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Die Tagung fand unter der Leitung von Klaus Ambos-Spies (Heidelberg), Steffen Lempp
(Madison) und Ted Slaman (Berkeley) statt. Unter anderen wurden folgende Themen
behandelt: der Halbverband der berechenbar aufzahlbaren Turing-Grade sowie der n-r.a.
Grade, die Struktur aller Turing-Grade, der Verband der berechenbar aufzihlbaren Men-
gen und seine Automorphismen, hohere Berechenbarkeitstheorie, rekursive Modelltheorie,
berechenbare algebraische Strukturen, I19-Klassen sowie Beziehungen der Berechenbarkeit-
stheorie zu anderen Gebieten (z.B. der Beweistheorie und der Algebra). Die interessanten
Beitrage wurden lebhaft diskutiert. Auflerdem gedachte die Tagung der Wissenschaftler
Joseph Shoenfield and Linda Jean Richter.



Abstracts

Structure and Applications of T1¢-Classes
DoucLAs CENZER

We discuss some new results on the structure of the lattice of I} classes as well as new
applications.

An important general project is to compare and contrast the lattice £(TT%) of TI? classes
with the lattice £ of computably enumerable sets. Together with A. Nies, we have charac-
terized the finite lattices which can be isomorphic to initial segments of the lattice £*(T1?)
of I1Y classes, modulo finite difference. We have shown that in general, the theory of the
initial segment L£(P) may be decidable even though the lattice is not a Boolean algebra.
This work led to the notion of a minimal extension @ of P, where @ — P is not a I1? class
and there is no II{ class properly between P and @, modulo finite difference. F. Riazati
and I showed that, for example, if P has a single limit point z <¢ (', then P admits a
minimal extension. A. Nies and T showed that if the TI{ class P is itself decidable (that is,
the set of infinite branches through a computable tree 7' with no dead ends) and the initial
segment £(P) is not a Boolean algebra, then the theory of £(P) is undecidable. Recently
we answered two open questions from the Boulder volume on “Computablity Theory and
Its Applications”. First, we show that the lattice S(P) of supersets of a non-clopen IIY
class is not isomorphic to L£(I1}). Second, we show that the set of I} classes P such that
L(P) is isomorphic to the Boolean algebra of finite or cofinite sets, is definable in £(I1J).

The restriction of the Medvedev lattice <,, of degrees of difficulties to I19 classes gives
rise to many open questions. Together with P. Hinman, we have shown that there is no
minimal TI9 class in this lattice. We have also shown that, for any class P of positive
measure, there is a class () >, P.

Together with J. Remmel, we have analyzed the stable marriage problem of Gale and
Shapley and shown that the solutions of a computable stable marriage may represent an
arbitrary I1{ class. This leads to versions of the theorem which are equivalent, for example,
to Konig’s Lemma in a certain natural subsystem of second-order arithmetic.

Extension Theorem and Automorphisms of the Computably Enumerable Sets
PETER CHOLAK

We discuss several algebraic extension theorems and use them to show the following theo-
rem:

Theorem: If A and A are automorphic via ¥ then they are automorphic via A where
A|L*(A) = U|L*(A) and A|E*(A) is AS.

Randomness and Reducibilities
Rop DoOwNEY

We study computably enumerable reals (i.e. their left cut is computably enumerable) in
terms of their relative randomness. We begin by revising the various notions of randomness
such as Martin-Lof, Chaitin, Schnorr etc. Then we introduce Solovay reducibility; a c.e.



real « is Solovay reducible to a c.e. real (8 iff there is a partial computable function f and
a constant ¢ such that, for all rationals ¢ <

c(B—q)>a—flqgl.

We look at a recent collection of results of the author with Hirschfeldt, LaForte, and
Nies concerning the structure of the Solovay degrees, and new methods of calibrating
randomness, which overcome various weaknesses in the notion of Solovay reducibility. For
instance, the Solovay degrees are proven to be a dense USL with join arithmetical addition.
It is shown that the complete degree, that of Chaitin’s €2 cannot be split, yet all other c.e.
Solovay degree split over all lesser ones. Similar results are obtained for a new reducibility
called rH reducibility, which captures precisely, relative initial segment complexity. This
material is taken from the following publications:

(1) R. Downey, D. Hirschfeldt, and A. Nies, Computability, Randomness and Density,
submitted, extended abstract appears in STACS’01.

(2) R. Downey, D. Hirschfeldt, and G. LaForte, Randomness and Reducibility, submitted.

(3) R. Downey, Computability-Theoretical Aspects of Reals and Randomness, to appear.

Boolean Relation Theory
HARVEY FRIEDMAN

Boolean relation theory is the study of the Boolean relations that hold between one di-
mensional sets and their images under multivariate functions. The two basic theorems
that initiated the subject are the thin set theorem and the complementation theorem. The
thin set theorem asserts that every multivariate function on the integers omits a value on
some infinite set of integers. The complementation theorem asserts that for every strictly
dominating multivariate function there exists an infinite set of integers which is sent to its
complement (in fact this complementor is unique). The complementation theorem leads
to theorems in discrete mathematics involving two functions and three sets which can be
proved using large cardinals but not in ZFC, and which are, in fact, equivalent to the
1-consistency of Mahlo cardinals of finite order (as a scheme), over ACA. We sketch the
proof of the simplest such theorem using Mahlo cardinals of finite order.

The Theory of Computable Models
SERGEI S. GONCHAROV

In this my talk in Oberwolfach I discuss some results and open problems in the theory of
Computable models.

We assume that the reader knows some basic facts and concepts from model theory,
universal algebra, and computability theory. Some knowledge of the first several chapters
of the textbooks by Chang and Keisler on model theory [2], by C. Ash and J. Knight [1],
Handbook [4] and Ershov and Goncharov [3] on theory of computable models will suffice
to follow the paper.

We can define constructive and strongly constructive models. In the literature there is
an equivalent terminology for constructive models and constructivizations that does not
refer to numberings. These are computable models and computable presentations. An
model is called computable if the domain of the system is w and the atomic diagram is
a computable set. A model is called decidable if the domain of the system is w and the
full diagram is a computable set.



One of the most interesting problem in computable models theory is the existence prob-
lem of computable models for theories. Many of the problems in this approach have been
opened and known for many years and, perhaps, new ideas, constructions, and concepts
will be needed to solve any of these problems. These problems and open topics have arisen
in the course of development of computable model theory.

The effective completeness theorem suggests several fundamental questions about com-
putability of special models of theories: prime, saturated and homogeneous models. These
problems were solved in the case of decidability of these kind of models. For a survey of
results related to strongly constructive models of theories we refer the reader to [3] and [4].

Hypothesis 1 For every n > 1, there exists a countably categorical theory of Turing
degree 0" that has a constructive model.

We formulate the next hypothesis that states that a non-arithmetic countably categorical
theory with constructive models exists.

Another class of theories well-studied in model theory is the class of uncountably cate-
gorical theories. In this section we deal with models of uncountably categorical theories.
Baldwin and Lachlan showed that all models of any uncountably categorical theory T can
be listed into the following chain, denoted by chain(T'), of elementary embeddings:

Ay = A A <A,

where Aj is the prime model of T', A, is the saturated model of T', and each A, is prime
over A;.

Thus a natural open problems about constructive models of uncountably categorical
theories are the following:

Problem 1 Characterize all the subsets X of w|J{w} for which there exist uncountably
categorical theories T such that SCM(T) = X.

Problem 2 Characterize uncountably categorical theories that have constructive models.

Question 1 If an uncountably categorical theory has a computable (arithmetical) model
is then the theory arithmetic?

Question 2 Does there exist an uncountably categorical theory T whose models are
Ay < A =< ... X A, such that A, has a constructivization, and each A;., i € w, has
0! —constructivization but does not have 0°—constructivization?

Problem 3 If T is Ehrenfeucht whose all types are arithmetic then all models of T" have
arithmetic presentations.

There has been extensive research in the study of computable isomorphisms of constructive
models. Many researchers [3] have worked on problems and research directions discussed
in this section. These are still in the center of research interest and play a significant role
in creation of new ideas, theorems and concepts.

It is easy to see that the next conditions are equivalent:
(1) for any relation R in A? the sets v '(R) and p~'(R) have the same Turing degree;
(2) for any relation R in A? the set v~ !(R) is computable iff the set ! (R) is computable;
(3) the numeration v and p are recursively equivalent (i.e. identity automorphism from
(A,v) onto (A, ) are computable).

But for autoequivalence we have another equivalent conditions:



(1) for any relation R in A? the sets v~ !(R) and g !(a(R)) have the same Turing degree
for some automorphism of our model,;

(2) for any relation R in A? theset v~ '(R) is computable iff the set p~'(a(R)) is com-
putable for some automorphism of our model;

(3) the constructivizations v and p are autoequivalent.

We discussed some new results and problem in this very interesting approach of computable
models theory. Some of them were connected with the new notion of test-relations and
test-families.

The natural problems is connected with set-theoretical properties. What the condi-
tions have the relation which will be maximal (hh-simple, h-simple and so on) in some
computable representation of our model.

One can be interested in computability—theoretic complexity of R under different con-
structivizations.

Question 3 Ts it true that for any n > 3 there exists a non Al-autostable but A -
autostable model of dimension 27

The last part of my talk was connected with structural and non-structural theorem. It was
based on our paper with J. Knight.

(1) C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hier-
archy, Springer-Verlag, 2001.

(2) C. C. Chang and H. J. Keisler. Model Theory, 3rd edn., Stud. Logic Found. Math.,
73, 1990.

(3) Yu. L. Ershov and S. S. Goncharov, Constructive Models, Consultant Bureau, Plenum,
2000.

(4) Yu. L. Ershov, S. S. Goncharov, A. Nerode and J. Remmel, eds., V. Marek, assoc. ed.,
Handbook of Recursive Mathematics, Vol. 1-2, North-Holland, 1999.

Degree Spectra of Relations on Computable Structures
DENIS HIRSCHFELDT

The study of additional relations on computable structures, which began with the work
of Ash and Nerode, has proved to be connected to a wide range of issues in computable
structure theory. One particularly fruitful approach to this study, initiated by Harizanov,
is to look at the collection of (Turing) degrees of the images of a relation in the various
computable copies of a structure, which is known as the degree spectrum of the relation.
This talk is a survey of results about possible degree spectra of relations in both the general
case and with various restrictions placed on the relation and/or the structure. Particular
attention is paid to the dichotomy between structure theorems, which allow us to rule out
certain kinds of degree spectra in some restricted settings, and nonstructure results, which
imply that in some other seemingly restricted settings, every degree spectrum phenomenon
that can happen in general can already happen in the given setting. Connections with issues
such as computable dimension of structures and A%-categoricity are also emphasized.



Ramsey’s Theorem for Pairs and Weak Konig’s Lemma
CARL JOCKUSCH

I discuss metamathematical analogies and possible logical implications between Weak
Konig’s Lemma and Ramsey’s Theorem for pairs.

Let RCA, be the usual weak base theory for Reverse Mathematics, and let WKL, be
RCA(y + Weak Koénig’s Lemma. Let ACAy be RCAq together with the arithmetic compre-
hension scheme. It is well-known that WKL is strictly stronger than RCA, and strictly
weaker than ACAy (see [5]). L. Harrington [5] used forcing over models of second-order
arithmetic to show that WKLg is IT}-conservative over RCAy. The forcing is similar to
that used to prove the low basis theorem.

Let RT} be the assertion that for any k—coloring of the n—element sets of natural numbers
there is an infinite set H of natural numbers which is homogeneous (i.e. all n—element
subsets of H have the same color).

It is well-known [5] that RT} is equivalent to ACA, over RCA, for n > 3,k > 2 and
that RT} is equivalent to RT3 over RCAq for k > 2. Hence I will concentrate on RT3.
The strength of this result is analyzed in [4] and [1]. RCA, + RT32 is strictly stronger
than RCA, and strictly weaker that ACAg. It is shown in [1] using forcing over models of
second-order arithmetic that RCAg + I39+RT3 is [I}-conservative over RCAg+ I35, where
IY, is the 39 induction scheme. The forcing used to prove this is similar to that used to
prove the “lows basis theorem” [1]: For any computable 2-coloring of the 2-element sets of
natural numbers there is an infinite lowy homogeneous set.

Thus the metamathematics of Weak Konig’s Lemma and RT3 are quite parallel. Also,
it was shown by J. Hirst that Weak Konig’s Lemma does not imply RT3 over RCAy. It is
unknown whether RT3 implies Weak Konig’s Lemma in RCAg. The following is a new but
very weak result in the direction of a negative answer: For any set X of natural numbers
and any natural numbers a and b, there is an infinite set A such that either A C X and
{a}* ¢ DNRy, or A C X and {b}* ¢DNR,. Here DNRy = {f € 29 : (Ve)[f(e) # ve(e)]}.
The proof uses propositional logic as a tool, much as it was used in [2, Corollary 3.4]
to show that there is no noncomputable set X such that both X and X are uniformly
introreducible. However, the proof is somewhat more involved than the corresponding
proof in [2].

(1) P. Cholak, C. Jockusch and T. Slaman, The Strength of Ramsey’s Theorem for Pairs,
to appear in Journal of Symbolic Logic.

(2) C. Jockusch, Uniformly Introreducible Sets, Journal of Symbolic Logic 33 (1968), 521
536.

(3) C. Jockusch, Ramsey’s Theorem and Recursion Theory, Journal of Symbolic Logic 37
(1972), 268-280.

(4) D. Seetapun and T. Slaman, On the Strength of Ramsey’s Theorem, Notre Dame
Journal of Formal Logic 36 (1995), 570-582.

(5) S. Simpson, Subsystems of Second Order Arithmetic, Springer-Verlag, 1999.

Lattice Embeddings into the Computably Enumerable Turing Degrees
STEFFEN LEMPP

The characterization of the finite lattices embeddable into the computably enumerable
degrees has defied researchers for over three decades.



Due to the complexity of the problem, it appears best to try to pinpoint first the simplest
case where embeddability /nonembeddability is not fully understood, namely, for partial
principally decomposable lattices with all joins and only two meets. (Any partial lattice
with all joins and at most one meet is embeddable.) Along these lines, Lerman, Solomon
and I have recently found a much easier example of nonembeddability than the lattice Lo
of Lerman and myself, leading us to ideas for characterizing embeddability at least for this
restricted classes of partial lattices.

I will survey the techniques needed, introducing one type of strategy at a time.

Homomorphisms and Quotients of the Computably Enumerable Degrees
MANUEL LERMAN
(joint work with Burkhard Englert and Kevin Wald)

We investigate pseudolattice homomorphisms of degree structures. Our focus here is on
finite quotients of the c.e. degrees R. Results of Calhoun [1] imply that every finite boolean
algebra is a pseudolattice quotient of R. We generalize this result to a class of distributive
lattices.

Definition. We say that the finite distributive lattice (L, <) with greatest element 1 is
bi-orderable if there are a pair of orderings <, and <, on the set Lys; of meet irreducible
elements € L — {1} which satisfy the following conditions for all a,b € Ly;:

a<b — b<ga&b<,q
alb — (a<,b < b<ya).

Theorem. Let (L, <) be a bi-orderable finite distributive lattice. Then there is a pseu-
dolattice homomorphism from R onto (L, <).

We note that all finite linearly ordered sets are bi-orderable, but that there are finite dis-
tributive lattices which are not bi-orderable. We conjecture that the bi-orderability of
(L, <) can be characterized in terms of the non-embeddability of a finite set of lattices into
(L, <)
(1) W. C. Calhoun, Incomparable Prime Ideals of Recursively Enumerable Degrees, Annals
of Pure and Applied Logic 631 (1993), 39-56.

Computable Automorphisms of Models
ANDREI S. MOROZOV

In this talk, I present the modern state of affairs in computable symmetries of computable
objects and discuss some open problems.

Here is the list of some unsolved questions. Some of them are known to be difficult while
the other ones were not seriously tested yet.

e Which natural classes of permutations related to reducibilities form a group? It is
known that for at most all reducibilities except for Turing reducibility there exists a
degree such that the group of all permutations whose graph reduces to it is not closed
under composition. Is it true that for such reducibilities there exist degrees such that
this set forms a group?

e Find a more or less transparent description of the class of groups of computable
automorphisms of computable models.



e (A. Nies) Assume d is a Turing degree. Define Gq = {f € Symw | f < d}. Let Fin be
a the group of all finitary permutations and A be the group of all even permutations.
Is it true that Gq/Fin < G4/Fin & d’ < §'7 The direction = is already known.
The same question is open for quotients modulo A.

e Do groups of all automorphisms of the basic computably enumerable predicates x €
W, and {z}(y) = z have computable presentations? In particular, it is known that
all automorphisms of these predicates are computable.

e Describe the finitely generated subgroups of the group of all computable permutations.
It is known that the co-computable enumerability of the word problem is not enough.

e Does there exist a countably categorical decidable model such that computable auto-
morphism group of each of its decidable copies is trivial?

e Describe computable automorphism groups of decidable countably categorical mod-
els with computable sets of complete sentences. Are they always non computably
presentable?

e (S.Goncharov) Assume G and Gy are full computable automorphism groups of ap-
propriate computable models. Does G *x G; have the same property? I know how to
embed this group into the group of all computable permutations.

e (Finite signature problem) Assume G = Aut. M. Is it possible to find a computable
model N whose language is finite such that G = Aut,/N? The same question is also
open for usual automorphisms.

e Does there exist a computable Boolean algebra B such that all its computable families

of automorphisms are finite?

Classify the computable vector spaces by their computable automorphism groups.

Model Theoretic Properties of Structures from Computability Theory
ANDRE NIES

We study structures from computability theory using model theoretic concepts and tools,
especially coding with first-order formulas. The questions considered are:

Which restrictions on possible automorphisms exist? Which natural subsets are (parameter-)
definable? Can a copy of the natural numbers be interpreted?

We answer the latter question to the affirmative for the c.e. wtt and Turing degrees.
Moreover, for the c.e. Turing degrees, we obtain an approximation to the biinterpretability
conjecture with parameters. For each nonrecursive degree d, there is a 1-1 parameter
definable map form [d, 1] into a coded copy of the natural numbers.

We also address a method from effective algebra, involving ideal lattices of c.e. Boolean
algebras. For instance, this method can used to show the theory of many distributive
structures is complex.

Proof Theory and Generalized Recursion Theory
WOLFRAM POHLERS

We give a survey on the methods of generalized recursion theory which are needed in the
ordinal analysis of theories. While so called “predicative theories” need nearly no recur-
sion theoretic background we claim that for increasingly stronger impredicative theories
recursion theoretic background is (practically) indispensable. This claim is substantiated
on the examples of theories for inductive definitions, set theoretic reflection and the set
theoretic stability.



Diophantine Undecidability of Function Fields of Positive Characteristic
ALEXANDRA SHLAPENTOKH

Let F' be a function field of characteristic p > 2, finitely generated over a field C', where
C is algebraic over a finite field and has an extension of degree p. We show that Hilbert’s
Tenth Problem is undecidable over F'.

Medvedev Degrees, Muchnik Degrees, Subsystems of 75, and Reverse
Mathematics

STEPHEN (G. SIMPSON

Foundations of mathematics (f.o.m.) is the study of the most basic concepts and logical
structure of mathematics as a whole. An important f.o.m. research program is reverse
mathematics, where one discovers which subsystems of second order arithmetic are neces-
sary and sufficient to prove specific theorems in core mathematical areas such as analysis,
algebra, geometry, and countable combinatorics. One of the most important subsystems
for reverse mathematics is WKLy, consisting of RCA, plus Weak Konig’s Lemma.

Let P be the set of nonempty I1? subsets of 2*. Forcing with P (ordered by inclusion)
is known as Jockusch/Soare forcing. I have used iterated Jockusch/Soare forcing to obtain
an w-model M of WKLy with the following property: for all X, Y € M, X is definable
over M from Y if and only if X <7 Y. The proof is based on a homogeneity argument
involving the Recursion Theorem, and a factorization lemma. I discuss the foundational
significance of M and its hyperarithmetical analog.

For P, () € P one says that P is Muchnik reducible to @ (P <,, Q) if for all Y € @ there
exists X € P such that X <7 Y. One says that P is Medvedev reducible to Q) (P < Q)
if there exists a recursive functional ® : ) — P. I introduce the countable distributive
lattices P, (Par) consisting of the Muchnik (Medvedev) degrees of members of P. T have
shown that P € P is Muchnik (Medvedev) complete if and only if P is degree isomorphic
(recursively homeomorphic) to the set of complete extensions of PA.

Structural aspects of P, and P,; present a rich problem area for recursion theorists.
Stephen Binns and I have shown that every countable distributive lattice is lattice-embeddable
below any nonzero degree in P,. We also have partial results in this direction for P,,.

The lattices P,, and Py, are in some respects similar to the upper semilattice of Turing
degrees of recursively enumerable subsets of w. However, P,, and P,; are much better in
that they contain specific, known, natural examples of degrees # 0,1. Such examples are
especially relevant for f.o.m. In P, there is the maximum Muchnik degree of IT{ subsets of
2 of positive measure. This is related to the reverse mathematics of measure theory. In
Py there are the Medvedev degrees of {X : X is k-valued DNR}, k& > 3. This is related
to the reverse mathematics of graph coloring.

For references see http://www.math.psu.edu/simpson/talks/obwf0101/.

Aspects of the Turing Jump
THEODORE A. SLAMAN

The Turing Jump is the function which maps a set X C IN to X', the halting problem
relative to X. Fixing a recursive enumeration of all Turing machines,

X' = {e: The eth Turing machine with oracle X halts.}



We will discuss two aspects of the jump and its iterations. First, we will show that they
are implicitly characterized by general properties of relative definability. Second, we will
present the Shore and Slaman [1] theorem that the function x — 2’ is first order definable
in the partial order of the Turing degrees.

(1) R. Shore, T. Slaman, Defining the Turing Jump, Mathematical Research Letters, 6
(1999), 711-722.

Computable Algebra
REED SOLOMON

This talk surveys some recent work in computable algebra. First, we look at relations on
computable structures, contrasting sets of Archimedean representatives in ordered groups
(which can be noncomputable in every computable presentation of the group (Solomon))
with bases in torsion free abelian groups (which always have a computable copy in some
computable presentation of the group (Dobritsa)). Second, we examine degrees and jump
degrees of structures, focusing on rank one torsion free abelian groups (which always have
second jump degree (Coles, Downey, and Slaman)). Third, we consider examples of com-
putable categoricity and computable dimension, specifically trees (trees of infinite height
have computable dimension w (Miller)) and ordered abelian groups (which are computably
categorical if they have finite rank and have computable dimension w otherwise (Gon-
charov, Lempp, and Solomon)). Also, we look at conditions determining when Boolean
algebras and linear orders are AJ categorical or relatively AY categorical (McCoy). Finally,
we look at effectivizing theorems, considering several results about linear extensions of par-
tial orders (Downey, Hirschfeldt, Lempp, and Solomon) which answer two open questions
of Rosenstein.

Provable Recursiveness and Complexity
STANLEY S. WAINER

This talk describes some joint work with my students G. Ostrin and N. Cagman, on the
proof theory of low subrecursive classes, between Grzegorczyk’s E2 and E3. The basis is
“A new recursion-theoretic characterization of the polytime functions” by Bellantoni and
Cook (1992), in which it is shown that a natural two-sorted reinterpretation of the primitive
recursion schemes characterizes polynomially bounded computation. We show that if Peano
Arithmetic is instead formulated in this two-sorted fashion, with quantification allowed
only over one sort (“safe” variables) and induction allowed only over the other (“normal”
variables), then the provably recursive functions are exactly the E3 (elementary) functions.
The provably recursive functions of the n-quantifier inductive fragments of this theory turn
out to be closely related to the levels of Ritchie’s induction corresponding to the E2 (linear
space) functions. This work is (clearly) related to other results of Buss, Bellantoni, Leivant,
Beckmann and Weiermann, and others too. In addition it illustrates nicely the use of
classical ordinal analysis techniques even at this low level. The difference with classical PA
is that the separation of induction from quantification means that the bounding functions
are now Slow Growing rather than Fast Growing. Below ¢; the Slow Growing functions
only give elementary bounds — hence the results.
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Computable Analysis
KrAaus WEIHRAUCH

Computable analysis is the theory of those functions on the real numbers and related sets
which can be computed by digital computers. There are various partly non-equivalent
mathematical approaches to computable analysis. In the talk the representation approach
(TTE), which generalizes a definition of computable real functions by Grzegorczyk and
Lacombe, is used as a framework. It merges concepts of approximation from analysis with
concepts of machine models and discrete computation. Basic ideas of TTE are explained
and the present state of computable analysis is illustrated by some recent results: Kol-
mogorov superposition, Riemann mapping theorem, the Pour-El/Richards paradox and
computable solution operators of the wave equation, solution operators of the Schrodinger
equation, computational complexity of on-line computation, admissible representations of
weak limit spaces.

For details of TTE and a discussion of other models see K.Weihrauch: Computable
analysis, Springer, 2000. References and more information can be obtained via
http://www.informatik.fernuni-hagen.de/cca/.

Y3-Induction and Slaman Density Theorem
YANG YUE
(joint work with S. B. Cooper)

Let PA~ denote the first order Peano axioms minus the induction scheme and I%,, (BY,,
resp.) denote the induction (collection, resp.) scheme for 30 formulas. People has been
interested in finding a theorem in computability theory, which requires I'¥3. We show that
over the base theory PA™ + B33, the Slaman Density Theorem, saying that the branching
degrees are dense in computably enumerable degrees, is equivalent to 3.

A prime model theorem
JESSICA YOUNG

Barwise compactness is used to prove the following question posed by Goncharov: If a
theory T is decidable and has only countably many countable models, then does T have

a decidable homogeneous model? The answer is yes: in fact, if a theory has less than 2%
many models, then it has a prime model whose elementary diagram is computable in 7T'.

Edited by Frank Stephan
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