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Die Arbeitsgemeinshaft zum aktuellen Thema \Operaden und ihre Anwendungen" stand

unter der Leitung von C.-F. B�odigheimer (Bonn), J.-L. Loday (Strasbourg) und B. Rihter

(Bonn). Die Leiter hatten ein Programm mit 17 Vortr�agen zusammengestellt und nah dem

Eingang der Anmeldungen an die Teilnehmer verteilt. Die Vortr�age wurden w�ahrend der

Tagung noh durh rege Diskussionen, Anmerkungen und Ausblike sowie durh weitere kurze

Vortr�age und Diskussionsrunden erg�anzt. Die von den Sprehern verfassten Kurzfassungen der

Vortr�age sind in diesem Tagungsberiht zusammengestellt.

Es war das Ziel der Arbeitstagung, m�oglihst viele (inbesondere junge) Wissenshaftler mit

der \Operadensprahe" vertraut zu mahen, die Anwendungsergebnisse in den vershiedenen

Zweigen der Mathematik und Physik vorzustellen und einen Rahmen f�ur die Kommunikation

zu sha�en, um die o�enen Probleme anzugehen.

Folgende inhaltlihe Shwerpunkte wurden diskutiert:

� Algebraishe Operaden und die Koszul-Eigenshaft

� Die Struktur von Shleifenr�aumen (die Urspr�unge der Operadentheorie)

� Operaden in der Theorie der Modulr�aume und der Abbildungsklassengruppen

� Anwendungen auf Vertexalgebren und die Grothendiek-Teihm�uller Gruppe

W�ahrend der Tagung wurde durh Abstimmung das Thema der n�ahsten Arbeitsgemeinshaft

festgelegt. Es wird die \Stringtheorie" sein.
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Vortragsausz�uge

Mihael Brinkmeier

Operads and Monads

Let (C;
; k) be an arbitrary omplete and oomplete symmetri monoidal ategory, suh

that the left and right distributivity laws

(A tB)
 C ' (A
 C) t (B 
 C) and A
 (B t C) ' (A
B) t (A
 C)

hold. Furthermore let � the ategory of �nite sets n = f1; : : : ; ng, inluding the empty set

0, and bijetions. A symmetri objet A in C is a funtor A : �

op

! C. A morphism of two

symmetri objets is natural transformation of the two funtors.

On the ategory �C of symmetri objets and morphisms between them, a monoidal (but not

symmetri) struture an be de�ned, whose produt is given by

(A2B)[n℄ :=

G

m�0

A[m℄


�

m

B[m;n℄

where �

m

denotes the symmetri group and

B[m;n℄ :=

G

n

1

+���+n

m

=n

 

m
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i=1

B[n

i

℄


�

n

1

������

n

m

�

n

!

;

or, in more algebrai terms

B[m;n℄ := Ind

�

n

�

n

1

������

n

m

 

G

n

1

+���+n

m

=n

m

O

i=1

B[n

i

℄

!

:

The unit objet of this monoidal struture on �C is the symmetri objet I given by

I[n℄ =

(

k if n = 1

; otherwise

where ; is the initial objet of C.

De�nition: An operad (A;�; �) is a monoid in the monoidal ategory (�C;2; I), i.e. it

onsists of a symmetri objet A, a multipliation � : A2A! A and a unit � : I ! A, suh

that the following diagrams ommute.

A2A2A

�(�
A)

//

�(A
�)

��

A2A

�

��

A2A

�

//
A

I2A

�
A

//

'

$$IIIIIIIII A2A

�

��

A2I

A
�

oo

'

zzvv
vv

vv
vv

vv

A

To eah symmetri objet A an endofuntor A(�) : C ! C, the Shur funtor, is assigned,

whih is given on objets by

A(X) :=

G

n�0

A[n℄


�

n

X

n

:
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For this funtor we have natural isomorphisms

(A2B)(X) ' A (B(X)) and I(X) ' X:

If A is an operad this funtor is a monad in C, i.e. a monoid in the monoidal ategory of

endofuntors of C with the omposition as produt.

De�nition: An algebra (X; �) over an operad A onsists of an objet X in C and a morphism

� : A(X)! X, suh that the following diagrams ommute.

A (A(X)) ' (A2A)(X)

�(X)

//

A(�)

��

A(X)

�

��

A(X)

�

//
X

I(X)

�(X)

//

'

$$HHHHHHHHH
A(X)

�

��

X

A morphism f : (A; �)! (A

0

; �

0

) is a morphism x : A! A

0

in C, whih is ompatible with the

struutres, i.e.

f Æ � = �

0

ÆA(f):

Stephan Mohrdiek

Important Examples of Operads

Operads are thought to enode ertain struture. If an objet A of the underlying ategory

C arries this struture the orresponding operad should at on it. This is the notion of an

algebra over an operad.

To be more preise let C(k)

k2N

be an operad in C. An objet A 2 Ob(C) is a C(k)

k2N

-algebra,

if for all natural numbers k there are morphisms

� : C(k)
A


k

! A; (1)

ful�lling the onditions of assoiativity, equivariane with respet to the symmetri groups

�

k

, k 2 N and unitality.

The basi algebrai examples are in the ategory C = R�mod of modules over a ommutative

ring R with unit 1. They are alled Ass, Com and Lie orresponding to the assoiative,

ommutative and Lie-algebras.

In partiular we have:

Ass(k) = R[�

k

℄, the group ring of the symmetri group, whih ats on Ass(k) by the naural

right ation.

Com(k) = R furnished with the trivial �

k

-representation.

Now, A 2 R � mod is an assoiative resp. ommutative Lie-algebra, i� A is an Ass(k)

k2N

,

Com(k)

k2N

resp Lie(k)

k2N

-algebra.

An important topologial example is the operad of little n-ubes C

n

(k)

k2N

.

Here C

n

(k) is given by the embedding of k opies of the unit ube I

n

in R

n

into I

n

suh that

the images of the di�erent opies of the unit ube are disjoint. Furthermore we require eah

embedding to be aÆne linear and suh that the axes of the small ubes are parallel to axes

of the big ube.
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This operad ats in the ategory of pointed topologial spaes. One easily sees that the n-fold

loop spae 


n

X := Hom

C

(S

n

; s

0

; X;x

0

) is a C

n

(k)

k2N

-algebra. (Here, S

n

is the n-dimensional

sphere).

A theorem, the so alled reognition priniple for n-fold loop spaes states that in a way the

inverse is also true:

Reognition Priniple: If a pointed onneted spae (Y; y

0

) is an algebra over the operad

of little n-ubes, then it is weakly homotopy equivalent to an n-fold loop spae 


n

X for a

suitable (X;x

0

).

J�org Sixt, Fabian Theis

Koszul Duality I

After introduing Hohshild (o)homology for graded k-algebras over a �eld k, we start

studying quadrati algebras. A quadrati algebra is of the form A := A(V;R) := T (V )=(R)

with V a �nite dimensional k-vetorspae, T (V ) its tensor algebra and R a subspae of

V


2

. The advantage of graded algebras lies in the fat that they have quadrati duals A

!

:=

A(V

�

; R

?

). Here, R

?

denotes the perpendiular subspae. By analyzing the lassial Cobar

omplex, one sees that the diagonal ohomology of A is A

!

, i.e.

H

p

p

(A) = A

!

p

:

A is alled Koszul if the ohomology vanishes everywhere else. This is equivalent to saying

that H

1

1

(A) already generates H

�

as a bigraded algebra.

By using what Loday alls a twisting ohain we equip the tensor produt of a d.g. oalgebra

and a d.g. algebra with a di�erential. This is then applied to de�ne the Koszul omplex

K(A) := A

!�


 A and to show that K(A) is a subomplex of the Bar Hohshild omplex

B(k;A;A).

In the main theorem of our talk, we prove that the following are equivalent:

(i) K(A) is ayli, i.e. a free resolution of k and hene a smaller resolution than the Bar

resolution.

(ii) A is Koszul

(iii) A

!

is Koszul

(iv) The anonial inlusion of A

!�

in the (ohomologially written) B(k;A; k) is a quasi-

isomorphism.

From (iv), one gets immediately that B(k;A; k)

�

is a minimal model of the algebra A

!

. A

orollary then is the Koszul duality for Koszul algebras:

H

�

H

�

A = A
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Ulrih Bunke, Thomas Lehmkul

Koszul Duality II

We introdued linear operads and olletions. There is a forgetful funtor mapping operads to

olletions, whih admits an adjoint, the free operad on a olletion. Its existene was shown

using a onstrution, whih involved labeled trees. Working in the di�erential graded ase

we de�ned the dual operad (obar onstrution) as the free operad on a suitable olletion

derived from the original operad. Applying the obar onstrution twie we proved that the

operad obtained in this way is quasi isomorphi to the original one.

We introdue the onept of a quadrati operad and its quadrati dual. The latter is the image

of the obar onstrution. If this projetion is a quasi-isomorphism, the quadrati operad is

alled Koszul. For any algebra over a quadrati operad we onstrut a omplex, whih is the

usual Hohshild omplex in ase of the assoiative operad. The main theorem states that a

quadrati operad P is Koszul if and only if for any free P-algebra this omplex is exat in

degree < �1.

Lutz Hille

Classial Homology Theories

Quadrati operads. All operads are k{linear, where k is a ground �eld of harateristi

zero. We onsider the free operad F (E) generated by elements in degree two, that is the

olletion E onsists only of E(2), all other spaes E(i) for i > 2 are zero. Moreover, let

R be a �

3

invariant subspae in Ind

�

3

�

2

(E). We form the quotient of the free operad F (E)

by the ideal generated by R and denote the resulting operad by P(E;R). Suh an operad is

alled quadrati. For any quadrati operad we an form the quadrati dual operad P(E

_

; R

?

),

where E

_

denotes the dual spae twisted with the sign representation and R

?

denotes the

perpendiular subspae.

The obar omplex assoiated with a quadrati operad. To any quadrati operad

and any n � 2 we an ssoiate a omplex, alled the obar omplex,

P 
 det(k

n

) �!

M

n{treesT

jT j=1

P(T )

�


 det(T ) �! � � �

M

n{treesT

jT j=n�2

P(T )

�


 det(T ):

Moreover, we de�ne a dual operad D(P) by twisting the omplexes C

n

with the determinant

operad �(n). The olletion of omplexes D(P) has a natural struture of a dg-operad and

there exists a natural isomorphism

D(D(P)) �! P:

Homology of algebras over a quadrati operad. Let P = P(E;R) be a quadrati

operad and A an algebra over P. We de�ne a omplex

C

n

(A) :=

�

A


n


P

!

(n)

_

�

�

n

:

The di�erential is de�ned similar to the di�erential in the obar omplex, where �rst we

replae P by its quadrati dual and seond we replae the trees T by its indued ation on

5



A. This way C

�

beomes a omplex and we an speak about the homology of the algebra A

over the operad P.

An operad is alled Koszul if the anonial map D(P) �! P

!

indued by the isomorphism

H

0

(D(P)) �! P

!

is an isomorphism of dg-operads.

This is equivalent to the vanishing of the homology of the omplex C

n

(A) for any free algebra

A over the operad P.

Examples of quadrati operads. The main examples of k{linear operads we are inter-

ested in are the operads Lie, Ass, and Com. Algebras over these operads are Lie algebras,

assoiative algebras and ommutative algebras, respetively, in the usual sense, however pos-

sibly without unit element. There are further examples of k{linear operads like the operad of

Gerstenhaber algebras and the operad of Poisson algebras.

Proposition: The operads Lie, Ass, and Com are quadrati and its quadrati dual is Com,

Ass, and Lie, respetively. Moreover, these three operads are Koszul.

Classial homology theories. Lie algebra homology. Let g be a �nite dimensional Lieal-

gebra of dimension n. The Chevalley-Eilenberg omplex for the trivial g{module k is

0 �! �

n

g �! � � � �! �

2

g �! g �! k:

The homology of this omplex oinides with the groups Tor

U(g)

(k; k). Moreover, this omplex

oinides with the omplex de�ned above for the operad Lie. Thus its homology is the usual

Lie algebra homology for the Lie algebra g.

Hohshild homology. Let A be an assoiative algebra viewed as an algebra over the operad

Ass. The Hohshild omplex is

� � � �! A


n

�! � � � �! A
A �! A �! 0:

This an be seen as a resolution of the algebra A as a A 
 A

op

{algebra (that is as an A{

bimodule. For any A-bimodule M one gets a resolution of M as an A{bimodule just by

tensoring the omplex with M (from the left). For an augmented algebra A we onsider the

trivial bimodule k via the augmentation map A �! k. This way we obtain a resolution of k

� � � �! A


n�1

�! � � � �! A �! k �! 0:

Again this omplex oinides with the omplex de�ning the homology of A over the operad

Ass.

Andr�e-Quillen homology and Harrison homology. Let A be a ommutative algebra, that is

an algebra over the operad Com. Let Q

�

be a free (ommutative) resolution of A and let

L

n

(A) := 


1

Q

n




Q

n

A

be the otangent omplex of A. For any A{module M , Andr�e-Quillen homology is de�ned as

D

n

(A;M) := H

n

(L

n

(A) 


A

M):

It is known that D

n

(A;M) = 0 for any smooth algebra A. In partiular, this holds for A a

polynomial ring. This implies that the Andr�e-Quillen homology oinides with the homology

de�ned above for the operad Com, however to get an isomorphism on the level of omplexes

one must use so-alled Harrison homology, whih is isomorphi to Andr�e-Quillen homology:

Harr

n

(A;M) = D

n�1

(A;M):
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Peter Shneider

Homotopy Algebras

The entral task of this leture was to explain the notion of minimal models and to sketh

the proof of their existene. We �rst reviewed the lassial theory for graded-ommutative

di�erential graded algebras over a �eld of harateristi zero. The minimality requirement

says that the image of the di�erential should onsist of deomposable elements. A minimal

model for a d.g.a. A is a map of d.g.a's M �! A whih is a quasi-isomorphism and where M

is minimal and, as a graded algebra, is free. Suh a minimal model exists if A is onneted

and simply onneted. Moreover, if M �! A and M

0

�! A are two minimal models then

M

�

=

M

0

by an isomorphism whih is ompatible with the maps up to homotopy.

It then was explained how his notion extends to di�erential operads over a �eld of harateris-

ti zero k. The simply onnetedness assumption here beomes the requirement that the �rst

spae of the operad is equal to k. The proof of the existene of minimal models was given. In

the ase of Koszul operads a funtorial onstrution of minimal models is possible through

the obar omplex of the Koszul dual.

By de�nition, a homotopy algebra over an operad S is an algebra over a minimal model

of S. Two examples of this were disussed. Homotopy assoiative algebra are the same as

A

1

-algebras. Seondly, (homotopy) Gerstenhaber algebras are (homotopy) algebras over the

homology operad of the little squares operad.

Sigrid Wortmann

Loop spaes

In this talk we explained how operads may be used to identify H�spaes as loop spaes.

H�spaes were introdued as a generalization of topologial groups, they are spaes X en-

dowed with a ontinuous multipliation and a unit. In 1956 Milnor showed that the loop spae


X of a spae X (whih is here and in the sequel assumed to be of the homotopy type of

a (onneted) ountable CW�omplex) has the homotopy type of a topologial group. Ex-

tending his methods Dold and Lashof proved in 1959 a delooping result for ertain assoiative

H�spaes. These onstrution led Stashe� to the de�nition of an A

n

�struture on a spae

(X; �), i.e. an n�tuple of maps

X = E

1

� E

2

� : : : � E

n

#

p

1

#

p

2

#

p

n

� = B

1

� B

2

� : : : � B

n

suh that the maps (p

i

)

�

: �

q

(E

i

;X)! �

q

(B

i

) are isomorphisms, together with a ontrating

homotopy h : CE

n�1

! E

n

satisfying h(CE

i�1

) � E

i

for all i. Here, CE

n�1

is the one over

E

n�1

.

On the other hand the onept of homotopy assoiativity is generalized by the onept of

A

n

�spaes. To de�ne them we introdued (the underlying ell omplex of) Stashe�'s non-

symmetri operad fK

i

g

i�2

:

K

2

= � and K

i

= CL

i

; L

i

=

S

r+s=i+1

S

1�k�r

(K

r

�K

s

)

k

for i > 2:

The (K

r

�K

s

)

k

are opies of K

r

�K

s

orresponding to the insertion of one pair of parentheses

( ) in i symbols: 1 2 : : : (k k+1 : : : k+s�1) : : : i: The intersetion (K

r

�K

s

)

k

\(K

r

0

�K

s

0

)

k

0

or-

responds to inserting two pairs of parentheses : : : : (: : : (: : : ) : : : ) : : : or : : : (: : : ) : : : (: : : ) : : : :
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(The relation with the operad C

1

of little intervals is easily seen.) The omplex K

�

is in fat

isomorphi to I

��2

: An A

n

�spae is now de�ned to be a spae (X; �) together with forms

(M

i

)

2�i�n

; M

i

: K

i

�X

i

! X suh that

- M

2

is multipliation with unit,

- M

3

de�nes homotopy assoiativity for M

2

;

- M

i

; i > 4 de�ne higher homotopy assoiativity involving (M

j

)

j�i

:

The main result of our talk was

Theorem: (Stashe�) A spae (X; �) admits an A

n

�struture if and only if it is an A

n

�spae.

This implies in partiular that (X; �) is a loop spae if and only if it admits an A

1

�form

(M

i

)

i�2

:

The proof was skethed. The �rst step is to onstrut an A

n

�struture from (X; (M

i

)

2�i�n

):

The spaes are just E

i

:= K

i+1

� X

i

and B

i

:= K

i+1

� X

i�1

and the inlusions are de-

�ned using the forms (M

j

)

2�j�i

: This onstrution is used in the seond step again. Starting

with an A

n

�struture one de�nes indutively formsM

j

together with ommutative diagrams

E

j

! E

j

# #

B

j

! B

j

for j < i:

Alexander Shmidt

Iterated loop spaes I

The talk introdued the little n-ube operad C

n

and gave an idea how to prove the Reognition

Priniple: Every n-fold loop spae is a C

n

-spae and every onneted C

n

-spae has the weak

homotopy type of an n-fold loop spae

In the remainder of the talk the Dyer-Lashof operations on the homology H

�

(X; F

p

) of a

C

n

-spae X where introdued, where we restrited to the ase p = 2. Finally, a sketh of their

onstrution was given.

Stefan Shwede

Iterated Loop Spaes II

The operad C

n

of little n-ubes an be embedded into the operad of (n+ 1)-ubes by taking

produt with the additional oordinate diretion. This way every C

n+1

-spae beomes a C

n

-

spae. The Browder operation is an obstrution for a given C

n

-ation to extend to a C

n+1

-

ation. For n � 2 the Browder operation and the multipliation make the homology of a

C

n

-spae into a Gerstenhaber-algebra.

The operad C

1

is de�ned as the olimit of the operads C

n

. The reognition priniple says that

every grouplike C

1

-spae is an in�nite loop spae. The operad C

1

is an \ E

1

-operad", i.e.,

an operad whose k-th spae is �

k

-free and non-equivariantly ontratible for every k � 1. We

give two further example of E

1

-operads, the translation operad of the symmetri groups and

the linear isometries operad.
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Thomas Wenger

Formality and the Deligne onjeture

The subjet of the talk was the problem of de�ning the struture of a homotopy Gerstenhaber

algebra on the Hohshild ohains C

�

(A) of an assoiative algebra over a �eld of harateristi

zero. Its existene an be interpreted as an answer to a question posed by P. Deligne in a

letter, whih has sine then been alled the Deligne onjeture. He asked if the ation of

homology operad of the little diss operad on HH

�

(A) oming from the isomorphism of this

operad with the operad desribing Gerstenhaber algebras (denoted by G) an be lifted to the

ohain level.

The proof of existene was skethed along the lines of the preprint QA /0003052 by V. Hinih,

whih presents the existene proof of D. Tamarkin inluding some simpli�ations. To begin

with, it uses an operad B

1

desribing B

1

algebras in the sense of H. Baues, i.e. graded

vetor spaes X suh that the ofree oalgebra ogenerated by X[1℄ is equipped with the

struture of a di�erential graded bialgebra. The analogous notion for dg Lie bialgebras is

alled a

~

B algebra, again desribed by an operad bearing the same name. The �rst main step

in the proof is the ation of B

1

on C

�

(A) by the so-alled braes, whih goes bak to M.

Gerstenhaber and A. Voronov. Then a morphism of operads is onstruted from the homotopy

Gerstenhaber operad (de�ned to be or identi�ed as the minimal model of the (Koszul) operad

G) into B

1

. For this, the key idea is to interpret the result of P. Etingof and D. Kazhdan on

(de-)quantization of Lie bialgebras as giving an isomorphism between the operads B

1

and

~

B

and then to observe that almost by de�nition, G

1

maps to

~

B.

It was pointed out that alternative answers to the question raised by P. Deligne have been

given by J. MClure and J. Smith and by M. Kontsevih and Y. Soibelmann.

Markus Szymik

Batalin-Vilkovisky algebras

Let (A

�

;�) be a graded ommutative algebra A

�

together with an operator � whih satis�es

�

2

= 0 and raises degree by one. One an de�ne a braket by

[a; b℄ = (�)

a

�(ab)� (�)

a

�(a)b� a�(b):

If (A

�

; [ ℄) is a Gerstenhaber algebra, (A

�

;�) is alled a Batalin-Vilkovisky algebra. This is

equivalent to a ertain relation for �(ab) orresponding to the Poisson relation.

On the rational homology of a spae, an operator like � arises from an ation of the irle

group T. For example, the rational homology of a double loop spae is a Batalin-Vilkovisky

algebra due to the ation of T on the sphere by rotations.

In general, and this was presented in the talk as the main result, a Batalin-Vilkovisky algebra

is the same as an algebra over the homology of the operad of framed diss, whih is build

from the operad of ordinary diss by taking the ation of T on the dis into aount. That

result an be proven by redution to the orresponding result relating Gerstenhaber algebras

and the operad of ordinary diss in the same way.
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Natalie Wahl

Moduli spaes I

M

s

g;r

, the moduli spae of Riemann surfaes of genus g, with r boundary omponents and

s puntures, is (in most ases) a lassifying spae for the mapping lass group �

s

g;r

=

�

0

Diff

+

(F

s

g;r

; �) of the orresponding surfae (F

s

g;r

is a surfae of genus g, with r boundary

omponents and s puntures). This is a onsequene of the ontratibility of the Teihm�uller

spae, the moduli spae of marked Riemann surfaes.

Attahing surfaes on puntures de�nes an operad struture onM

s

g;r

, the ompati�ation of

M

s

g;r

. Those attahing maps produe singularities. Gluing along boundaries allows to work

without singularities. However, gluing omplex strutures is not an easy operation. We present

an operad indued by gluing along the boundaries, but using B�

s

g;r

, whih is homotopi to the

moduli spae. In this ase, we \glue" di�eomorphisms whih are the identity on the boundary.

The operad is shown to be a double loop spae operad, result whih will be improved to an

in�nite loop spae struture in the talk moduli spae II.

This operad is build using a general onstrution of \operads with families of groups". The

same onstrution provides a braid groups operad, whih is equivalent to the little disks

operad, and a ribbon braid groups operad equivalent to the framed disks operad.

Manfred Lehn

The vanishing of the BV-struture on the BRST-ohomology of a TCFT

Let

~

M

g;n+1

denote the spae of isomorphism lasses of Riemann surfaes C of genus g with

n + 1 disjoint biholomorphi embeddings '

0

, : : : ,'

n

: D ! C, and let

~

M

0

(n) :=

~

M

0;n+1

�

~

M(n) :=

`

g�0

~

M

g;n+1

. Sewing urves C n '

i

(D

Æ

) along their boundaries de�nes an operad

~

M that ontains

~

M

0

as a suboperad. The natural inlusion of the framed little diss operad

P !M

0

is a homotopy equivalene. In partiular, any algebra over H

�

~

M inherits a Batalin-

Vilkovisky struture. Let t 2 H

0

~

M orrespond to the point lass of a genus 1 surfae with

two dis embeddings. Then H

�

~

M

�

=

Q [t℄. We dedue the following theorem of Tillmann from

a theorem of Harer-Ivanov on the stabilisation of the mapping lass group homology H

�

(�

g;n

)

for inreasing genus:

Theorem: The element t is loally nilpotent on H

n

(

~

M) for n > 0. In partiular, if A is

an algebra over H

�

(

~

M), then the indued BV-struture (�; [�;�℄) on A beomes trivial after

loalization of t.

David J. Green

Moduli spaes II

In the �rst half of the talk, the onstrution of Ulrike Tillmann's surfae operad M was

treated in onsiderable detail.

Then Tillmann's theorem that everyM-spae is an in�nite loop spae after group ompletion

was stated, and the most important steps in the proof were presented. Harer's theorem that

the homology of the mapping lass groups stabilises as the genus inreases plays a key role.

The main orollary of Tillmann's theorem is that Z�B�

+

1

is an in�nite loop spae.
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Stefan K�uhnlein

Torsors and the Grothendiek-Teihm�uller group

After an introdution to quantization deformation we stated the fat that Kontsevih's proof

of the existene of a quantization deformation (for a given Poisson manifold) bases heavilly on

the onstrution of an isomorphism � between two homotopy Lie-algebras, the one ontrolling

deformations of assoiative, the other that of Poisson-algebras. (This is where operads and

the formality onjeture for C

2

ome in!) Let T be the set of all these isomorphisms. It

turns out that T is a pro-algebrai bitorsor. The isomorphism � gives a point on T (C) and

therefore orresponds to a ringmorphism � : O(T ) �! C: In the following we will desribe

the onstrution of a ring P

Tate

together with a morphism to C suh that � fators through

P

Tate

by a map �. The aÆne sheme Spe(P

Tate

) seems to be a proalgebrai bitorsor of great

importane in arithmeti geometry.

Conjeture (Kontsevih): Spe(�) is an isomorphism of proalgebrai bitorsors.

To onstrut P

Tate

, one �rst de�nes P

+

to be the Q-vetor spae generated by symbols

[X;D; ; !℄, where X runs through all smooth equidimensional varieties over Q (say d =

dimX), D is a divisor with normal rossings on X,  2 H

d

(X(C);D(C);Q); and ! 2 


d

(X).

These symbols obey the relations oming from Q-linearity in ! and , hange of variables and

Stokes' Theorem. In partiular,

R



! is well-de�ned on P

+

, induing a map ev : P

+

�! C:

It is onjetured that ev is injetive (whih we assume now). P

+

is a ring, as the produt of

two integrals again is an integral: the ring of e�etive periods. Let P := P

+

[1=2�i℄:

Theorem: (Nori) P is the ring of funtions of the proalgebrai torsor of isomorphisms

between Betti- and deRham-ohomology.

Now P

Tate

is the ring generated by (2�i)

�1

and entries of period matries whih are rationally

triangulisable having only powers of 2�i on the diagonal (and some onditions on disriminants

must be satis�ed.) It is implied by theorems of Gonharov, that the integrals de�ning � all

take there values in P

Tate

. On the other hand, one onjetures that the vetor bundles on

(the bitorsor) Spe(P

Tate

) with ommuting ations of the groups ating on Spe(P

Tate

) form

the ategory of mixed, unrami�ed Tate-motives (over Q with values in Q). Then, again, some

onjetures of Beilinson imply that the quotient of the motivi Galois group ating simply

transitively on Spe(P

Tate

) is isomorphi to the Grothendiek-Teihm�uller group GT.

NB: GT is the automorphism group of the tower of pro-nilpotent ompletions of the braid

groups B

n

= �

1

(C

2

(n)); and it ertainly should play some role in studying Chains(C

2

). To

understand this is part of Kontsevih's onjeture.

York Sommerh�auser

Vertex operator algebras

We review the work of Y. Z. Huang on the geometri desription of vertex operator algebras.

Vertex operator algebras are de�ned via a graded vetor spae, alled the state spae, and a

map, alled the state-�eld orrespondene, from the state spae to the spae of �elds, whih

are formal distributions with oeÆients in the endomorphism algebra of the state spae. On

the other hand, geometri vertex operator algebras are mappings from the partial operad of

moduli spaes of puntured spheres to the partial endomorphism operad. Huang's work gives

11



a one-to-one orrespondene between these two objets by looking at orrelation funtions of

vertex operator algebras.

Dan Fulea

Planar algebras and C

�

{algebras

The task of the talk was to give a ompat desription of Vaughan Jones' formalism [Jo℄

(Jones, V.F.R: Planar algebras I, see also the onferene program) of planar operads related

to the onstrution of subfators. For the purposes of the onferene, taking advantage on the

ommon knowledges of the partiipants, I deided to rephrase the formalism of the planar

algebras [Jo℄, expressing it in a ategorial fashion.

� In a (symmetri) tensor ategory A there is a formalism of making diagram alulus for

morphisms (Kassel, Christian: Quantum groups, XIV.1,2(,3) ). A morphism f : U ! V in A

is �gured as a box f with two vertial strands into and out of the box: f . The omposition

of morphisms is done by vertial onatenation

f

1

f

2

�

= f

1

f

2

. The tensor produt is given by

horizontal onatenation: f

1


 f

2

is represented by f

1

f

2

, ompleted with vertial strands.

The identity of an objet is a vertial strand j. (We don't speify the soure and the target

of a morphism, for they are determined by the morphisms involved. Exeption: The identity

morphism. In this ase it should be lear from the ontext.)

� An iterated omposition of iterated tensor produts of morphisms in A gives rise to a

diagram of not overrossing strands in the plane with boxed marks out of Hom

A

. Isolating

this struture one an de�ne labelled tangles (without overrossings). The labels are elements

of a language (L = tL

k

; �;
). The set L

k

of symbols of size k of L is given by � an assoiative

\vertial" omposition rule. The \horizontal" omposition rule is given by 
 : L

k

�L

l

! L

k+l

.

Let T hLi denote the ategory of tangles with marks in L.

� Analogously to the operad of little squares one an now de�ne after linearization with the

funtor R[�℄ from sets to R{modules the folowing planar operad P(�; L) of R{modules:

P(n;L) := R

2

4

G

k�0

Hom

T hL

2

i

(k ! k)

n

3

5

;

with the following meanings:

(i) L

2

is the language obtained from L by adjoining an empty box 2 = 2

k

in eah size k to

L

k

and onsidering the universal language (L

2

; �;
) with a anonial embedding (L; �;
)!

(L

2

; �;
).

(ii) Form the ategory T hL

2

i whih is generated by tangles, symbols of the language L and

the empty boxes. The number n of empty boxes of a morphism in Hom

T hL

2

i

(k ! k) is alled

the valene, and Hom

T hL

2

i

(k ! k)

n

denotes the set of morphisms of valene n with a hosen

order of the n empty boxes. Let f 2 Hom

T hL

2

i

(k ! k)

n

be a morphism. If k

i

is the size of

the i

th

box of f , we de�ne the olor of f to be K := (k

1

; : : : ; k

n

).

(iii) The set of morphisms of olor K generate in P(n;L) the R{module P(n;L)

K

.

The operadi multipliation

 : P(n;L)

K


 P(k

1

; L)
 � � � 
 P(k

n

; L)! P(k

1

+ � � �+ k

n

)

12



is given on generators by formal substitution into the empty boxes of P(n;L)

K

of generators

from the other tensor fators. This substitution is possible, only when \the olors math".

The unit morphism is 1! 2. (Substituting an empty box into an empty box gives an empty

box.)

� The main naive example of a P{algebra is given by the language of tensors T =

�

T

j

1

:::j

k

i

1

:::i

k

�

=

T

J

I

with all indies i

s

; j

s

: s = 1; ::; k in a �xed set.

The multipliation of tensors T = T

J

I

and S = S

K

J

is ST :=

P

J

T

J

I

S

K

J

and the tensor produt

of T = T

J

I

, S = S

N

M

is TS = (T

J

I

S

N

M

)

JtN

ItM

.

The operadi ation on tensors is given by (oloured) substitution of the tensors into the

empty boxes of an operadi operation and evaluating the result in tensors using (�;
).

� The main example [Jo℄ pf planar algebras (P{algebras) is onneted to the onstrution of

pairs A � B of a subfator of a fator of (C

�

){algebras.

{ A onditional expetation E : B ! A is an A{bimodule morphism giving the identity, when

restrited to A. Let E be also non{degenerate. We also write E : B ! B for the omposition

of the onditional expetation B ! A and the inlusion A! B.

{ One has the so alled fundamental onstrution: Assoiate to A � B the pair B � End

A

(B).

Iterating this proedure one beomes a tower A � B � End

A

(B) � : : : , that we homoge-

neously denote by M

0

� M

1

� M

2

� : : : . Then E =: E

2

is an element of M

2

. Analogously

one has elements E

3

2M

3

: : :

{ Assume the algebra B


A

B has a unit

P

u

i


 v

i

. De�ne � = IndexE :=

P

u

i

v

i

. It belongs

to the enter of B, whih is in our ase C . Consider also Æ 2 C , Æ�

2

= 1.

{ The endomorphism group End

A

(B) of B is generated by B and E, and seen as a right

A{module it is isomorphi to B


A

B. An endomorphism f orresponds to

P

f(u

i

)
 v

i

. One

has in general M

k

�

=

B 


A

B 


A

� � � 


A

B (k tensor fators).

{ Consider the intersetion of the sequene of inlusionsM

0

�M

1

�M

2

: : : withM

0

0

�M

0

1

�

M

0

2

� : : : .

M

0

�

M

1

�

M

2

�

: : :

�

M

k

�

: : :

M

0

0

M

0

0

\M

0

�

M

0

0

\M

1

�

M

0

0

\M

2

�

: : :

�

M

0

0

\M

k

�

: : :

M

0

1

[

M

0

1

\M

1

�

[

M

0

1

\M

2

�

[

: : :

�

M

0

1

\M

k

�

[

: : :

.

.

.

.

.

.

.

.

.

.

.

.

:

Then the operad P(�;M

0

0

\M

�

)= � generated by tangles, symbols in B end empty boxes

organizes the (R{linearized) quotient T hLi= � of tangles T hLi of diagrams in the language L

generated by B as an algebra. The relation � indenti�es eah internal iruit of tangles with

Æ 2 C . In this operadi algebra struture, E

k

is mapped to the tangle k ! k, whih joins the

last two upper and the last two lower strands of k, and eah x 2 B is mapped to x . One

an in the above piture (and more general in the framework of Popa{systems) \diagonally

extend" the operadi algebra struture.
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