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The second conference on finite fields at the Mathematisches Forschungsinstitut Oberwol-
fach was arranged by Igor Shparlinski and Joachim von zur Gathen. Since the second
organizer was absent due to illness, Igor Shparlinski did the management at Oberwolfach.
He arranged the schedule, which is reprinted on the following pages, in agreement with
the participants. Beside the European Union (22 attendants) and North America (16), the
participants came from Russia (3), Australia (2) and Brazil, China, Turkey and Hungary
(1 at a time).

There were a total of 39 presentations, covering a wide range of topics. As announced
by the title of the meeting, there were talks giving new theoretical results as well as
presentations of applications and experimental results. While the talks in the morning
dealt with general topics on finite fields, the afternoon sessions were organized as special
sessions attended to the following applications of finite fields:

algorithms and arithmetics,
coding theory,
cryptography,

exponential sums,

finite geometry.

The talks initiated intensive discussions between the participants. Wednesday afternoon
had been a planed social event. There was a walking-tour along the Wolfbach. The last
session on Friday afternoon closed with a problem session where open problems had been
presented.



9:45 - 10:30
10:40 — 11:25
11:35 — 12:20

Schedule of the meeting

Monday
GENERAL SESSION (Chair: John Friedlander)

Hendrik W. Lenstra, Jr.: Factoring polynomials over special finite fields
Winnie Li: Eigenvalues of Ramanujan graphs and Sato-Tate conjecture

Mazxim Skriganov: Coding theory, uniform distributions and related topics

SPECIALIZED SESSION: FINITE GEOMETRIES, CODES & FUNCTION FIELDS

15:30 — 16:10
16:15 — 16:45
17:00 — 17:40
17:45 — 18:25
9:00 — 9:20

9:25 — 9:45

9:50 — 10:20

10:40 — 11:25
11:35 — 12:20
15:30 — 16:00
16:05 — 16:35
16:40 — 17:10
17:25 — 17:55
18:00 — 18:30

(Chair: Henning Stichtenoth)
James W.P. Hirschfeld: The Desarguesian plane of order thirteen
Hiren Maharaj: On some asymptotic results in coding theory

Jurgen Bierbrauer: Codes, caps and nets

Everett Howe: Families of curves of genus two with isomorphic simple Jaco-
bians

Tuesday
GENERAL SESSION (Chair: Alf van der Poorten)

Hendrik W. Lenstra, Jr.: On a problem of Stichtenoth
Gary L. Mullen: Value sets of polynomials over finite fields

Michael Zieve: A new family of exceptional polynomials

GENERAL SESSION (Chair: Hendrik Lenstra)

Jose Felipe Voloch: Beyond the Carlitz-Uchiyama bound

Arnaldo Garcia: On Tame Towers of function fields and the Drinfeld-Vladut
bound

SPECIALIZED SESSION: ALGORITHMS I (Chair: Erich Kaltofen)

Shuhong Gao: Factoring polynomials via PDE
Alan Lauder: Factoring multivariate polynomials

Michael Nocker: Data structures for parallel exponentiation in finite fields

SPECIALIZED SESSION: ALGORITHMS II (Chair: Edlyn Teske)

Tom Berry: Generalizations of continued fractions in function fields

Erich Kaltofen: On the complexity of computing determinants



9:00 — 9:45
9:55 — 10:40
10:50 — 11:35
11:45 — 12:25

Wednesday
GENERAL SESSION (Chair: Hugh Montgomery)

Michael Fried: Exceptional covers and Davenport pairs

Alfred J. van der Poorten: Reduction mod p of the continued fraction of
certain algebraic power series

Edlyn Teske: Computations in hyperelliptic function fields

Phong Nguyen: Solving low-degree polynomial equations: Lattice attacks on
RSA

Thursday

GENERAL SESSION (Chair: Winnie Li)

9:00 — 9:40 Siguna Miiller: On the rank of appearance of Lucas sequences

9:50 — 10:30  Francesco Pappalardi € Claudia Malvenuto: Galois properties connected to

10:40 — 11:25
11:35 — 12:20
SPECIALIZED
15:30 — 16:00
16:05 — 16:40
16:45 — 17:15
17:30 — 17:55
18:00 — 18:30
9:00 — 9:25
9:30 — 9:55
10:05 — 10:45
10:55 — 11:35
11:45 — 12:25

the enumeration of permutation polynomials

GENERAL SESSION (Chair: Aart Blokhuis)

Marek Karpinski: Polynomial time approximability of the dense Nearest Code-
word Problem over finite fields
Tanja Lange: Fast arithmetic on hyperelliptic Koblitz curves for cryptography

SESSION: DISCRETE LOGARITHMS & CRYPTOGRAPHY (Chair: Everett Howe)

Hans Dobbertin: Permutation polynomials and applications in geometry and
cryptography

Daniel Panario: Pairs of coprime m-smooth polynomials over finite fields and
the Waterloo algorithm for the discrete logarithm problem

Sergey Konyagin: Linear complexity of the discrete logarithm

EXPONENTIAL SUMS (Chair: Gary Mullen)

Zhiyong Zheng: On a problem of H. Cohn for character sums

Igor E. Shparlinski: Exponential sums and lattices

Friday
GENERAL SESSION (Chair: James Hirschfeld)

John Friedlander: On Diffie-Hellman triples with sparse exponents
Aart Blokhuis: On the prime power conjecture for a certain class of projective
planes

Stephane Ballet: Quasi-optimal algorithms for multiplication in the extensions
of Fig of degree 13, 14 and 15

Lancelot Pecquet: Reconstruction of geometric functions and applications

Preda Mihailescu: Factoring cyclotomic polynomials over finite fields by rad-
icals



SPECIALIZED SESSION: MISCELLANEOUS (Chair: Jose Felipe Voloch)

15:30 — 16:00
16:05 — 16:30
16:45 — 17:30
17:35 — 17:55
18:00 — 18:30

Tamds Szdényi: Lacunary polynomials
Hugh Montgomery: Greedy sums of distinct squares

Preda Mihailescu: Classgroup relations, the Stickelberger ideal and Catalan’s
conjecture

Ferukh Ozbudakh: A note on the divisor class groups of degree zero of algebraic
function fields over finite fields

PROBLEM SESSION



Abstracts

Quasi-optimal algorithms for multiplication in the extensions of F;; of degree
13, 14 and 15

STEPHANE BALLET

From an interpolation method on algebraic curves, due to D.V. Chudnovsky and G.V.
Chudnovsky, we construct effective bilinear algorithms for multiplication in the extensions
of Fig of degree 13 < n < 15, with a bilinear complexity equal to 2n + 1. These algo-
rithms which are the first hyperelliptic algorithms of multiplication, are obtained from the

hyperelliptic curve of genus 2 with plane equation 3% + y = 2°.

Generalizations of continued fractions in function fields
ToMm G. BERRY

The classical continued fraction algorithm provides an efficient way of calculating the fun-
damental unit and regulator in real quadratic fields and “real” hyperelliptic function fields
(those with two points at infinity). Possible generalizations are:

1. To an algorithm that calculates torsion of more general divisors of degree zero. (Ob-
serve that the regulator of a real hyperelliptic function field is the torsion of co™ —o0o0™,
where co™, 00™ are the two points at infinity).

2. To algorithms for computing fundamental systems of units in non-hyperelliptic func-
tion fields, c.f. algorithms of Voronoi, Jacobi-Perron, and more recently J. Buchmann
(number fields), Hellegouarch, Paysan-le-Roux, and Scheidler-Stein (function fields).

I describe an algorithm for 1. in hyperelliptic fields, whose basic, very simple, idea extends
to 2. The idea is to find iteratively a sequence of functions f, € L(D,), where the D,
are a sequence of non-effective divisors of degree g, the genus. (In the classical continued
fraction algorithm D,, = —noo™ + (n + g)oo~.) Fundamental units and their analogues in
1. appear in the sequence {f,}. In practice, one calculates not the f, but the quotients

fn/fnfl-

Codes, caps and nets
JURGEN BIERBRAUER

We start by sketching a simplified approach to the theory of cyclic codes, which is based
on the action of the Galois group. This approach generalizes to the case of additive codes
(linearity is assumed only with respect to a subfield of the alphabet). As an interesting
class of examples we study the additive generalization of Kasami codes. Applications of
our theory include quantum codes and codes used for deep space communication.

Caps in Galois spaces are sets of points such that no three are on a line. We construct a
family of cyclic caps, generalizing a construction by Ebert, Metsch and Szényi (joint work
with A. Cassidente and Y. Edel) and study the question of completeness.

We prove bounds on caps in affine spaces, which simplify, generalize and strengthen a
result of Meshulam (joint work with Y. Edel). The classification of the affine section of
the Hill up as the unique 45-cap in AG(5, 3) is sketched.

A new idea due to Y. Edel, related to a classical product construction, yields new large

caps in ternary affine spaces as well as an improvement upon an asymptotic result by
Calderbark-Fishburn.



Finally we give an introduction to Rosenblom- Tsfasman space from a coding theory point
of view. Construction X (lengthening) and a version of the Gilbert-Vershamov bound are
generalized form Hamming space to RT-space.

On the prime power conjecture for a certain class of projective planes

AART BLOKHUIS
(joint work with Dieter Jungnickel and Bernhard Schmidt)

In 1967 Dembowski and Piper showed that there are only three types of planes of order n
with abelian groups of order n?2. These are translation planes, their duals, and so-called
type (b) planes.

A classical result of André says that for (dual) translation planes this group is elementary
abelian (and hence n is a prime power). Ganley showed (1976) that for type (b) planes of
even order n is a prime power. We complete his result by showing the same for odd n:

Let G be an abelian collineation group of order n? of a projective plane of oder n. Then
n is a prime power and the p-rank of G is at least b + 1 if n = p® for an odd prime p.

Permutation polynomials and applications in geometry and cryptography
HANS DOBBERTIN

We present simple examples of applications of the “multivariate” method to confirm that
certain classes of “uniformly” defined polynomials are permutation polynomials. This
technique has a large variety of applications in different areas like finite geometry, coding
theory, cryptography etc. The necessary computations are rather complicated, but can be
managed easily with Computer Algebra Packages as for instance MAGMA.

Exceptional covers and Davenport pairs
MICHAEL FRIED

This introduces a project for determining Chow motives from Weil vectors. Weil vectors
refers to coefficients of a Poincaré series (like zeta functions). A fuller version of the talk
is at www.math.uci.edu/~mfried/psfiles/obwffin01-22-2001.html. Ezceptional covers and
Davenport pairs illustrate relations among Weil vectors.

Mature tools for the general program: Galois stratification from M. Fried, Solving dio-
phantine problems over all residue class fields of a number field ..., Annals Math. 104
(1976), 203-233 and Fried-Jarden, Field Arithmetic, Springer Ergebnisse II Vol 11 (1986)
Chaps. 24-26; and rings of Chow Motives by Manin, and Gillet-Soulé. The Denef-Loeser
paper, Definable sets, motives and p-adic integrals, to appear in the Journal of the AMS,
shows cooperation between these tools.

Consider your favorite equation: F(u,z) = 0. Use [, for an algebraic closure of the finite
field F,. Suppose you like to count numbers of solutions N, over Fy, for all £. You might
count solutions N,;,, over W, ,/p", that lift to the Witt vectors W, ; of F,:. This gives
sets Ny p = {N,; 2, and N, = {N,.tn}1<t1<n- This drives the Denef-Loeser paper. We
concentrate on one finite field F,.

You often substitute for z to consider F(u,h(z)) = 0: h(z) = z, with h a polynomial
or rational function. Now we make an assumption on pairs of such substitutions from
different h and g. Suppose for ¢t € x = x5, and for each z € Fy,

(%) h(x) — z = 0 has the same number of solutions as does g(y) —z =0



Then Ny (F(u,h)) = Ngi(F(u,g)) for t € x. Let Xpun),r(ug) be the set of t where they
are equal. Then, Xpun),Fug) D Xhg- We'd like to put structure in the counting sets N r,
etc. so relations as these get automatic recognition. The emphasis is that such relations
among Weil vectors don’t depend on your choice of favorite equation. We analyze relations
like (*) by considering x5, with savvy.

Use V(L) for the range of the polynomial & on the field L. Let x4, be the characteristic
set {t | Vi(Fy) = V,(F,e)}. Don’t assume (x) holds. Call (h,g) a S(trong) D(avenport)
P(air) if xp, = N*. Call it a DP if y;, is infinite. Recall: h € F,[z] is ezceptional if
h : Fg — Fye is one-one for infinitely many ¢. Denote this set of exceptional ¢ by Ej,.

Suppose (h,g) is a DP and h; and g¢; are exceptional. The expression h(h;) denotes the
composition of A and hy. Then, Xpm,)g(s) contains Ey, N Ep, N Xp,e. You have to know
something about FEj, , Fy,, Xs,4 to say their intersection is infinite. The Main Theorem of
the talk has a corollary saying Ej,, N Ej, N X34 is automatically infinite if indecomposable
h has degree prime to p.

This is an example result from a work with W. Aitkin and L. Holt, titled Davenport
Pairs over finite fields (preprint near completion).

Two papers (at www.math.uci.edu/~mfried/#math) provide history and tools for con-
sidering SDPs: The definition field of function fields and a problem in the reducibility of
polynomials ..., IIl. J. Math. 17, (1973), 128-146; Variables Separated Polynomials and
Moduli Spaces, No. Theory in Progress, eds. K. Gyory, H. Iwaniec, J. Urbanowicz, 1997
Zakopane, Walter de Gruyter, Berlin-New York (Feb. 1999), 169-228. The controlling
factor in distinguishing these with the results with Aitken-Holt is considering DPs instead
of SDPs.

On Diffie-Hellman triples with sparse exponents

JOHN FRIEDLANDER
(joint work with Igor Shparlinski)

We describe recent work joint with Igor Shparlinski to appear in STAM J. Discrete Math.
Let p be a prime with 2" < p < 2"*!. Let W}, denote the set of n-bit integers having exactly
k non-zero digits in their binary expansion. For g a primitive root modulo p consider the set
of Diffie-Hellman triples (%, %, g%y), normalized to lie in the unit cube. We are interested
in trying to show that these triples, taken as x, y run through W;, are uniformly distributed
in the unit cube in the sense of H. Weyl. By symmetry we may assume that & < %n

Theorem: Provided that %n > k > .35n, the above triples are uniformly distributed.

Actually the constant .35 can be replaced by .349 ... which arises as the zero of a certain
transcendental function.

Such “sparse” exponents are of interest because for these the computation of ¢*, ¢¥, g™V,
is faster than for arbitrary = and y. In the latter case, that is as x, y run through all
exponents, a similar but quantitatively stronger uniformity has recently (Israel J. Math.
(2000)) been obtained by R. Canetti, J. Friedlander, M. Larsen, D. Lieman, S. Konyagin
and I. Shparlinski. The main lemma of that paper, a new bound for an exponential sum
involving the triples, is one of the principal ingredients here as well.



Factoring polynomials via PDE
SHUHONG GAO

A new method is presented for factorization of bivariate polynomials over an arbitrary field.
It is based on a simple partial differential equation that gives a system of linear equations.
Like Berlekamp’s and Niederreiter’s algorithms for factoring univariate polynomials, the
dimension of the solution space of the linear system is equal to the number of absolutely
irreducible factors of the polynomial to be factored and any basis for the solution space gives
a complete factorization by computing ged and by factoring univariate polynomials over
the ground field. The new method finds absolute and rational factorizations simultaneously
and is easy to implement for finite fields, local fields, number fields, and the complex number
field. The theory of the new method allows an effective Hilbert irreducibility theorem, thus
an efficient reduction of polynomials from multivariate to bivariate.

On Tame Towers of function fields and the Drinfeld-Vladut bound
ARNALDO GARCIA

Let E/F, denote a function field over F,, N(FE) its number of F,-rational places and
g(E) its genus. Let Ny;(g) = max{N(E): E a function field with g(E)=g} and A({) =
lim supg_moN[T(g) < V/f —1 (the last inequality being the so-called Drinfeld-Vladut bound).

The aim of this talk was to present 3 towers of function fields over F,, with / = p? and
p an odd prime, having limit equal to p — 1 (i.e., attaining the Drinfeld-Vladut bound).
Those 3 towers & (i = 1,2, 3) are recursively given by the equations 3> = ;(x) with

oile) = g ale) = and ) = T

The main ingredients here are the following two new properties of Deuring’s polynomial
H(Z) describing supersingular elliptic curves in Legendre’s form:

1. All roots of H(Z) are 4-th powers in Fpe.
. 2
2. (Polynomial identity) H(Z*) = ZP~' - H ((ZZ+1> )

2Z

It was also given an explicit description of the coordinates of the supersingular points for
the modular curves Xg(2").

The Desarguesian plane of order thirteen

J.W.P. HIRSCHFELD
(joint work with M. Giulietti and G. Korchméros)

The algebraic curve associated to an arc in PG(2,q), with ¢ odd, is examined using both
properties of the curve itself as well as properties of the arc. The key case of (¢ — 1)-arcs
means that the behaviour of the associated sextic curves needs to be studied. The case of
PG(2,13) is examined in detail. Noether’s theorem leads to a geometric bijection between
12-arcs and their duals. The dual 12-arcs lead to optimal plane sextic curves, that is, with
the maximum number of points; the 12-arcs lead to sextics whose set of rational points
make them ‘look like’ quartics and which in contrast have very few points.



Families of curves of genus two with isomorphic simple Jacobians
EvErReTT W. HOWE

We present two pairs (y*> — f(x,t),y? — g(x,t)) of elements of Z[t, z,y] with the following
properties:
1. Each of the polynomials y? — f(z,t) and y?> — g(x,t) defines a curve of genus 2 over
Q(t).
2. If to is an element of a field K such that that y? — f(z,t) and y? — g(x, ) define
curves C' and D of genus 2, then C' and D are geometrically non-isomorphic, but their
Jacobians are isomorphic over K (as abelian varieties without polarization).

The first pair is quite easy to write down, but the associated Jacobians are always reducible.
The second pair is slightly more difficult to write down, but “generically” the Jacobians
are simple. This means that for every field K there are only countably many values of #,
that give rise to reducible Jacobians. In practice, however, we find that even over finite
fields most values of ¢y lead to absolutely simple Jacobians.

On the complexity of computing determinants

ERrRICH KALTOFEN
(joint work with Gilles Villard)

We consider the bit complexity for computing a determinant of an n xn matrix with integer
entries whose maximum number of bits we denote by [. Since the determinant can have
as many as (nl)'*°(1) digits, the classical Chinese remainder approach requires (n*])!*°(!)
bit operations using classical matrix multiplication. The exponent 4 of n reduces to 3.38
when employing fast matrix multiplication. We present an algorithm that improves the
exponent 4 of n to 3+1/3 using only classical matrix and integer arithmetic, and to 2.81
using fast matrix and integer arithmetic. Our algorithm combines Coppersmith’s blocked
Wiedemann method, now run on a dense matrix, with a baby steps/giant steps approach
for evaluating the sequence of matrix moments. When applying our techniques to a 1992
result of mine, we also obtain an algorithm for computing the determinant of an n x n
matrix over an arbitrary commutative ring with O(n?%%®) ring additions, subtractions, and
multiplications.

Polynomial time approximability of the dense Nearest Codeword Problem
over finite fields

MAREK KARPINSKI

We design a polynomial time approzimation scheme (PTAS) for the dense instances of
Nearest Codeword Problem (NCP) over arbitrary finite fields. The problem can be for-
mulated as a linear feasibility problem of constructing an assignment x € GF|g|" for a
given system of linear equations over GF[q], which minimizes the number of unsatisfied
equations. The Dense NCP was known to be NP-hard in an exact setting. The general
problem is known to have exceedingly high lower approximation bound of n?(1)/loglogn
(Dinur, Kindler, Raz, Safra, 2000), and an existence of a PTAS on dense instances comes
as a surprise. The technique of solution depends on a method of approximating Smooth
Polynomial Integer Programs (Arora, Karger and Karpinski, 1995), and a new density
sampler technique for graphs and k-uniform hypergraphs developed recently by Bazgan,
Fernandez de la Vega and Karpinski, 2000. Despite an importance of the general NCP
problem, and its many applications, not much is known about ”good” approximation ratio



algorithms, better than of order n, and this for arbitrary fields. A challenging problem re-
mains a design of a polynomial time approximation algorithm working on general instances
of NCP within approximation ratio of o(n).

Linear complexity of the discrete logarithm

SERGEI KONYAGIN
(joint work with Igor Shparlinski)

This is our joint paper with Igor Shparlinski. We find lower bounds for the linear complexity
of the discrete logarithm modulo p or modulo p — 1 on a segment of length H. They have
the order H?/3/logp and H/logp, correspondingly.

Fast arithmetic on hyperelliptic Koblitz curves for cryptography
TANJA LANGE

We introduce a special class of hyperelliptic curves called Koblitz curves. These are curves
over a finite field Fy», ¢ a small prime power, which are already defined over F,. These
curves turn out to be a large source of groups suitable for cryptography. The main opera-
tion in for example the Diffie-Hellman key-exchange is the computation of m times a group
element. One of the big advantages of these curves is that they allow to speed up this step.
We explain how the Frobenius automorphism is used and give details on the involved algo-
rithms. The second advantage is that the computation of the group order of the Jacobians
is extremely fast for these curves whereas in the general case this is a hard problem. We
establish bounds for the performance of the algorithms and give numerical evidence for
them. Furthermore we provide several examples of curves suitable for cryptography.

Factoring multivariate polynomials
ALAN LAUDER

Given a polynomial in n variables over a field one may associate with it a convex polytope in
n-dimensional real space called its Newton polytope. This is done so that if the polynomial
factors then the Newton polytope decomposes, in the sense of the Minkowski sum, into the
Newton polytopes of the factors. I will describe a heuristic absolute irreducibility testing
method for multivariate polynomials based upon this idea, and also a factorization method
for bivariate polynomials. The former algorithm has been implemented and shown to be
of some practical interest, although work remains to be done on the latter.

Factoring polynomials over special finite fields
H.W. LENSTRA, JR.

I discussed the following theorem, which was obtained jointly with E. Bach and J. von
zur Gathen (Finite Fields and their Applications, Volume 7, Number 1, January 2001,
p. 5-28).

Theorem: There is a deterministic algorithm that for some ¢ > 0 has the following
property. Given a prime p, positive integers n and k, an explicit model for Fyn, and
f €Fpnx], f#0, the algorithm factors f into irreducible factors over Fyn, and if suitable
generalized Riemann hypotheses are valid then it does so in time at most (s + deg f +
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nlogp)®, where s is the largest prime factor of ®x(p); here ®y(p) denotes the k-th cyclotomic
polynomial.

In the case k£ = 1, where ®,(p) = p — 1, this was previously known; it was done by
controlling the multiplicative group ;. For general k, one uses the group IF‘;k / Hd\k,d<k IF;d,

which is cyclic of order ®,(p) and embeds in IF;;c by sending the coset of a to o™, where
m = Hl|k,lprime(1 - pk/f)

On a problem of Stichtenoth
H.W. LENSTRA, JR.

Theorem: Let p be a prime number. Then there does not exist a pair consisting of a
polynomial f € F,[x] and an integer m € Z such that

1. 1<mlp—1;

2. deg f = m, and the leading coefficient of f is an m-th power in F;;

3. 0 <ord, f <my

4. there is a finite set S CF, with0 € S and {a € F,|38 € S: f(a) =™} C S.

This result implies that a certain method due to Garcia, Stichtenoth, and Thomas (FFtA,
1997) for constructing “good towers of function fields” does not work over prime fields. The
problem is raised whether a similar negative result holds for a wider class of construction
methods.

Eigenvalues of Ramanujan graphs and Sato-Tate conjecture

WEN-CHING WINNIE L1
(joint work with Ching-Li Chai)

Sato-Tate conjecture concerns the distribution of the (properly normalized) Fourier coeffi-
cients of an automorphic form for GL(2) over a global field whose L-function has an Euler
product. In this talk we take the ground field to be a function field K with the field of con-
stants being a finite field F' with odd characteristic, and give three families of automorphic
forms for GL(2) over K satisfying the Sato-Tate conjecture. The Fourier coefficients of
the three families are certain character sums, arising as eigenvalues of certain Ramanujan
graphs, known as norm graphs and Terras graphs. The fact that these eigenvalues are
Fourier coefficients of automorphic forms was proved in my earlier work. Using geometric
method, we identify such automorphic forms and verify the Sato-Tate conjecture.

On some asymptotic results in coding theory

HIREN MAHARAJ
(joint work with H. Niederreiter)

We demonstrate an asymptotic result in coding theory using a variant of the Goppa-
construction of AG codes.

11



Factoring cyclotomic polynomials over finite fields by radicals
PREDA MIHAILESCU

Factorization of polynomials over finite fields F, (¢ prime) can be done efficiently by im-
provements of Berlekamp’s method due to Kaltofen, Shoup and von zur Gathen. When the
polynomial to factor ®,(x) is cyclotomic, we show that the classic approach of factoring
with radicals leads to an algorithm which requires several non power remainders in small
extensions and produces the factors of ®,(x) by means exponentiations in “small” exten-
sions of F,. Concretely, the degrees of these extensions are divisors of ¢(¢), where ¢|h, the
splitting index of ¢ in the p—th cyclotomic field, are maximal prime powers. This reduces
practically the complexity, compared to Berlekamp variants, in which exponentiations in
extensions of degree p — 1 are required. Although the asymptotic complexity is improved
by factors of the order of log p, in practice, for large p, the improvement is sensible. The
purpose of this presentation is not only to provide an efficient factorization method for a
very special purpose, but also to suggest that the use of known Galois actions can always
be profitable for algorithmic purposes.

Classgroup relations, the Stickelberger ideal and Catalan’s conjecture
PREDA MIHAILESCU

Catalan’s conjecture states that the diophantine equation
2V —yV =1

has no other non-trivial integer solution except 32 — 23 = 1. The equation can be reduced
to

(+) oy =e

with prime p, ¢, positive integer z,y and ¢ = +1. We present a last year’s result which
states that if () has a solution, then p? ! = 1 mod p? and ¢! = 1 mod p?. This result
is under press, has though not yet being presented at a public conference by the author.
Subsequently, the following yet unpublished result is presented: under the same premises,
q|h, . This generalizes a theorem of Bugeaud and Hanrot, who had proved the result under
the condition ¢ - (1 + 1/log(p)) > p.

Greedy sums of distinct squares

HucH L. MONTGOMERY
(joint work with Ulrike M. A. Vorhauer)

We represent a positive integer n as a sum of squares, using the greedy algorithm. Thus
the first square s? is the largest square not exceeding n, the second square is the largest
square not exceeding n — s?, and so on. Such an expansion clearly exists and is unique.
We say that n is a greedy sum of distinct squares if the summands in this expansion are
unique. Let a(n) be the characteristic function of this set of integers, and put A(v) =
Y 0<n<y @(n). Mike Shephard asked about the natural density of this set, and conjectured
that it is 1/2. We prove that the natural density does not exist, but that the quotient
a(v) = A(v)/v has persistent wobbles on a loglog scale, in the sense that o(4exp(27+*))
tends to a limit f(x) as k tends to infinity through integral values. The limiting function f
is continuous, non-constant, and has period 1. The values of f range between about 0.503
and 0.5096. Concerning the local behavior of the numbers a(n), we note that if s > 3
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then the numbers a(s?),a(s* + 1),...,a(s* + 2s) are exactly the same as the numbers
a(0),a(l),...,a(2s). In view of this highly self-replicatory nature of the a(n), it is to be
expected that many patterns of 0’s and 1’s are not found among them. Among the 2"
possible strings of 0’s and 1’s, let S(h) denote the number of strings that actually occur as
a(n+1),a(n+2),...,a(n + h) for some n. We find that S(1) = 2, S(2) =4, S(3) =7,
S(4) =11, S(5) = 11, S(6) = 18, S(7) = 30, 5(8) = 49, S(9) = 79, and that for larger h
the value of S(h) is given by the linear recurrence

S(h+1)=S(h)+ S(h—-2)+S(h—3)+S(h—38).

Thus S(h) ~ cal as h — oo where a; = 1.628668 is the positive real root of the irreducible
polynomial 2° — 2% — 2% — 2° — 1 and ¢ = 1.592655.

Value sets of polynomials over finite fields

GARY L. MULLEN
(joint work with Pinaki Das)

One of the major problems in the theory of finite fields is to be able to predict the size of
the value set of a polynomial over a finite field. This problem has been studied for many
years. Polynomials with maximal value sets are called permutation polynomials and have
numerous applications in various areas. We will discuss joint work with Pinaki Das in
which we improve some lower bounds on the cardinality of the value set of a polynomial
over a finite field.

On the rank of appearance of the Lucas sequences
SIGUNA MULLER

For P, € Fy, Q # 0, the Lucas sequences Ux(P,Q), Vi(P, Q) of first and second kind,
respectively, are purely periodic over any finite field F,. A special type of periodicity
is known as the rank of appearance (apparition). The first part of the talk deals with
the number of parameters P, respectively (), with same rank of appearance. For any
possible value of the rank the corresponding result is established. The formulae for the
particular type of periodicity under consideration are shown to be analogous to the number
of parameters with same multiplicative order.

The explicit structure of the formulae yields a very simple mechanism for counting the
number of the zeros P, respectively @, of both of the Lucas sequences (respectively the
Dickson polynomials) over F,.

As an application of the number of these zeros, examples of very efficient probable prime
tests are given.

Solving low-degree polynomial equations: Lattice attacks on RSA
PHoNG NGUYEN

We present Coppersmith’s theorem for finding in polynomial time small roots of a monic
polynomial modulo some large number of unknown factorization. We discuss applications

(in cryptography and elsewhere), and extensions to multivariate polynomials (in Z/NZ
and in 7).
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Data structures for parallel exponentiation in finite fields

MIicHAEL NOCKER

Exponentiation in finite fields is a basic operation in cryptography. The basic algorithm
for exponentiation is repeated squaring. We adapt this algorithm to the situation of a
finite field F;n, taking the Frobenius automorphism and different cost for multiplication
(ca) and raising to a ¢g-th power (c¢g) in Fyn into account.

We present a parallel algorithm for exponentiation in finite fields. This algorithm con-
nects algorithms of Borodin & Munro (for ¢ = 2 and ¢4 = ¢g = 1) and von zur Gathen
(for ¢ > 2 and ¢ = 0). If the algorithm works on input ¢4 > ¢g > 1 then any power of an
element in F;» can be computed in depth at most

ca ([logQ(q —-1)] + [logZ min {n [E—ﬂ H + 2) +cg - n.

This can be performed using ¢ — 1 + min{n, [E—g}} processors. We report on experiments
using different polynomial and normal bases to represent Fyn .

A note on divisor class groups of degree zero of algebraic function fields over
finite fields

FERRUH OZBUDAK

We give some upper bounds on the number of degree one places of an algebraic function
field over finite fields with respect to the exponent of a natural subgroup of its divisor class
group of degree zero.

Pairs of coprime m-smooth polynomials over finite fields and the Waterloo
algorithm for the discrete logarithm problem

DANIEL PANARIO
(joint work with Michael Drmota)

Let N,(m;n) be the number of monic polynomials over F, of degree n that are m-smooth,
and let N,(m;ny,ne) be the number of pairs of coprime monic polynomials over F, of
degree n; and no that are m-smooth. We prove that uniformly for m,n;,n, — oo with
nd <m<nl ™ nd<m<nt?and § >0, we have
1
Ny(m;ny,ng) ~ <1 - 6) Ny(m;ny ) Ny(m;ng).

This is proven using generating functions for the numbers N,(m;n) and N,(m;n,ny), plus
an application of the saddle point method for the asymptotic estimate. The range of m
can be extended but the above range is enough to provide a rigorous proof for the heuristic
arguments in the Waterloo variant (introduced by Blake, Fuji-Hara, Mullin and Vanstone)
of the index calculus method for the computation of the discrete logarithm problem in
finite fields of the form Fy». Our proofs can be applied to any finite field F,.
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Galois properties connected to the enumeration of permutation polynomials
FRANCESCO PAPPALARDI & CLAUDIA MALVENUTO

Let o0 € S(F,) be a permutation of the elements of a finite field F, and denote by f,(z) =
> cer, (1 — (x = )"y € F,[z] its permutation polynomial. For o # Id, it is easy to check
that the degree 0f, of f, has the property

q—2>0f, >q— c(o)

where ¢(0) is the number of elements of F, moved by o. Therefore df, = ¢ — ¢(o) is the
minimum possible value for the degree. This leads one to consider the function

mi(q) = #{o € S(F,),0 is a k-cycle and 9f, = ¢ — k}.
In a joint paper in preparation we show that

o(k kE—1)!
%q(q —1) <my(g) < %q(q - 1)
where the first inequality holds if ¢ = 1(k) and the second holds if ¢ = p* with p > 2-3¥/3-1,
We reported on these results and announced some new ones describing the Galois struc-
ture of some algebraic sets that arise from the enumeration.

Reconstruction of geometric functions and applications
LANCELOT PECQUET

More than thirty articles related to list-decoding and reconstruction have been released
in the last four years, after the pioneering work of Sudan. Most of them were focused
on Reed-Solomon and some algebraic-geometric codes, but the methods discussed in these
papers have found some unexpected applications like, for instance, the new cryptanalysis
given by Jakobsen in Crypto’98.

I will introduce a new problem of effective algebraic-geometry, that subsumes those
arising in the above situations and propose an efficient algorithm to solve it. This new
formulation is fairly general and provides a list-decoding and a soft-decoding algorithm for
all algebraic-geometric codes.

Reduction mod p of the continued fraction of certain algebraic power series
ALF VAN DER POORTEN

Consider the continued fraction expansion of formal Laurent series over the field QQ in the
variable X 1. Tt is easy to see by elementary heuristic considerations that generically all
the partial quotients (other perhaps than some very early ones) will be linear and that their
coefficients will increase in complexity at exponential rate; that is, in logarithmic height at
a linear rate. Of course, it is quite another matter to prove such a thing for any particular
example. By the way, over [F, the same heuristics say that a partial quotient has degree
greater than one with probability 1/p, greater than two, with probability 1/p?, and so on.

Now consider hyperelliptic curves C : Y? = D(X) with D a polynomial of degree 2¢g + 2
and with leading coefficient a square. Then the formal power series §(X) = /D(X) will
have reduction mod p everywhere except perhaps at p = 2. It will have good reduction
(preserving hyperellipticity) at all primes not dividing the discriminant of D. Of course
modulo p, thus over F,, \/D(X) will always be periodic.

The sequence of complete quotients of 0 (the partial quotients are the polynomial parts
of those complete quotients) are all of the shape (6 + P)/Q for polynomials P of degree
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g + 1 whose leading g + 1 coefficients coincide with those of 6(X), and polynomials @ of
degree less than g. Moreover, deg () = 0 is equivalent to a period having been completed.
In the elliptic case, ¢ = 1, that is deg D = 4, it follows that either all partial quotients (all
this after the zero-th) are of degree one, or ¢ has a periodic expansion.

The reduction theory of continued fraction expansions of formal power series shows that
partial quotients having bad reduction ‘collapse’ to higher degree. It follows that when
deg D = 4 every prime must occur in the denominator of infinitely many partial quotients
and each prime p occurs periodically with period that of the period of § expanded over
[F,. Moreover, one notes that if the n-th partial quotient has logarithmic height O(n) then
the n-th convergent has logarithmic height O(n?). In fact the height of those convergents
is the height of the ’points’ nP, where P is the divisor at infinity on the Jacobian of the
curve C.

These observations were illustrated by the examples y? = z* — 223 4 322 + 22 + 1, where
d happens to have a periodic expansion, of quasi-period 3, and y? = 2* — 22% + 322 + 22 +2,
where the expansion is generic. Thus, in the former case the divisor at infinity must be a
torsion divisor, in fact of order 4 = 3 + 1. One confirms the generic nature of the second
example by considering the degree of the regulator over IF,, several p of good reduction,
noting that by the reduction theory of abelian varieties its failure to be essentially invariant
suffices to prove non-periodicity.

Exponential sums and lattices

IGOR SHPARLINSKI
(joint work with Isabel Gonzéles Vasco, Phong Nguyen and Edwin El Mahassni)

We describe—combining two rather different techniques—how one can create a very pow-
erful tool for obtaining rigorous proofs of several results of cryptographic relevance. We
show that this combination is a both-edged sword which can be used to prove bit security of
several exponentiation based cryptographic schemes (such as Diffie-Hellman key exchange
scheme, ElGamal cryptosystem, Shamir message passing scheme, XTR cryptosystem) as
well as to design provable attacks on DSA and DSA-like signature schemes.

One of the underlying ideas goes back to D. Boneh and R. Venkatesan who introduced
and studied the so-called “hidden number problem”. However in many applications the
“ideal distribution” settings of their approach are too restrictive. It has also turned out that
the exponential sum technique (to be more precise, the uniformity of distribution results
derived from bounds of exponential sums) provides a bridge which leads to a variety of
new results.

Coding theory, uniform distributions, and related topics
M. M. SKRIGANOV

We consider point sets most uniformly distributed in the unit cube. Such distributions
have a rich combinatorial structure, namely, they can be completely characterized as max-
imum distance separable (briefly MDS) codes with respect to a non-Hamming metric in
vector spaces over finite fields. This new metric had been recently introduced to coding
theory by Rosenbloom and Tsfasman. It turns out that many remarkable point distri-
butions, in particularly the distributions with a minimal order of the mean square dis-
crepancy, can be explicitly given as codes with large weights simultaneously in the Ham-
ming and non-Hamming metrics. This result had been recently given by William Chen
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(Maquarie University, Sydney) and the author. In the course of related topics we consider
MacWilliams-type theorems for the indicated non-Hamming metric. It had been recently
shown by Steven Dougherty (University of Scranton, USA) and the author that a direct
extension of MacWilliams identities to such a non-Hamming metric does not take place
in general. Nevertheless, a more complicated generalization of MacWilliams-type theo-
rems can be given for weight enumerators associated with orbits of a group preserving the
indicated non-Hamming metric.

Lacunary polynomials
TAMAS SZONYI

In 1970 Laszl6 Rédei published a book “Liickenhafte Polynome iiber endlichen Koérpern”.
He developed a method for degree-estimates for lacunary polynomials, which later turned
out to be very useful in finite geometry. The central problem is to estimate the number
of directions determined by a set of ¢ points in AG(2,q). We survey the results on this
problem from Rédei’s book until the recent characterization of sets determining less than
% directions (Blokhuis, Ball, Brouwer, Storme, Sz6nyi), and the result of A. Géacs for

g = p prime, showing that a set of p points either determines p—;?’ directions (in which

case it is essentially unique as Lovész and Schrijver proved), or it determines at least %”
directions. The results can also be applied in group theory (proofs of Burnside’s theorem
by Dress-Klim-Muzychuk, U. Ott; proof of Wielandt’s visibility by Blokhuis-Seidel).

Computations in hyperelliptic function fields
EDLYN TESKE

A hyperelliptic function field K over a finite field k = F, (¢ = p’, p > 2 prime) can always
be represented as a real quadratic function field, i.e. K = k(X)(y/D(X)) where D(X) is
a squarefree polynomial in k[ X] of degree 2¢g + 2 whose leading coefficient is a square in k;
then g is the genus of K.

We discuss the cycle R of reduced principal ideals of a real quadratic function field K,
and we show how we can make use of the arithmetic in its ”infrastructure” to speed up
the computation of invariants of K (such as the regulator Ry, the ideal class number hy
and the divisor class number h) in fields of small genera. If 29 + 2 < log ¢, the fastest way
to compute the regulator is first to compute a good approximation E of the divisor class
number / and an integer L such that |h— E| < L? and then to use a square-root algorithm
such as the baby-step/giant-step method or the Pollard kangaroo method to search the
interval |E — L? FE + L?[ for a multiple of Ry. (Notice that h = hy - Ry, and in most
cases Rx has a unique multiple in |F — L? E + L?[, which is h.) With both square-root
methods, we can achieve a speed-up of about /g by cleverly exploiting the fact that we
have two different operations in R, one of which is by a factor of approximately 4¢ faster
than the other.

Beyond the Carlitz-Uchiyama bound
JOSE FELIPE VOLOCH

We give bounds for the number of points on y*> —y = f(z) in finite fields of characteristic
two, where f(z) is a polynomial. These bounds are good in a range where the Carlitz-
Uchiyama bound is trivial.

17



On a problem of H. Cohn for character sums

ZHIYONG ZHENG
(joint work with T. Cochrane and D. Garth)

In this talk we introduced a problem of H. Cohn on character sums over a finite field, which
asks whether a multiplicative character on a finite field can be characterized by a kind of
two level autocorrelation property. The main result of this talk is the following theorem.

Theorem: (Cochrane, Garth and Zheng, 2000) Let f be a complex valued function on the
finite field F with f(0) =0, f(1) =1 and |f(a)| =1 for all a # 0. Then f is a nontrivial
multiplicative character on F if and only if for all a,b € F*. We have the following “three
level autocorrelation property” that

(+) (q=1)>_ fba)fla+a)==>_ f(ba)f().

To answer Cohns problem, we need to show that the formula (%) with b = 1 would implies
that f is a nontrivial character of F. But a very recent work by S. Choi and K.M. Shiu
indicates that Cohns conjecture is not true for an extension field, so that the only unknown
case for this problem would be when F'is a prime field.

A new family of exceptional polynomials

MICHAEL ZIEVE
(joint work with Bob Guralnick, Peter Miiller, and Joel Rosenberg)

Theorem: Let k be an algebraically closed field of characteristic p > 0. There is a positive
constant € such that: for each of infinitely many integers g, there are infinitely many
genus-g curves over k having at least < - ¢°* automorphisms over k.

The proof consists of presenting two explicit families of curves over k. These curves arise

as the Galois closure of certain covers Ag AN Ag , where f(x) € Fy[2] is an exceptional

polynomial: i.e., the map o — f(a) induces a bijection on Fy» for infinitely many n.
In particular, they come from two new families of exceptional polynomials, which were
described in my talk.

Edited by Michael Nocker
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