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The se
ond 
onferen
e on �nite �elds at the Mathematis
hes Fors
hungsinstitut Oberwol-

fa
h was arranged by Igor Shparlinski and Joa
him von zur Gathen. Sin
e the se
ond

organizer was absent due to illness, Igor Shparlinski did the management at Oberwolfa
h.

He arranged the s
hedule, whi
h is reprinted on the following pages, in agreement with

the parti
ipants. Beside the European Union (22 attendants) and North Ameri
a (16), the

parti
ipants 
ame from Russia (3), Australia (2) and Brazil, China, Turkey and Hungary

(1 at a time).

There were a total of 39 presentations, 
overing a wide range of topi
s. As announ
ed

by the title of the meeting, there were talks giving new theoreti
al results as well as

presentations of appli
ations and experimental results. While the talks in the morning

dealt with general topi
s on �nite �elds, the afternoon sessions were organized as spe
ial

sessions attended to the following appli
ations of �nite �elds:

� algorithms and arithmeti
s,

� 
oding theory,

� 
ryptography,

� exponential sums,

� �nite geometry.

The talks initiated intensive dis
ussions between the parti
ipants. Wednesday afternoon

had been a planed so
ial event. There was a walking-tour along the Wolfba
h. The last

session on Friday afternoon 
losed with a problem session where open problems had been

presented.
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S
hedule of the meeting

Monday

General session (Chair: John Friedlander)

9:45 { 10:30 Hendrik W. Lenstra, Jr.: Fa
toring polynomials over spe
ial �nite �elds

10:40 { 11:25 Winnie Li: Eigenvalues of Ramanujan graphs and Sato-Tate 
onje
ture

11:35 { 12:20 Maxim Skriganov: Coding theory, uniform distributions and related topi
s

Spe
ialized session: Finite geometries, 
odes & fun
tion fields

(Chair: Henning Sti
htenoth)

15:30 { 16:10 James W.P. Hirs
hfeld: The Desarguesian plane of order thirteen

16:15 { 16:45 Hiren Maharaj: On some asymptoti
 results in 
oding theory

17:00 { 17:40 J�urgen Bierbrauer: Codes, 
aps and nets

17:45 { 18:25 Everett Howe: Families of 
urves of genus two with isomorphi
 simple Ja
o-

bians

Tuesday

General session (Chair: Alf van der Poorten)

9:00 { 9:20 Hendrik W. Lenstra, Jr.: On a problem of Sti
htenoth

9:25 { 9:45 Gary L. Mullen: Value sets of polynomials over �nite �elds

9:50 { 10:20 Mi
hael Zieve: A new family of ex
eptional polynomials

General session (Chair: Hendrik Lenstra)

10:40 { 11:25 Jose Felipe Volo
h: Beyond the Carlitz-U
hiyama bound

11:35 { 12:20 Arnaldo Gar
ia: On Tame Towers of fun
tion �elds and the Drinfeld-Vladut

bound

Spe
ialized session: Algorithms I (Chair: Eri
h Kaltofen)

15:30 { 16:00 Shuhong Gao: Fa
toring polynomials via PDE

16:05 { 16:35 Alan Lauder: Fa
toring multivariate polynomials

16:40 { 17:10 Mi
hael N�o
ker: Data stru
tures for parallel exponentiation in �nite �elds

Spe
ialized session: Algorithms II (Chair: Edlyn Teske)

17:25 { 17:55 Tom Berry: Generalizations of 
ontinued fra
tions in fun
tion �elds

18:00 { 18:30 Eri
h Kaltofen: On the 
omplexity of 
omputing determinants
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Wednesday

General session (Chair: Hugh Montgomery)

9:00 { 9:45 Mi
hael Fried: Ex
eptional 
overs and Davenport pairs

9:55 { 10:40 Alfred J. van der Poorten: Redu
tion mod p of the 
ontinued fra
tion of


ertain algebrai
 power series

10:50 { 11:35 Edlyn Teske: Computations in hyperellipti
 fun
tion �elds

11:45 { 12:25 Phong Nguyen: Solving low-degree polynomial equations: Latti
e atta
ks on

RSA

Thursday

General session (Chair: Winnie Li)

9:00 { 9:40 Siguna M�uller: On the rank of appearan
e of Lu
as sequen
es

9:50 { 10:30 Fran
es
o Pappalardi & Claudia Malvenuto: Galois properties 
onne
ted to

the enumeration of permutation polynomials

General session (Chair: Aart Blokhuis)

10:40 { 11:25 Marek Karpinski: Polynomial time approximability of the dense Nearest Code-

word Problem over �nite �elds

11:35 { 12:20 Tanja Lange: Fast arithmeti
 on hyperellipti
 Koblitz 
urves for 
ryptography

Spe
ialized session: Dis
rete logarithms & 
ryptography (Chair: Everett Howe)

15:30 { 16:00 Hans Dobbertin: Permutation polynomials and appli
ations in geometry and


ryptography

16:05 { 16:40 Daniel Panario: Pairs of 
oprime m-smooth polynomials over �nite �elds and

the Waterloo algorithm for the dis
rete logarithm problem

16:45 { 17:15 Sergey Konyagin: Linear 
omplexity of the dis
rete logarithm

Exponential sums (Chair: Gary Mullen)

17:30 { 17:55 Zhiyong Zheng: On a problem of H. Cohn for 
hara
ter sums

18:00 { 18:30 Igor E. Shparlinski: Exponential sums and latti
es

Friday

General session (Chair: James Hirs
hfeld)

9:00 { 9:25 John Friedlander: On DiÆe{Hellman triples with sparse exponents

9:30 { 9:55 Aart Blokhuis: On the prime power 
onje
ture for a 
ertain 
lass of proje
tive

planes

10:05 { 10:45 Stephane Ballet: Quasi-optimal algorithms for multipli
ation in the extensions

of F

16

of degree 13, 14 and 15

10:55 { 11:35 Lan
elot Pe
quet: Re
onstru
tion of geometri
 fun
tions and appli
ations

11:45 { 12:25 Preda Mih�ailes
u: Fa
toring 
y
lotomi
 polynomials over �nite �elds by rad-

i
als
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Spe
ialized session: Mis
ellaneous (Chair: Jose Felipe Volo
h)

15:30 { 16:00 Tam�as Sz}onyi: La
unary polynomials

16:05 { 16:30 Hugh Montgomery: Greedy sums of distin
t squares

16:45 { 17:30 Preda Mih�ailes
u: Classgroup relations, the Sti
kelberger ideal and Catalan's


onje
ture

17:35 { 17:55 Ferukh Ozbudakh: A note on the divisor 
lass groups of degree zero of algebrai


fun
tion �elds over �nite �elds

18:00 { 18:30 Problem session
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Abstra
ts

Quasi-optimal algorithms for multipli
ation in the extensions of F

16

of degree

13, 14 and 15

Stephane Ballet

From an interpolation method on algebrai
 
urves, due to D.V. Chudnovsky and G.V.

Chudnovsky, we 
onstru
t e�e
tive bilinear algorithms for multipli
ation in the extensions

of F

16

of degree 13 � n � 15, with a bilinear 
omplexity equal to 2n + 1. These algo-

rithms whi
h are the �rst hyperellipti
 algorithms of multipli
ation, are obtained from the

hyperellipti
 
urve of genus 2 with plane equation y

2

+ y = x

5

.

Generalizations of 
ontinued fra
tions in fun
tion �elds

Tom G. Berry

The 
lassi
al 
ontinued fra
tion algorithm provides an eÆ
ient way of 
al
ulating the fun-

damental unit and regulator in real quadrati
 �elds and \real" hyperellipti
 fun
tion �elds

(those with two points at in�nity). Possible generalizations are:

1. To an algorithm that 
al
ulates torsion of more general divisors of degree zero. (Ob-

serve that the regulator of a real hyperellipti
 fun
tion �eld is the torsion of1

+

�1

�

,

where 1

+

;1

�

are the two points at in�nity).

2. To algorithms for 
omputing fundamental systems of units in non-hyperellipti
 fun
-

tion �elds, 
.f. algorithms of Voronoi, Ja
obi-Perron, and more re
ently J. Bu
hmann

(number �elds), Hellegouar
h, Paysan-le-Roux, and S
heidler-Stein (fun
tion �elds).

I des
ribe an algorithm for 1. in hyperellipti
 �elds, whose basi
, very simple, idea extends

to 2. The idea is to �nd iteratively a sequen
e of fun
tions f

n

2 L(D

n

), where the D

n

are a sequen
e of non-e�e
tive divisors of degree g, the genus. (In the 
lassi
al 
ontinued

fra
tion algorithm D

n

= �n1

+

+ (n+ g)1

�

.) Fundamental units and their analogues in

1. appear in the sequen
e ff

n

g. In pra
ti
e, one 
al
ulates not the f

n

but the quotients

f

n

=f

n�1

.

Codes, 
aps and nets

J

�

urgen Bierbrauer

We start by sket
hing a simpli�ed approa
h to the theory of 
y
li
 
odes, whi
h is based

on the a
tion of the Galois group. This approa
h generalizes to the 
ase of additive 
odes

(linearity is assumed only with respe
t to a sub�eld of the alphabet). As an interesting


lass of examples we study the additive generalization of Kasami 
odes. Appli
ations of

our theory in
lude quantum 
odes and 
odes used for deep spa
e 
ommuni
ation.

Caps in Galois spa
es are sets of points su
h that no three are on a line. We 
onstru
t a

family of 
y
li
 
aps, generalizing a 
onstru
tion by Ebert, Mets
h and Sz}onyi (joint work

with A. Cassidente and Y. Edel) and study the question of 
ompleteness.

We prove bounds on 
aps in aÆne spa
es, whi
h simplify, generalize and strengthen a

result of Meshulam (joint work with Y. Edel). The 
lassi�
ation of the aÆne se
tion of

the Hill up as the unique 45-
ap in AG(5; 3) is sket
hed.

A new idea due to Y. Edel, related to a 
lassi
al produ
t 
onstru
tion, yields new large


aps in ternary aÆne spa
es as well as an improvement upon an asymptoti
 result by

Calderbark-Fishburn.
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Finally we give an introdu
tion to Rosenblom-Tsfasman spa
e from a 
oding theory point

of view. Constru
tion X (lengthening) and a version of the Gilbert-Vershamov bound are

generalized form Hamming spa
e to RT-spa
e.

On the prime power 
onje
ture for a 
ertain 
lass of proje
tive planes

Aart Blokhuis

(joint work with Dieter Jungni
kel and Bernhard S
hmidt)

In 1967 Dembowski and Piper showed that there are only three types of planes of order n

with abelian groups of order n

2

. These are translation planes, their duals, and so-
alled

type (b) planes.

A 
lassi
al result of Andr�e says that for (dual) translation planes this group is elementary

abelian (and hen
e n is a prime power). Ganley showed (1976) that for type (b) planes of

even order n is a prime power. We 
omplete his result by showing the same for odd n:

Let G be an abelian 
ollineation group of order n

2

of a proje
tive plane of oder n. Then

n is a prime power and the p-rank of G is at least b + 1 if n = p

b

for an odd prime p.

Permutation polynomials and appli
ations in geometry and 
ryptography

Hans Dobbertin

We present simple examples of appli
ations of the \multivariate" method to 
on�rm that


ertain 
lasses of \uniformly" de�ned polynomials are permutation polynomials. This

te
hnique has a large variety of appli
ations in di�erent areas like �nite geometry, 
oding

theory, 
ryptography et
. The ne
essary 
omputations are rather 
ompli
ated, but 
an be

managed easily with Computer Algebra Pa
kages as for instan
e MAGMA.

Ex
eptional 
overs and Davenport pairs

Mi
hael Fried

This introdu
es a proje
t for determining Chow motives from Weil ve
tors. Weil ve
tors

refers to 
oeÆ
ients of a Poin
ar�e series (like zeta fun
tions). A fuller version of the talk

is at www.math.u
i.edu/�mfried/ps�les/obwÆn01-22-2001.html. Ex
eptional 
overs and

Davenport pairs illustrate relations among Weil ve
tors.

Mature tools for the general program: Galois strati�
ation from M. Fried, Solving dio-

phantine problems over all residue 
lass �elds of a number �eld : : : , Annals Math. 104

(1976), 203{233 and Fried-Jarden, Field Arithmeti
, Springer Ergebnisse II Vol 11 (1986)

Chaps. 24-26; and rings of Chow Motives by Manin, and Gillet-Soul�e. The Denef-Loeser

paper, De�nable sets, motives and p-adi
 integrals, to appear in the Journal of the AMS,

shows 
ooperation between these tools.

Consider your favorite equation: F (u; z) = 0. Use

�

F

q

for an algebrai
 
losure of the �nite

�eld F

q

. Suppose you like to 
ount numbers of solutions N

q;t

over F

q

t

, for all t. You might


ount solutions

�

N

q;t;n

, over W

q;t

=p

n

, that lift to the Witt ve
tors W

q;t

of F

q

t

. This gives

sets N

q;F

= fN

q;t

g

1

t=1

and

�

N

q;t;n

= f

�

N

q;t;n

g

1�t;1�n

. This drives the Denef-Loeser paper. We


on
entrate on one �nite �eld F

q

.

You often substitute for z to 
onsider F (u; h(x)) = 0: h(x) = z, with h a polynomial

or rational fun
tion. Now we make an assumption on pairs of su
h substitutions from

di�erent h and g. Suppose for t 2 � = �

h;g

and for ea
h z 2 F

q

t

,

h(x)� z = 0 has the same number of solutions as does g(y)� z = 0(�)
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Then N

q;t

(F (u; h)) = N

q;t

(F (u; g)) for t 2 �. Let �

F (u;h);F (u;g)

be the set of t where they

are equal. Then, �

F (u;h);F (u;g)

� �

h;g

. We'd like to put stru
ture in the 
ounting sets N

q;F

,

et
. so relations as these get automati
 re
ognition. The emphasis is that su
h relations

among Weil ve
tors don't depend on your 
hoi
e of favorite equation. We analyze relations

like (�) by 
onsidering �

h;g

with savvy.

Use V

h

(L) for the range of the polynomial h on the �eld L. Let �

h;g

be the 
hara
teristi


set ft j V

h

(F

q

t

) = V

g

(F

q

t

)g. Don't assume (�) holds. Call (h; g) a S(trong) D(avenport)

P(air) if �

h;g

= N

+

. Call it a DP if �

h;g

is in�nite. Re
all: h 2 F

q

[x℄ is ex
eptional if

h : F

q

t

! F

q

t

is one-one for in�nitely many t. Denote this set of ex
eptional t by E

h

.

Suppose (h; g) is a DP and h

1

and g

1

are ex
eptional. The expression h(h

1

) denotes the


omposition of h and h

1

. Then, �

h(h

1

);g(g

1

)


ontains E

h

1

\ E

h

2

\ �

h;g

. You have to know

something about E

h

1

; E

h

2

; �

h;g

to say their interse
tion is in�nite. The Main Theorem of

the talk has a 
orollary saying E

h

1

\ E

h

2

\ �

h;g

is automati
ally in�nite if inde
omposable

h has degree prime to p.

This is an example result from a work with W. Aitkin and L. Holt, titled Davenport

Pairs over �nite �elds (preprint near 
ompletion).

Two papers (at www.math.u
i.edu/�mfried/#math) provide history and tools for 
on-

sidering SDPs: The de�nition �eld of fun
tion �elds and a problem in the redu
ibility of

polynomials : : : , Ill. J. Math. 17, (1973), 128{146; Variables Separated Polynomials and

Moduli Spa
es, No. Theory in Progress, eds. K. Gyory, H. Iwanie
, J. Urbanowi
z, 1997

Zakopane, Walter de Gruyter, Berlin-New York (Feb. 1999), 169{228. The 
ontrolling

fa
tor in distinguishing these with the results with Aitken-Holt is 
onsidering DPs instead

of SDPs.

On DiÆe-Hellman triples with sparse exponents

John Friedlander

(joint work with Igor Shparlinski)

We des
ribe re
ent work joint with Igor Shparlinski to appear in SIAM J. Dis
rete Math.

Let p be a prime with 2

n

< p < 2

n+1

. LetW

k

denote the set of n-bit integers having exa
tly

k non-zero digits in their binary expansion. For g a primitive root modulo p 
onsider the set

of DiÆe-Hellman triples (

g

x

p

;

g

y

p

;

g

xy

p

), normalized to lie in the unit 
ube. We are interested

in trying to show that these triples, taken as x, y run throughW

k

, are uniformly distributed

in the unit 
ube in the sense of H. Weyl. By symmetry we may assume that k �

1

2

n.

Theorem: Provided that

1

2

n � k � :35n, the above triples are uniformly distributed.

A
tually the 
onstant :35 
an be repla
ed by :349 : : : whi
h arises as the zero of a 
ertain

trans
endental fun
tion.

Su
h \sparse" exponents are of interest be
ause for these the 
omputation of g

x

; g

y

; g

xy

,

is faster than for arbitrary x and y. In the latter 
ase, that is as x, y run through all

exponents, a similar but quantitatively stronger uniformity has re
ently (Israel J. Math.

(2000)) been obtained by R. Canetti, J. Friedlander, M. Larsen, D. Lieman, S. Konyagin

and I. Shparlinski. The main lemma of that paper, a new bound for an exponential sum

involving the triples, is one of the prin
ipal ingredients here as well.
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Fa
toring polynomials via PDE

Shuhong Gao

A new method is presented for fa
torization of bivariate polynomials over an arbitrary �eld.

It is based on a simple partial di�erential equation that gives a system of linear equations.

Like Berlekamp's and Niederreiter's algorithms for fa
toring univariate polynomials, the

dimension of the solution spa
e of the linear system is equal to the number of absolutely

irredu
ible fa
tors of the polynomial to be fa
tored and any basis for the solution spa
e gives

a 
omplete fa
torization by 
omputing g
d and by fa
toring univariate polynomials over

the ground �eld. The new method �nds absolute and rational fa
torizations simultaneously

and is easy to implement for �nite �elds, lo
al �elds, number �elds, and the 
omplex number

�eld. The theory of the new method allows an e�e
tive Hilbert irredu
ibility theorem, thus

an eÆ
ient redu
tion of polynomials from multivariate to bivariate.

On Tame Towers of fun
tion �elds and the Drinfeld-Vladut bound

Arnaldo Gar
ia

Let E=F

`

denote a fun
tion �eld over F

`

, N(E) its number of F

`

-rational pla
es and

g(E) its genus. Let N

`

(g) = maxfN(E) : E a fun
tion �eld with g(E)=gg and A(`) =

limsup

g!1

N

`

(g)

g

�

p

`� 1 (the last inequality being the so-
alled Drinfeld-Vladut bound).

The aim of this talk was to present 3 towers of fun
tion �elds over F

`

, with ` = p

2

and

p an odd prime, having limit equal to p � 1 (i.e., attaining the Drinfeld-Vladut bound).

Those 3 towers �

i

(i = 1; 2; 3) are re
ursively given by the equations y

2

= '

i

(x) with

'

1

(x) =

(x+ 3)

2

8(x+ 1)

; '

2

(x) =

(x + 1)

2

4x

and '

3

(x) =

x

2

+ 1

2x

:

The main ingredients here are the following two new properties of Deuring's polynomial

H(Z) des
ribing supersingular ellipti
 
urves in Legendre's form:

1. All roots of H(Z) are 4-th powers in F

p

2

.

2. (Polynomial identity) H(Z

4

) = Z

p�1

�H

�

�

Z

2

+1

2Z

�

2

�

.

It was also given an expli
it des
ription of the 
oordinates of the supersingular points for

the modular 
urves X

0

(2

n

).

The Desarguesian plane of order thirteen

J.W.P. Hirs
hfeld

(joint work with M. Giulietti and G. Kor
hm�aros)

The algebrai
 
urve asso
iated to an ar
 in PG(2; q), with q odd, is examined using both

properties of the 
urve itself as well as properties of the ar
. The key 
ase of (q � 1)-ar
s

means that the behaviour of the asso
iated sexti
 
urves needs to be studied. The 
ase of

PG(2; 13) is examined in detail. Noether's theorem leads to a geometri
 bije
tion between

12-ar
s and their duals. The dual 12-ar
s lead to optimal plane sexti
 
urves, that is, with

the maximum number of points; the 12-ar
s lead to sexti
s whose set of rational points

make them `look like' quarti
s and whi
h in 
ontrast have very few points.

8



Families of 
urves of genus two with isomorphi
 simple Ja
obians

Everett W. Howe

We present two pairs (y

2

� f(x; t); y

2

� g(x; t)) of elements of Z[t; x; y℄ with the following

properties:

1. Ea
h of the polynomials y

2

� f(x; t) and y

2

� g(x; t) de�nes a 
urve of genus 2 over

Q(t).

2. If t

0

is an element of a �eld K su
h that that y

2

� f(x; t

0

) and y

2

� g(x; t

0

) de�ne


urves C and D of genus 2, then C and D are geometri
ally non-isomorphi
, but their

Ja
obians are isomorphi
 over K (as abelian varieties without polarization).

The �rst pair is quite easy to write down, but the asso
iated Ja
obians are always redu
ible.

The se
ond pair is slightly more diÆ
ult to write down, but \generi
ally" the Ja
obians

are simple. This means that for every �eld K there are only 
ountably many values of t

0

that give rise to redu
ible Ja
obians. In pra
ti
e, however, we �nd that even over �nite

�elds most values of t

0

lead to absolutely simple Ja
obians.

On the 
omplexity of 
omputing determinants

Eri
h Kaltofen

(joint work with Gilles Villard)

We 
onsider the bit 
omplexity for 
omputing a determinant of an n�n matrix with integer

entries whose maximum number of bits we denote by l. Sin
e the determinant 
an have

as many as (nl)

1+o(1)

digits, the 
lassi
al Chinese remainder approa
h requires (n

4

l)

1+o(1)

bit operations using 
lassi
al matrix multipli
ation. The exponent 4 of n redu
es to 3:38

when employing fast matrix multipli
ation. We present an algorithm that improves the

exponent 4 of n to 3+1=3 using only 
lassi
al matrix and integer arithmeti
, and to 2:81

using fast matrix and integer arithmeti
. Our algorithm 
ombines Coppersmith's blo
ked

Wiedemann method, now run on a dense matrix, with a baby steps/giant steps approa
h

for evaluating the sequen
e of matrix moments. When applying our te
hniques to a 1992

result of mine, we also obtain an algorithm for 
omputing the determinant of an n � n

matrix over an arbitrary 
ommutative ring with O(n

2:698

) ring additions, subtra
tions, and

multipli
ations.

Polynomial time approximability of the dense Nearest Codeword Problem

over �nite �elds

Marek Karpinski

We design a polynomial time approximation s
heme (PTAS) for the dense instan
es of

Nearest Codeword Problem (NCP) over arbitrary �nite �elds. The problem 
an be for-

mulated as a linear feasibility problem of 
onstru
ting an assignment x 2 GF [q℄

n

for a

given system of linear equations over GF [q℄, whi
h minimizes the number of unsatis�ed

equations. The Dense NCP was known to be NP-hard in an exa
t setting. The general

problem is known to have ex
eedingly high lower approximation bound of n


(1)= loglog n

(Dinur, Kindler, Raz, Safra, 2000), and an existen
e of a PTAS on dense instan
es 
omes

as a surprise. The te
hnique of solution depends on a method of approximating Smooth

Polynomial Integer Programs (Arora, Karger and Karpinski, 1995), and a new density

sampler te
hnique for graphs and k-uniform hypergraphs developed re
ently by Bazgan,

Fernandez de la Vega and Karpinski, 2000. Despite an importan
e of the general NCP

problem, and its many appli
ations, not mu
h is known about "good" approximation ratio
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algorithms, better than of order n, and this for arbitrary �elds. A 
hallenging problem re-

mains a design of a polynomial time approximation algorithm working on general instan
es

of NCP within approximation ratio of o(n).

Linear 
omplexity of the dis
rete logarithm

Sergei Konyagin

(joint work with Igor Shparlinski)

This is our joint paper with Igor Shparlinski. We �nd lower bounds for the linear 
omplexity

of the dis
rete logarithm modulo p or modulo p� 1 on a segment of length H. They have

the order H

2=3

= log p and H= log p, 
orrespondingly.

Fast arithmeti
 on hyperellipti
 Koblitz 
urves for 
ryptography

Tanja Lange

We introdu
e a spe
ial 
lass of hyperellipti
 
urves 
alled Koblitz 
urves. These are 
urves

over a �nite �eld F

q

n

, q a small prime power, whi
h are already de�ned over F

q

. These


urves turn out to be a large sour
e of groups suitable for 
ryptography. The main opera-

tion in for example the DiÆe-Hellman key-ex
hange is the 
omputation of m times a group

element. One of the big advantages of these 
urves is that they allow to speed up this step.

We explain how the Frobenius automorphism is used and give details on the involved algo-

rithms. The se
ond advantage is that the 
omputation of the group order of the Ja
obians

is extremely fast for these 
urves whereas in the general 
ase this is a hard problem. We

establish bounds for the performan
e of the algorithms and give numeri
al eviden
e for

them. Furthermore we provide several examples of 
urves suitable for 
ryptography.

Fa
toring multivariate polynomials

Alan Lauder

Given a polynomial in n variables over a �eld one may asso
iate with it a 
onvex polytope in

n-dimensional real spa
e 
alled its Newton polytope. This is done so that if the polynomial

fa
tors then the Newton polytope de
omposes, in the sense of the Minkowski sum, into the

Newton polytopes of the fa
tors. I will des
ribe a heuristi
 absolute irredu
ibility testing

method for multivariate polynomials based upon this idea, and also a fa
torization method

for bivariate polynomials. The former algorithm has been implemented and shown to be

of some pra
ti
al interest, although work remains to be done on the latter.

Fa
toring polynomials over spe
ial �nite �elds

H.W. Lenstra, Jr.

I dis
ussed the following theorem, whi
h was obtained jointly with E. Ba
h and J. von

zur Gathen (Finite Fields and their Appli
ations, Volume 7, Number 1, January 2001,

p. 5{28).

Theorem: There is a deterministi
 algorithm that for some 
 > 0 has the following

property. Given a prime p, positive integers n and k, an expli
it model for F

p

n

, and

f 2 F

p

n

[x℄, f 6= 0, the algorithm fa
tors f into irredu
ible fa
tors over F

p

n

, and if suitable

generalized Riemann hypotheses are valid then it does so in time at most (s + deg f +

10



n log p)




, where s is the largest prime fa
tor of �

k

(p); here �

k

(p) denotes the k-th 
y
lotomi


polynomial.

In the 
ase k = 1, where �

k

(p) = p � 1, this was previously known; it was done by


ontrolling the multipli
ative group F

�

p

. For general k, one uses the group F

�

p

k

=

Q

djk;d<k

F

�

p

d

,

whi
h is 
y
li
 of order �

k

(p) and embeds in F

�

p

k

by sending the 
oset of � to �

m

, where

m =

Q

`jk;`prime

(1� p

k=`

).

On a problem of Sti
htenoth

H.W. Lenstra, Jr.

Theorem: Let p be a prime number. Then there does not exist a pair 
onsisting of a

polynomial f 2 F

p

[x℄ and an integer m 2 Z su
h that

1. 1 < mjp� 1;

2. deg f = m, and the leading 
oeÆ
ient of f is an m-th power in F

�

p

;

3. 0 < ord

x

f < m;

4. there is a �nite set S �

�

F

p

with 0 2 S and f� 2

�

F

p

j9� 2 S : f(�) = �

m

g � S.

This result implies that a 
ertain method due to Gar
ia, Sti
htenoth, and Thomas (FFtA,

1997) for 
onstru
ting \good towers of fun
tion �elds" does not work over prime �elds. The

problem is raised whether a similar negative result holds for a wider 
lass of 
onstru
tion

methods.

Eigenvalues of Ramanujan graphs and Sato-Tate 
onje
ture

Wen-Ching Winnie Li

(joint work with Ching-Li Chai)

Sato-Tate 
onje
ture 
on
erns the distribution of the (properly normalized) Fourier 
oeÆ-


ients of an automorphi
 form for GL(2) over a global �eld whose L-fun
tion has an Euler

produ
t. In this talk we take the ground �eld to be a fun
tion �eld K with the �eld of 
on-

stants being a �nite �eld F with odd 
hara
teristi
, and give three families of automorphi


forms for GL(2) over K satisfying the Sato-Tate 
onje
ture. The Fourier 
oeÆ
ients of

the three families are 
ertain 
hara
ter sums, arising as eigenvalues of 
ertain Ramanujan

graphs, known as norm graphs and Terras graphs. The fa
t that these eigenvalues are

Fourier 
oeÆ
ients of automorphi
 forms was proved in my earlier work. Using geometri


method, we identify su
h automorphi
 forms and verify the Sato-Tate 
onje
ture.

On some asymptoti
 results in 
oding theory

Hiren Maharaj

(joint work with H. Niederreiter)

We demonstrate an asymptoti
 result in 
oding theory using a variant of the Goppa-


onstru
tion of AG 
odes.
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Fa
toring 
y
lotomi
 polynomials over �nite �elds by radi
als

Preda Mih

�

ailes
u

Fa
torization of polynomials over �nite �elds F

q

(q prime) 
an be done eÆ
iently by im-

provements of Berlekamp's method due to Kaltofen, Shoup and von zur Gathen. When the

polynomial to fa
tor �

p

(x) is 
y
lotomi
, we show that the 
lassi
 approa
h of fa
toring

with radi
als leads to an algorithm whi
h requires several non power remainders in small

extensions and produ
es the fa
tors of �

p

(x) by means exponentiations in \small" exten-

sions of F

q

. Con
retely, the degrees of these extensions are divisors of '(`), where `jh, the

splitting index of q in the p�th 
y
lotomi
 �eld, are maximal prime powers. This redu
es

pra
ti
ally the 
omplexity, 
ompared to Berlekamp variants, in whi
h exponentiations in

extensions of degree p� 1 are required. Although the asymptoti
 
omplexity is improved

by fa
tors of the order of log p, in pra
ti
e, for large p, the improvement is sensible. The

purpose of this presentation is not only to provide an eÆ
ient fa
torization method for a

very spe
ial purpose, but also to suggest that the use of known Galois a
tions 
an always

be pro�table for algorithmi
 purposes.

Classgroup relations, the Sti
kelberger ideal and Catalan's 
onje
ture

Preda Mih

�

ailes
u

Catalan's 
onje
ture states that the diophantine equation

x

U

� y

V

= 1

has no other non-trivial integer solution ex
ept 3

2

� 2

3

= 1. The equation 
an be redu
ed

to

x

p

� y

q

= �;(�)

with prime p; q, positive integer x; y and � = �1. We present a last year's result whi
h

states that if (�) has a solution, then p

q�1

� 1 mod p

2

and q

p�1

� 1 mod p

2

. This result

is under press, has though not yet being presented at a publi
 
onferen
e by the author.

Subsequently, the following yet unpublished result is presented: under the same premises,

qjh

�

p

. This generalizes a theorem of Bugeaud and Hanrot, who had proved the result under

the 
ondition q � (1 + 1= log(p)) > p.

Greedy sums of distin
t squares

Hugh L. Montgomery

(joint work with Ulrike M. A. Vorhauer)

We represent a positive integer n as a sum of squares, using the greedy algorithm. Thus

the �rst square s

2

1

is the largest square not ex
eeding n, the se
ond square is the largest

square not ex
eeding n � s

2

1

, and so on. Su
h an expansion 
learly exists and is unique.

We say that n is a greedy sum of distin
t squares if the summands in this expansion are

unique. Let a(n) be the 
hara
teristi
 fun
tion of this set of integers, and put A(v) =

P

0�n<v

a(n). Mike Shephard asked about the natural density of this set, and 
onje
tured

that it is 1=2. We prove that the natural density does not exist, but that the quotient

�(v) = A(v)=v has persistent wobbles on a loglog s
ale, in the sense that �

�

4 exp(2

x+k

)

�

tends to a limit f(x) as k tends to in�nity through integral values. The limiting fun
tion f

is 
ontinuous, non-
onstant, and has period 1. The values of f range between about 0:503

and 0:5096. Con
erning the lo
al behavior of the numbers a(n), we note that if s � 3
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then the numbers a(s

2

); a(s

2

+ 1); : : : ; a(s

2

+ 2s) are exa
tly the same as the numbers

a(0); a(1); : : : ; a(2s). In view of this highly self-repli
atory nature of the a(n), it is to be

expe
ted that many patterns of 0's and 1's are not found among them. Among the 2

h

possible strings of 0's and 1's, let S(h) denote the number of strings that a
tually o

ur as

a(n + 1); a(n + 2); : : : ; a(n + h) for some n. We �nd that S(1) = 2, S(2) = 4, S(3) = 7,

S(4) = 11, S(5) = 11, S(6) = 18, S(7) = 30; S(8) = 49, S(9) = 79, and that for larger h

the value of S(h) is given by the linear re
urren
e

S(h+ 1) = S(h) + S(h� 2) + S(h� 3) + S(h� 8):

Thus S(h) � 
�

h

1

as h!1 where �

1

= 1:628668 is the positive real root of the irredu
ible

polynomial x

9

� x

8

� x

6

� x

5

� 1 and 
 = 1:592655.

Value sets of polynomials over �nite �elds

Gary L. Mullen

(joint work with Pinaki Das)

One of the major problems in the theory of �nite �elds is to be able to predi
t the size of

the value set of a polynomial over a �nite �eld. This problem has been studied for many

years. Polynomials with maximal value sets are 
alled permutation polynomials and have

numerous appli
ations in various areas. We will dis
uss joint work with Pinaki Das in

whi
h we improve some lower bounds on the 
ardinality of the value set of a polynomial

over a �nite �eld.

On the rank of appearan
e of the Lu
as sequen
es

Siguna M

�

uller

For P;Q 2 F

2

, Q 6= 0, the Lu
as sequen
es U

k

(P;Q), V

k

(P;Q) of �rst and se
ond kind,

respe
tively, are purely periodi
 over any �nite �eld F

q

. A spe
ial type of periodi
ity

is known as the rank of appearan
e (apparition). The �rst part of the talk deals with

the number of parameters P , respe
tively Q, with same rank of appearan
e. For any

possible value of the rank the 
orresponding result is established. The formulae for the

parti
ular type of periodi
ity under 
onsideration are shown to be analogous to the number

of parameters with same multipli
ative order.

The expli
it stru
ture of the formulae yields a very simple me
hanism for 
ounting the

number of the zeros P , respe
tively Q, of both of the Lu
as sequen
es (respe
tively the

Di
kson polynomials) over F

q

:

As an appli
ation of the number of these zeros, examples of very eÆ
ient probable prime

tests are given.

Solving low-degree polynomial equations: Latti
e atta
ks on RSA

Phong Nguyen

We present Coppersmith's theorem for �nding in polynomial time small roots of a moni


polynomial modulo some large number of unknown fa
torization. We dis
uss appli
ations

(in 
ryptography and elsewhere), and extensions to multivariate polynomials (in Z=NZ

and in Z).
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Data stru
tures for parallel exponentiation in �nite �elds

Mi
hael N

�

o
ker

Exponentiation in �nite �elds is a basi
 operation in 
ryptography. The basi
 algorithm

for exponentiation is repeated squaring. We adapt this algorithm to the situation of a

�nite �eld F

q

n

, taking the Frobenius automorphism and di�erent 
ost for multipli
ation

(


A

) and raising to a q-th power (


Q

) in F

q

n

into a

ount.

We present a parallel algorithm for exponentiation in �nite �elds. This algorithm 
on-

ne
ts algorithms of Borodin & Munro (for q = 2 and 


A

= 


Q

= 1) and von zur Gathen

(for q � 2 and 


Q

= 0). If the algorithm works on input 


A

� 


Q

� 1 then any power of an

element in F

q

n


an be 
omputed in depth at most




A

�

�

dlog

2

(q � 1)e+

�

log

2

min

�

n;

�




A




Q

���

+ 2

�

+ 


Q

� n:

This 
an be performed using q � 1 + minfn; d




A




Q

eg pro
essors. We report on experiments

using di�erent polynomial and normal bases to represent F

2

n

.

A note on divisor 
lass groups of degree zero of algebrai
 fun
tion �elds over

�nite �elds

Ferruh Ozbudak

We give some upper bounds on the number of degree one pla
es of an algebrai
 fun
tion

�eld over �nite �elds with respe
t to the exponent of a natural subgroup of its divisor 
lass

group of degree zero.

Pairs of 
oprime m-smooth polynomials over �nite �elds and the Waterloo

algorithm for the dis
rete logarithm problem

Daniel Panario

(joint work with Mi
hael Drmota)

Let N

q

(m;n) be the number of moni
 polynomials over F

q

of degree n that are m-smooth,

and let N

q

(m;n

1

; n

2

) be the number of pairs of 
oprime moni
 polynomials over F

q

of

degree n

1

and n

2

that are m-smooth. We prove that uniformly for m;n

1

; n

2

! 1 with

n

Æ

1

� m � n

1�Æ

1

, n

Æ

2

� m � n

1�Æ

2

and Æ > 0, we have

N

q

(m;n

1

; n

2

) �

�

1�

1

q

�

N

q

(m;n

1

)N

q

(m;n

2

):

This is proven using generating fun
tions for the numbers N

q

(m;n) and N

q

(m;n

1

; n

2

), plus

an appli
ation of the saddle point method for the asymptoti
 estimate. The range of m


an be extended but the above range is enough to provide a rigorous proof for the heuristi


arguments in the Waterloo variant (introdu
ed by Blake, Fuji-Hara, Mullin and Vanstone)

of the index 
al
ulus method for the 
omputation of the dis
rete logarithm problem in

�nite �elds of the form F

2

n

. Our proofs 
an be applied to any �nite �eld F

q

.
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Galois properties 
onne
ted to the enumeration of permutation polynomials

Fran
es
o Pappalardi & Claudia Malvenuto

Let � 2 S(F

q

) be a permutation of the elements of a �nite �eld F

q

and denote by f

�

(x) =

P


2F

q

(1� (x� 
)

q�1

) 2 F

q

[x℄ its permutation polynomial. For � 6= Id, it is easy to 
he
k

that the degree �f

�

of f

�

has the property

q � 2 � �f

�

� q � 
(�)

where 
(�) is the number of elements of F

q

moved by �. Therefore �f

�

= q � 
(�) is the

minimum possible value for the degree. This leads one to 
onsider the fun
tion

m

k

(q) = #f� 2 S(F

q

); � is a k-
y
le and �f

�

= q � kg:

In a joint paper in preparation we show that

'(k)

k

q(q � 1) � m

k

(q) �

(k � 1)!

k

q(q � 1)

where the �rst inequality holds if q � 1(k) and the se
ond holds if q = p

k

with p > 2�3

[k=3℄�1

.

We reported on these results and announ
ed some new ones des
ribing the Galois stru
-

ture of some algebrai
 sets that arise from the enumeration.

Re
onstru
tion of geometri
 fun
tions and appli
ations

Lan
elot Pe
quet

More than thirty arti
les related to list-de
oding and re
onstru
tion have been released

in the last four years, after the pioneering work of Sudan. Most of them were fo
used

on Reed-Solomon and some algebrai
-geometri
 
odes, but the methods dis
ussed in these

papers have found some unexpe
ted appli
ations like, for instan
e, the new 
ryptanalysis

given by Jakobsen in Crypto'98.

I will introdu
e a new problem of e�e
tive algebrai
-geometry, that subsumes those

arising in the above situations and propose an eÆ
ient algorithm to solve it. This new

formulation is fairly general and provides a list-de
oding and a soft-de
oding algorithm for

all algebrai
-geometri
 
odes.

Redu
tion mod p of the 
ontinued fra
tion of 
ertain algebrai
 power series

Alf van der Poorten

Consider the 
ontinued fra
tion expansion of formal Laurent series over the �eld Q in the

variable X

�1

. It is easy to see by elementary heuristi
 
onsiderations that generi
ally all

the partial quotients (other perhaps than some very early ones) will be linear and that their


oeÆ
ients will in
rease in 
omplexity at exponential rate; that is, in logarithmi
 height at

a linear rate. Of 
ourse, it is quite another matter to prove su
h a thing for any parti
ular

example. By the way, over F

p

the same heuristi
s say that a partial quotient has degree

greater than one with probability 1=p, greater than two, with probability 1=p

2

, and so on.

Now 
onsider hyperellipti
 
urves C : Y

2

= D(X) with D a polynomial of degree 2g + 2

and with leading 
oeÆ
ient a square. Then the formal power series Æ(X) =

p

D(X) will

have redu
tion mod p everywhere ex
ept perhaps at p = 2. It will have good redu
tion

(preserving hyperellipti
ity) at all primes not dividing the dis
riminant of D. Of 
ourse

modulo p, thus over F

p

,

p

D(X) will always be periodi
.

The sequen
e of 
omplete quotients of Æ (the partial quotients are the polynomial parts

of those 
omplete quotients) are all of the shape (Æ + P )=Q for polynomials P of degree
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g + 1 whose leading g + 1 
oeÆ
ients 
oin
ide with those of Æ(X), and polynomials Q of

degree less than g. Moreover, degQ = 0 is equivalent to a period having been 
ompleted.

In the ellipti
 
ase, g = 1, that is degD = 4, it follows that either all partial quotients (all

this after the zero-th) are of degree one, or Æ has a periodi
 expansion.

The redu
tion theory of 
ontinued fra
tion expansions of formal power series shows that

partial quotients having bad redu
tion `
ollapse' to higher degree. It follows that when

degD = 4 every prime must o

ur in the denominator of in�nitely many partial quotients

and ea
h prime p o

urs periodi
ally with period that of the period of Æ expanded over

F

p

. Moreover, one notes that if the n-th partial quotient has logarithmi
 height O(n) then

the n-th 
onvergent has logarithmi
 height O(n

2

). In fa
t the height of those 
onvergents

is the height of the 'points' nP , where P is the divisor at in�nity on the Ja
obian of the


urve C.

These observations were illustrated by the examples y

2

= x

4

� 2x

3

+3x

2

+2x+1, where

Æ happens to have a periodi
 expansion, of quasi-period 3, and y

2

= x

4

�2x

3

+3x

2

+2x+2,

where the expansion is generi
. Thus, in the former 
ase the divisor at in�nity must be a

torsion divisor, in fa
t of order 4 = 3 + 1. One 
on�rms the generi
 nature of the se
ond

example by 
onsidering the degree of the regulator over F

p

, several p of good redu
tion,

noting that by the redu
tion theory of abelian varieties its failure to be essentially invariant

suÆ
es to prove non-periodi
ity.

Exponential sums and latti
es

Igor Shparlinski

(joint work with Isabel Gonz�ales Vas
o, Phong Nguyen and Edwin El Mahassni)

We des
ribe|
ombining two rather di�erent te
hniques|how one 
an 
reate a very pow-

erful tool for obtaining rigorous proofs of several results of 
ryptographi
 relevan
e. We

show that this 
ombination is a both-edged sword whi
h 
an be used to prove bit se
urity of

several exponentiation based 
ryptographi
 s
hemes (su
h as DiÆe-Hellman key ex
hange

s
heme, ElGamal 
ryptosystem, Shamir message passing s
heme, XTR 
ryptosystem) as

well as to design provable atta
ks on DSA and DSA-like signature s
hemes.

One of the underlying ideas goes ba
k to D. Boneh and R. Venkatesan who introdu
ed

and studied the so-
alled \hidden number problem". However in many appli
ations the

\ideal distribution" settings of their approa
h are too restri
tive. It has also turned out that

the exponential sum te
hnique (to be more pre
ise, the uniformity of distribution results

derived from bounds of exponential sums) provides a bridge whi
h leads to a variety of

new results.

Coding theory, uniform distributions, and related topi
s

M. M. Skriganov

We 
onsider point sets most uniformly distributed in the unit 
ube. Su
h distributions

have a ri
h 
ombinatorial stru
ture, namely, they 
an be 
ompletely 
hara
terized as max-

imum distan
e separable (brie
y MDS) 
odes with respe
t to a non-Hamming metri
 in

ve
tor spa
es over �nite �elds. This new metri
 had been re
ently introdu
ed to 
oding

theory by Rosenbloom and Tsfasman. It turns out that many remarkable point distri-

butions, in parti
ularly the distributions with a minimal order of the mean square dis-


repan
y, 
an be expli
itly given as 
odes with large weights simultaneously in the Ham-

ming and non-Hamming metri
s. This result had been re
ently given by William Chen
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(Maquarie University, Sydney) and the author. In the 
ourse of related topi
s we 
onsider

Ma
Williams-type theorems for the indi
ated non-Hamming metri
. It had been re
ently

shown by Steven Dougherty (University of S
ranton, USA) and the author that a dire
t

extension of Ma
Williams identities to su
h a non-Hamming metri
 does not take pla
e

in general. Nevertheless, a more 
ompli
ated generalization of Ma
Williams-type theo-

rems 
an be given for weight enumerators asso
iated with orbits of a group preserving the

indi
ated non-Hamming metri
.

La
unary polynomials

Tam

�

as Sz

}

onyi

In 1970 L�aszl�o R�edei published a book \L�u
kenhafte Polynome �uber endli
hen K�orpern".

He developed a method for degree-estimates for la
unary polynomials, whi
h later turned

out to be very useful in �nite geometry. The 
entral problem is to estimate the number

of dire
tions determined by a set of q points in AG(2; q). We survey the results on this

problem from R�edei's book until the re
ent 
hara
terization of sets determining less than

q+3

2

dire
tions (Blokhuis, Ball, Brouwer, Storme, Sz}onyi), and the result of A. G�a
s for

q = p prime, showing that a set of p points either determines

p+3

2

dire
tions (in whi
h


ase it is essentially unique as Lov�asz and S
hrijver proved), or it determines at least

2p

3

dire
tions. The results 
an also be applied in group theory (proofs of Burnside's theorem

by Dress-Klim-Muzy
huk, U. Ott; proof of Wielandt's visibility by Blokhuis-Seidel).

Computations in hyperellipti
 fun
tion �elds

Edlyn Teske

A hyperellipti
 fun
tion �eld K over a �nite �eld k = F

q

(q = p

t

, p > 2 prime) 
an always

be represented as a real quadrati
 fun
tion �eld, i.e. K = k(X)(

p

D(X)) where D(X) is

a squarefree polynomial in k[X℄ of degree 2g+2 whose leading 
oeÆ
ient is a square in k;

then g is the genus of K.

We dis
uss the 
y
le R of redu
ed prin
ipal ideals of a real quadrati
 fun
tion �eld K,

and we show how we 
an make use of the arithmeti
 in its "infrastru
ture" to speed up

the 
omputation of invariants of K (su
h as the regulator R

X

, the ideal 
lass number h

X

and the divisor 
lass number h) in �elds of small genera. If 2g + 2 < log q, the fastest way

to 
ompute the regulator is �rst to 
ompute a good approximation E of the divisor 
lass

number h and an integer L su
h that jh�Ej < L

2

, and then to use a square-root algorithm

su
h as the baby-step/giant-step method or the Pollard kangaroo method to sear
h the

interval ℄E � L

2

; E + L

2

[ for a multiple of R

X

. (Noti
e that h = h

X

� R

X

, and in most


ases R

X

has a unique multiple in ℄E � L

2

; E + L

2

[, whi
h is h.) With both square-root

methods, we 
an a
hieve a speed-up of about

p

g by 
leverly exploiting the fa
t that we

have two di�erent operations in R, one of whi
h is by a fa
tor of approximately 4g faster

than the other.

Beyond the Carlitz-U
hiyama bound

Jose Felipe Volo
h

We give bounds for the number of points on y

2

� y = f(x) in �nite �elds of 
hara
teristi


two, where f(x) is a polynomial. These bounds are good in a range where the Carlitz-

U
hiyama bound is trivial.

17



On a problem of H. Cohn for 
hara
ter sums

Zhiyong Zheng

(joint work with T. Co
hrane and D. Garth)

In this talk we introdu
ed a problem of H. Cohn on 
hara
ter sums over a �nite �eld, whi
h

asks whether a multipli
ative 
hara
ter on a �nite �eld 
an be 
hara
terized by a kind of

two level auto
orrelation property. The main result of this talk is the following theorem.

Theorem:(Co
hrane, Garth and Zheng, 2000) Let f be a 
omplex valued fun
tion on the

�nite �eld F with f(0) = 0, f(1) = 1 and jf(a)j = 1 for all a 6= 0. Then f is a nontrivial

multipli
ative 
hara
ter on F if and only if for all a; b 2 F

�

. We have the following \three

level auto
orrelation property" that

(q � 1)

X

f(b�)f(� + a) = �

X

f(b�)f(�):(�)

To answer Cohns problem, we need to show that the formula (�) with b = 1 would implies

that f is a nontrivial 
hara
ter of F. But a very re
ent work by S. Choi and K.M. Shiu

indi
ates that Cohns 
onje
ture is not true for an extension �eld, so that the only unknown


ase for this problem would be when F is a prime �eld.

A new family of ex
eptional polynomials

Mi
hael Zieve

(joint work with Bob Guralni
k, Peter M�uller, and Joel Rosenberg)

Theorem: Let k be an algebrai
ally 
losed �eld of 
hara
teristi
 p > 0. There is a positive


onstant " su
h that: for ea
h of in�nitely many integers g, there are in�nitely many

genus-g 
urves over k having at least " � g

3=2

automorphisms over k.

The proof 
onsists of presenting two expli
it families of 
urves over k. These 
urves arise

as the Galois 
losure of 
ertain 
overs A

1

F

q

f

�! A

1

F

q

, where f(x) 2 F

q

[x℄ is an ex
eptional

polynomial: i.e., the map � ! f(�) indu
es a bije
tion on F

q

n

for in�nitely many n.

In parti
ular, they 
ome from two new families of ex
eptional polynomials, whi
h were

des
ribed in my talk.

Edited by Mi
hael N�o
ker
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