie bialgebras is
called a B algebra, again described by an operad bearing the same name. The first main step
in the proof is the action of By, on C*(A) by the so-called braces, which goes back to M.
Gerstenhaber and A. Voronov. Then a morphism of operads is constructed from the homotopy
Gerstenhaber operad (defined to be or identified as the minimal model of the (Koszul) operad
G) into By For this, the key idea is to interpret the result of P. Etingof and D. Kazhdan on
(de-)quantization of Lie bialgebras as giving an isomorphism between the operads By, and B
and then to observe that almost by definition, G maps to B.

It was pointed out that alternative answers to the question raised by P. Deligne have been
given by J. McClure and J. Smith and by M. Kontsevich and Y. Soibelmann.

Markus Szymik
Batalin-Vilkovisky algebras

Let (As, A) be a graded commutative algebra A, together with an operator A which satisfies
A? = 0 and raises degree by one. One can define a bracket by

[a,b] = (=)*A(ab) — (—)*A(a)b — aA(D).

If (A, [ ]) is a Gerstenhaber algebra, (A.,A) is called a Batalin-Vilkovisky algebra. This is
equivalent to a certain relation for A(abc) corresponding to the Poisson relation.

On the rational homology of a space, an operator like A arises from an action of the circle
group T. For example, the rational homology of a double loop space is a Batalin-Vilkovisky
algebra due to the action of T on the sphere by rotations.

In general, and this was presented in the talk as the main result, a Batalin-Vilkovisky algebra
is the same as an algebra over the homology of the operad of framed discs, which is build
from the operad of ordinary discs by taking the action of T on the disc into account. That
result can be proven by reduction to the corresponding result relating Gerstenhaber algebras
and the operad of ordinary discs in the same way.



Natalie Wahl

Moduli spaces I
Mg ., the moduli space of Riemann surfaces of genus g, with 7 boundary components and
S punctures is (in most cases) a classifying space for the mapping class group Loy =
o Difft(F? o 0) of the corresponding surface (ng,r is a surface of genus g, with r boundary
components and s punctures). This is a consequence of the contractibility of the Teichmiiller
space, the moduli space of marked Riemann surfaces.

Attaching surfaces on punctures defines an operad structure on M g,r» the compactification of
M .. Those attaching maps produce singularities. Gluing along boundaries allows to work
without singularities. However, gluing complex structures is not an easy operation. We present
an operad induced by gluing along the boundaries, but using BI'} ., which is homotopic to the
moduli space. In this case, we “glue” diffeomorphisms which are the identity on the boundary.
The operad is shown to be a double loop space operad, result which will be improved to an
infinite loop space structure in the talk moduli space II.

This operad is build using a general construction of “operads with families of groups”. The
same construction provides a braid groups operad, which is equivalent to the little disks
operad, and a ribbon braid groups operad equivalent to the framed disks operad.

Manfred Lehn
The vanishing of the BV-structure on the BRST-cohomology of a TCFT

Let .AN/lg’n+1 denote the space of isomorphism classes of Riemann surfaces C' of genus g with
n + 1 disjoint biholomorphic embeddings ¢o, ... ,pn : D — C, and let Mo( ) = M n+1 C
M(n) =] >0 M i1 Sewing curves C'\ ¢;(D°) along their boundaries defines an operad
M that contains M as a suboperad. The natural inclusion of the framed little discs operad
P — M is a homotopy equivalence. In particular, any algebra over H,M inherits a Batalin-
Vilkovisky structure. Let ¢ € HyM correspond to the point class of a genus 1 surface with
two disc embeddings. Then H,M = Q[t]. We deduce the following theorem of Tillmann from
a theorem of Harer-Ivanov on the stabilisation of the mapping class group homology H., (I )
for increasing genus:

Theorem: The element t is locally nilpotent on Hn(M) for m > 0. In particular, if A is
an algebra over H,(M), then the induced BV-structure (A,[—, —]) on A becomes trivial after
localization of t.

David J. Green

Moduli spaces II

In the first half of the talk, the construction of Ulrike Tillmann’s surface operad M was
treated in considerable detail.

Then Tillmann’s theorem that every M-space is an infinite loop space after group completion
was stated, and the most important steps in the proof were presented. Harer’s theorem that
the homology of the mapping class groups stabilises as the genus increases plays a key role.
The main corollary of Tillmann’s theorem is that Z x BT is an infinite loop space.

10



Stefan Kiihnlein
Torsors and the Grothendieck-Teichmiiller group

After an introduction to quantization deformation we stated the fact that Kontsevich’s proof
of the existence of a quantization deformation (for a given Poisson manifold) bases heavilly on
the construction of an isomorphism ¢ between two homotopy Lie-algebras, the one controlling
deformations of associative, the other that of Poisson-algebras. (This is where operads and
the formality conjecture for Cy come in!) Let T be the set of all these isomorphisms. It
turns out that T is a pro-algebraic bitorsor. The isomorphism ¢ gives a point on T(C) and
therefore corresponds to a ringmorphism « : O(T) — C. In the following we will describe
the construction of a ring Prgse together with a morphism to C such that « factors through
Prate by a map . The affine scheme Spec(Prqte) seems to be a proalgebraic bitorsor of great
importance in arithmetic geometry.

Conjecture (Kontsevich): Spec(8) is an isomorphism of proalgebraic bitorsors.

To construct Prgse, one first defines P to be the Q-vector space generated by symbols
[X,D,~,w], where X runs through all smooth equidimensional varieties over Q (say d =
dim X), D is a divisor with normal crossings on X, v € Hy(X(C), D(C),Q), and w € Q4¢(X).
These symbols obey the relations coming from Q-linearity in w and -, change of variables and
Stokes’ Theorem. In particular, f,yw is well-defined on P*, inducing a map ev : P* — C.
It is conjectured that ev is injective (which we assume now). P* is a ring, as the product of
two integrals again is an integral: the ring of effective periods. Let P := P*[1/2i].

Theorem: (Nori) P is the ring of functions of the proalgebraic torsor of isomorphisms
between Betti- and deRham-cohomology.
Now Prase is the ring generated by (27i)*! and entries of period matrices which are rationally
triangulisable having only powers of 27i on the diagonal (and some conditions on discriminants
must be satisfied.) It is implied by theorems of Goncharov, that the integrals defining « all
take there values in Prgte. On the other hand, one conjectures that the vector bundles on
(the bitorsor) Spec(Prqate) with commuting actions of the groups acting on Spec(Prgze) form
the category of mixed, unramified Tate-motives (over Q with values in Q). Then, again, some
conjectures of Beilinson imply that the quotient of the motivic Galois group acting simply
transitively on Spec(Prqze) is isomorphic to the Grothendieck-Teichmiiller group GT.

NB: GT is the automorphism group of the tower of pro-nilpotent completions of the braid
groups B, = m(Ca(n)), and it certainly should play some role in studying Chains(Cs). To
understand this is part of Kontsevich’s conjecture.

Yorck Sommerhauser

Vertex operator algebras

We review the work of Y. Z. Huang on the geometric description of vertex operator algebras.
Vertex operator algebras are defined via a graded vector space, called the state space, and a
map, called the state-field correspondence, from the state space to the space of fields, which
are formal distributions with coefficients in the endomorphism algebra of the state space. On
the other hand, geometric vertex operator algebras are mappings from the partial operad of
moduli spaces of punctured spheres to the partial endomorphism operad. Huang’s work gives

11



a one-to-one correspondence between these two objects by looking at correlation functions of
vertex operator algebras.

Dan Fulea

Planar algebras and C*—algebras

The task of the talk was to give a compact description of VAUGHAN JONES’ formalism [Jo]
(Jones, V.F.R: Planar algebras I, see also the conference program) of planar operads related
to the construction of subfactors. For the purposes of the conference, taking advantage on the
common knowledges of the participants, I decided to rephrase the formalism of the planar
algebras [Jo|, expressing it in a categorial fashion.

e In a (symmetric) tensor category A there is a formalism of making diagram calculus for
morphisms (Kassel, Christian: Quantum groups, XIV.1,2(,3) ). A morphism f: U — V in A

is figured as a box | f | with two vertical strands into and out of the box: . The composition

of morphisms is done by vertical concatenation = . The tensor product is given by
2
horizontal concatenation: fi ® fo is represented by , completed with vertical strands.
The identity of an object is a vertical strand |. (We don’t specify the source and the target
of a morphism, for they are determined by the morphisms involved. Exception: The identity
morphism. In this case it should be clear from the context.)
e An iterated composition of iterated tensor products of morphisms in A gives rise to a
diagram of not overcrossing strands in the plane with boxed marks out of Hom 4. Isolating
this structure one can define labelled tangles (without overcrossings). The labels are elements
of a language (L = ULy, -, ®). The set Lj of symbols of size k of L is given by - an associative
“vertical” composition rule. The “horizontal” composition rule is given by ® : Ly X Ly — L.
Let T(L) denote the category of tangles with marks in L.
e Analogously to the operad of little squares one can now define after linearization with the
functor R[] from sets to R—modules the folowing planar operad P(-, L) of R—modules:

P(n,L):=R || | Homyzoy(k — k)n|
k>0

with the following meanings:

(i) L is the language obtained from L by adjoining an empty box O = O, in each size k to
Ly, and considering the universal language (L",-, ®) with a canonical embedding (L, -, ®) —
(LY, -, ®).

(ii) Form the category 7 (L") which is generated by tangles, symbols of the language L and
the empty boxes. The number n of empty boxes of a morphism in Homyo0y(k — k) is called
the valence, and Homy,oy(k — k), denotes the set of morphisms of valence n with a chosen
order of the n empty boxes. Let f € Homyoy(k — k), be a morphism. If k; is the size of
the i*" box of f, we define the color of f to be K := (ki,...,ky).

(iii) The set of morphisms of color K generate in P(n, L) the R-module P(n,L)x.

The operadic multiplication

v:Pn, L)k ® Plki,L)® - @ P(kn,L) = P(k1+ -+ kp)

12



is given on generators by formal substitution into the empty boxes of P(n, L)k of generators
from the other tensor factors. This substitution is possible, only when “the colors match”.
The unit morphism is 1 — O. (Substituting an empty box into an empty box gives an empty
box.)

e The main naive example of a P-algebra is given by the language of tensors T' = (TZ]1 1_'_'_'2.]]; k) =

TIJ with all indices 74, 75: s = 1,.., k in a fixed set.

The multiplication of tensors T' = TIJ and S = Sf( is ST : =), TIJ S 5( and the tensor product
of T =T, 5 =_8Yis TS = (T{ S} 15

The operadic action on tensors is given by (coloured) substitution of the tensors into the
empty boxes of an operadic operation and evaluating the result in tensors using (-, ®).

e The main example [Jo] pf planar algebras (P-algebras) is connected to the construction of
pairs A C B of a subfactor of a factor of (C*)-algebras.

— A conditional expectation F : B — A is an A-bimodule morphism giving the identity, when
restricted to A. Let E be also non—degenerate. We also write E¥ : B — B for the composition
of the conditional expectation B — A and the inclusion A — B.

— One has the so called fundamental construction: Associate to A C B the pair B C End(B).
Iterating this procedure one becomes a tower A C B C Enda(B) C ..., that we homoge-
neously denote by My C My C My C .... Then E =: E5 is an element of Ms. Analogously
one has elements F3 € M3 ...

— Assume the algebra B ®4 B has a unit ) u; ® v;. Define 7 = IndexE := Y u;v;. It belongs
to the center of B, which is in our case C. Consider also § € C, 672 = 1.

— The endomorphism group End4(B) of B is generated by B and E, and seen as a right
A-module it is isomorphic to B ®4 B. An endomorphism f corresponds to Y f(u;) ® v;. One

has in general M =2 B®4 B®4 - ®4 B (k tensor factors).
— Consider the intersection of the sequence of inclusions My C My C My ... with M} > M| D
My;>....

My C M, C My ¢ -+ Cc M, cC
M} MyNnMy ¢ M{NnM;, ¢ M{NnMsc .-+ cMjnMc
U U U U
M| MiNnM; ¢ M{NMsc --- cM|NMc

Then the operad P(-, M) N M.)/ ~ generated by tangles, symbols in B end empty boxes
organizes the (R-linearized) quotient 7(L)/ ~ of tangles T (L) of diagrams in the language L
generated by B as an algebra. The relation ~ indentifies each internal circuit of tangles with
0 € C. In this operadic algebra structure, Fj is mapped to the tangle kK — k, which joins the
last two upper and the last two lower strands of k£, and each z € B is mapped to . One
can in the above picture (and more general in the framework of Popa-systems) “diagonally
extend” the operadic algebra structure.
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