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Die Tagung fand unter der Leitung von Klaus Ambos-Spies (Heidelberg), Ste�en Lempp

(Madison) und Ted Slaman (Berkeley) statt. Unter anderen wurden folgende Themen

behandelt: der Halbverband der bere
henbar aufz�ahlbaren Turing-Grade sowie der n-r.a.

Grade, die Struktur aller Turing-Grade, der Verband der bere
henbar aufz�ahlbaren Men-

gen und seine Automorphismen, h�ohere Bere
henbarkeitstheorie, rekursive Modelltheorie,

bere
henbare algebrais
he Strukturen, �

0

1

-Klassen sowie Beziehungen der Bere
henbarkeit-

stheorie zu anderen Gebieten (z.B. der Beweistheorie und der Algebra). Die interessanten

Beitr�age wurden lebhaft diskutiert. Au�erdem geda
hte die Tagung der Wissens
haftler

Joseph Shoen�eld and Linda Jean Ri
hter.
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Abstra
ts

Stru
ture and Appli
ations of �

0

1

-Classes

Douglas Cenzer

We dis
uss some new results on the stru
ture of the latti
e of �

0

1


lasses as well as new

appli
ations.

An important general proje
t is to 
ompare and 
ontrast the latti
e L(�

0

1

) of �

0

1


lasses

with the latti
e E of 
omputably enumerable sets. Together with A. Nies, we have 
hara
-

terized the �nite latti
es whi
h 
an be isomorphi
 to initial segments of the latti
e L

�

(�

0

1

)

of �

0

1


lasses, modulo �nite di�eren
e. We have shown that in general, the theory of the

initial segment L(P ) may be de
idable even though the latti
e is not a Boolean algebra.

This work led to the notion of a minimal extension Q of P , where Q� P is not a �

0

1


lass

and there is no �

0

1


lass properly between P and Q, modulo �nite di�eren
e. F. Riazati

and I showed that, for example, if P has a single limit point x �

T

0

0

, then P admits a

minimal extension. A. Nies and I showed that if the �

0

1


lass P is itself de
idable (that is,

the set of in�nite bran
hes through a 
omputable tree T with no dead ends) and the initial

segment L(P ) is not a Boolean algebra, then the theory of L(P ) is unde
idable. Re
ently

we answered two open questions from the Boulder volume on \Computablity Theory and

Its Appli
ations". First, we show that the latti
e S(P ) of supersets of a non-
lopen �

0

1


lass is not isomorphi
 to L(�

0

1

). Se
ond, we show that the set of �

0

1


lasses P su
h that

L(P ) is isomorphi
 to the Boolean algebra of �nite or 
o�nite sets, is de�nable in L(�

0

1

).

The restri
tion of the Medvedev latti
e �

m

of degrees of diÆ
ulties to �

0

1


lasses gives

rise to many open questions. Together with P. Hinman, we have shown that there is no

minimal �

0

1


lass in this latti
e. We have also shown that, for any 
lass P of positive

measure, there is a 
lass Q >

M

P .

Together with J. Remmel, we have analyzed the stable marriage problem of Gale and

Shapley and shown that the solutions of a 
omputable stable marriage may represent an

arbitrary �

0

1


lass. This leads to versions of the theorem whi
h are equivalent, for example,

to K�onig's Lemma in a 
ertain natural subsystem of se
ond-order arithmeti
.

Extension Theorem and Automorphisms of the Computably Enumerable Sets

Peter Cholak

We dis
uss several algebrai
 extension theorems and use them to show the following theo-

rem:

Theorem: If A and

b

A are automorphi
 via 	 then they are automorphi
 via � where

�jL

�

(A) = 	jL

�

(A) and �jE

�

(A) is �

0

3

.

Randomness and Redu
ibilities

Rod Downey

We study 
omputably enumerable reals (i.e. their left 
ut is 
omputably enumerable) in

terms of their relative randomness. We begin by revising the various notions of randomness

su
h as Martin-L�of, Chaitin, S
hnorr et
. Then we introdu
e Solovay redu
ibility; a 
.e.
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real � is Solovay redu
ible to a 
.e. real � i� there is a partial 
omputable fun
tion f and

a 
onstant 
 su
h that, for all rationals q < �


(� � q) > �� f(q) # :

We look at a re
ent 
olle
tion of results of the author with Hirs
hfeldt, LaForte, and

Nies 
on
erning the stru
ture of the Solovay degrees, and new methods of 
alibrating

randomness, whi
h over
ome various weaknesses in the notion of Solovay redu
ibility. For

instan
e, the Solovay degrees are proven to be a dense USL with join arithmeti
al addition.

It is shown that the 
omplete degree, that of Chaitin's 
 
annot be split, yet all other 
.e.

Solovay degree split over all lesser ones. Similar results are obtained for a new redu
ibility


alled rH redu
ibility, whi
h 
aptures pre
isely, relative initial segment 
omplexity. This

material is taken from the following publi
ations:

(1) R. Downey, D. Hirs
hfeldt, and A. Nies, Computability, Randomness and Density,

submitted, extended abstra
t appears in STACS'01.

(2) R. Downey, D. Hirs
hfeldt, and G. LaForte, Randomness and Redu
ibility, submitted.

(3) R. Downey, Computability-Theoreti
al Aspe
ts of Reals and Randomness, to appear.

Boolean Relation Theory

Harvey Friedman

Boolean relation theory is the study of the Boolean relations that hold between one di-

mensional sets and their images under multivariate fun
tions. The two basi
 theorems

that initiated the subje
t are the thin set theorem and the 
omplementation theorem. The

thin set theorem asserts that every multivariate fun
tion on the integers omits a value on

some in�nite set of integers. The 
omplementation theorem asserts that for every stri
tly

dominating multivariate fun
tion there exists an in�nite set of integers whi
h is sent to its


omplement (in fa
t this 
omplementor is unique). The 
omplementation theorem leads

to theorems in dis
rete mathemati
s involving two fun
tions and three sets whi
h 
an be

proved using large 
ardinals but not in ZFC, and whi
h are, in fa
t, equivalent to the

1-
onsisten
y of Mahlo 
ardinals of �nite order (as a s
heme), over ACA. We sket
h the

proof of the simplest su
h theorem using Mahlo 
ardinals of �nite order.

The Theory of Computable Models

Sergei S. Gon
harov

In this my talk in Oberwolfa
h I dis
uss some results and open problems in the theory of

Computable models.

We assume that the reader knows some basi
 fa
ts and 
on
epts from model theory,

universal algebra, and 
omputability theory. Some knowledge of the �rst several 
hapters

of the textbooks by Chang and Keisler on model theory [2℄, by C. Ash and J. Knight [1℄,

Handbook [4℄ and Ershov and Gon
harov [3℄ on theory of 
omputable models will suÆ
e

to follow the paper.

We 
an de�ne 
onstru
tive and strongly 
onstru
tive models. In the literature there is

an equivalent terminology for 
onstru
tive models and 
onstru
tivizations that does not

refer to numberings. These are 
omputable models and 
omputable presentations. An

model is 
alled 
omputable if the domain of the system is ! and the atomi
 diagram is

a 
omputable set. A model is 
alled de
idable if the domain of the system is ! and the

full diagram is a 
omputable set.
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One of the most interesting problem in 
omputable models theory is the existen
e prob-

lem of 
omputable models for theories. Many of the problems in this approa
h have been

opened and known for many years and, perhaps, new ideas, 
onstru
tions, and 
on
epts

will be needed to solve any of these problems. These problems and open topi
s have arisen

in the 
ourse of development of 
omputable model theory.

The e�e
tive 
ompleteness theorem suggests several fundamental questions about 
om-

putability of spe
ial models of theories: prime, saturated and homogeneous models. These

problems were solved in the 
ase of de
idability of these kind of models. For a survey of

results related to strongly 
onstru
tive models of theories we refer the reader to [3℄ and [4℄.

Hypothesis 1 For every n � 1, there exists a 
ountably 
ategori
al theory of Turing

degree 0

n

that has a 
onstru
tive model.

We formulate the next hypothesis that states that a non-arithmeti
 
ountably 
ategori
al

theory with 
onstru
tive models exists.

Another 
lass of theories well-studied in model theory is the 
lass of un
ountably 
ate-

gori
al theories. In this se
tion we deal with models of un
ountably 
ategori
al theories.

Baldwin and La
hlan showed that all models of any un
ountably 
ategori
al theory T 
an

be listed into the following 
hain, denoted by 
hain(T ), of elementary embeddings:

A

0

� A

1

� A

2

� : : :A

!

;

where A

0

is the prime model of T , A

!

is the saturated model of T , and ea
h A

i+1

is prime

over A

i

.

Thus a natural open problems about 
onstru
tive models of un
ountably 
ategori
al

theories are the following:

Problem 1 Chara
terize all the subsets X of !

S

f!g for whi
h there exist un
ountably


ategori
al theories T su
h that SCM(T ) = X.

Problem 2 Chara
terize un
ountably 
ategori
al theories that have 
onstru
tive models.

Question 1 If an un
ountably 
ategori
al theory has a 
omputable (arithmeti
al) model

is then the theory arithmeti
?

Question 2 Does there exist an un
ountably 
ategori
al theory T whose models are

A

0

� A

1

� : : : � A

!

su
h that A

0

has a 
onstru
tivization, and ea
h A

i+1

, i 2 !, has

0

i+1

{
onstru
tivization but does not have 0

i

{
onstru
tivization?

Problem 3 If T is Ehrenfeu
ht whose all types are arithmeti
 then all models of T have

arithmeti
 presentations.

There has been extensive resear
h in the study of 
omputable isomorphisms of 
onstru
tive

models. Many resear
hers [3℄ have worked on problems and resear
h dire
tions dis
ussed

in this se
tion. These are still in the 
enter of resear
h interest and play a signi�
ant role

in 
reation of new ideas, theorems and 
on
epts.

It is easy to see that the next 
onditions are equivalent:

(1) for any relation R in A

2

the sets �

�1

(R) and �

�1

(R) have the same Turing degree;

(2) for any relationR inA

2

the set �

�1

(R) is 
omputable i� the set �

�1

(R) is 
omputable;

(3) the numeration � and � are re
ursively equivalent (i.e. identity automorphism from

(A; �) onto (A; �) are 
omputable).

But for autoequivalen
e we have another equivalent 
onditions:
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(1) for any relation R in A

2

the sets �

�1

(R) and �

�1

(�(R)) have the same Turing degree

for some automorphism of our model;

(2) for any relation R in A

2

the set �

�1

(R) is 
omputable i� the set �

�1

(�(R)) is 
om-

putable for some automorphism of our model;

(3) the 
onstru
tivizations � and � are autoequivalent.

We dis
ussed some new results and problem in this very interesting approa
h of 
omputable

models theory. Some of them were 
onne
ted with the new notion of test-relations and

test-families.

The natural problems is 
onne
ted with set-theoreti
al properties. What the 
ondi-

tions have the relation whi
h will be maximal (hh-simple, h-simple and so on) in some


omputable representation of our model.

One 
an be interested in 
omputability{theoreti
 
omplexity of R under di�erent 
on-

stru
tivizations.

Question 3 Is it true that for any n � 3 there exists a non �

0

n

-autostable but �

0

n+1

-

autostable model of dimension 2?

The last part of my talk was 
onne
ted with stru
tural and non-stru
tural theorem. It was

based on our paper with J. Knight.

(1) C. J. Ash and J. F. Knight, Computable Stru
tures and the Hyperarithmeti
al Hier-

ar
hy, Springer-Verlag, 2001.

(2) C. C. Chang and H. J. Keisler. Model Theory, 3rd edn., Stud. Logi
 Found. Math.,

73, 1990.

(3) Yu. L. Ershov and S. S. Gon
harov, Constru
tive Models, Consultant Bureau, Plenum,

2000.

(4) Yu. L. Ershov, S. S. Gon
harov, A. Nerode and J. Remmel, eds., V. Marek, asso
. ed.,

Handbook of Re
ursive Mathemati
s, Vol. 1{2, North-Holland, 1999.

Degree Spe
tra of Relations on Computable Stru
tures

Denis Hirs
hfeldt

The study of additional relations on 
omputable stru
tures, whi
h began with the work

of Ash and Nerode, has proved to be 
onne
ted to a wide range of issues in 
omputable

stru
ture theory. One parti
ularly fruitful approa
h to this study, initiated by Harizanov,

is to look at the 
olle
tion of (Turing) degrees of the images of a relation in the various


omputable 
opies of a stru
ture, whi
h is known as the degree spe
trum of the relation.

This talk is a survey of results about possible degree spe
tra of relations in both the general


ase and with various restri
tions pla
ed on the relation and/or the stru
ture. Parti
ular

attention is paid to the di
hotomy between stru
ture theorems, whi
h allow us to rule out


ertain kinds of degree spe
tra in some restri
ted settings, and nonstru
ture results, whi
h

imply that in some other seemingly restri
ted settings, every degree spe
trum phenomenon

that 
an happen in general 
an already happen in the given setting. Conne
tions with issues

su
h as 
omputable dimension of stru
tures and �

0

n

-
ategori
ity are also emphasized.
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Ramsey's Theorem for Pairs and Weak K�onig's Lemma

Carl Jo
kus
h

I dis
uss metamathemati
al analogies and possible logi
al impli
ations between Weak

K�onig's Lemma and Ramsey's Theorem for pairs.

Let RCA

0

be the usual weak base theory for Reverse Mathemati
s, and let WKL

0

be

RCA

0

+ Weak K�onig's Lemma. Let ACA

0

be RCA

0

together with the arithmeti
 
ompre-

hension s
heme. It is well-known that WKL

0

is stri
tly stronger than RCA

0

and stri
tly

weaker than ACA

0

(see [5℄). L. Harrington [5℄ used for
ing over models of se
ond-order

arithmeti
 to show that WKL

0

is �

1

1

-
onservative over RCA

0

. The for
ing is similar to

that used to prove the low basis theorem.

Let RT

n

k

be the assertion that for any k{
oloring of the n{element sets of natural numbers

there is an in�nite set H of natural numbers whi
h is homogeneous (i.e. all n{element

subsets of H have the same 
olor).

It is well-known [5℄ that RT

n

k

is equivalent to ACA

0

over RCA

0

for n � 3; k � 2 and

that RT

2

k

is equivalent to RT

2

2

over RCA

0

for k � 2. Hen
e I will 
on
entrate on RT

2

2

.

The strength of this result is analyzed in [4℄ and [1℄. RCA

0

+ RT

2

2

is stri
tly stronger

than RCA

0

and stri
tly weaker that ACA

0

. It is shown in [1℄ using for
ing over models of

se
ond-order arithmeti
 that RCA

0

+I�

2

+RT

2

2

is �

1

1

-
onservative over RCA

0

+I�

2

, where

I�

2

is the �

0

2

indu
tion s
heme. The for
ing used to prove this is similar to that used to

prove the \low

2

basis theorem" [1℄: For any 
omputable 2-
oloring of the 2-element sets of

natural numbers there is an in�nite low

2

homogeneous set.

Thus the metamathemati
s of Weak K�onig's Lemma and RT

2

2

are quite parallel. Also,

it was shown by J. Hirst that Weak K�onig's Lemma does not imply RT

2

2

over RCA

0

. It is

unknown whether RT

2

2

implies Weak K�onig's Lemma in RCA

0

. The following is a new but

very weak result in the dire
tion of a negative answer: For any set X of natural numbers

and any natural numbers a and b, there is an in�nite set A su
h that either A � X and

fag

A

=2 DNR

2

, or A � X and fbg

A

=2DNR

2

. Here DNR

2

= ff 2 2

!

: (8e)[f(e) 6= '

e

(e)℄g.

The proof uses propositional logi
 as a tool, mu
h as it was used in [2, Corollary 3.4℄

to show that there is no non
omputable set X su
h that both X and X are uniformly

introredu
ible. However, the proof is somewhat more involved than the 
orresponding

proof in [2℄.

(1) P. Cholak, C. Jo
kus
h and T. Slaman, The Strength of Ramsey's Theorem for Pairs,

to appear in Journal of Symboli
 Logi
.

(2) C. Jo
kus
h, Uniformly Introredu
ible Sets, Journal of Symboli
 Logi
33 (1968), 521{

536.

(3) C. Jo
kus
h, Ramsey's Theorem and Re
ursion Theory, Journal of Symboli
 Logi
 37

(1972), 268{280.

(4) D. Seetapun and T. Slaman, On the Strength of Ramsey's Theorem, Notre Dame

Journal of Formal Logi
 36 (1995), 570{582.

(5) S. Simpson, Subsystems of Se
ond Order Arithmeti
, Springer-Verlag, 1999.

Latti
e Embeddings into the Computably Enumerable Turing Degrees

Steffen Lempp

The 
hara
terization of the �nite latti
es embeddable into the 
omputably enumerable

degrees has de�ed resear
hers for over three de
ades.
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Due to the 
omplexity of the problem, it appears best to try to pinpoint �rst the simplest


ase where embeddability/nonembeddability is not fully understood, namely, for partial

prin
ipally de
omposable latti
es with all joins and only two meets. (Any partial latti
e

with all joins and at most one meet is embeddable.) Along these lines, Lerman, Solomon

and I have re
ently found a mu
h easier example of nonembeddability than the latti
e L

20

of Lerman and myself, leading us to ideas for 
hara
terizing embeddability at least for this

restri
ted 
lasses of partial latti
es.

I will survey the te
hniques needed, introdu
ing one type of strategy at a time.

Homomorphisms and Quotients of the Computably Enumerable Degrees

Manuel Lerman

(joint work with Burkhard Englert and Kevin Wald)

We investigate pseudolatti
e homomorphisms of degree stru
tures. Our fo
us here is on

�nite quotients of the 
.e. degrees R. Results of Calhoun [1℄ imply that every �nite boolean

algebra is a pseudolatti
e quotient of R. We generalize this result to a 
lass of distributive

latti
es.

De�nition. We say that the �nite distributive latti
e hL;<i with greatest element 1 is

bi-orderable if there are a pair of orderings <

d

and <

p

on the set L

MI

of meet irredu
ible

elements 2 L� f1g whi
h satisfy the following 
onditions for all a; b 2 L

MI

:

a < b ! b <

d

a & b <

p

a;

a j b ! (a <

p

b $ b <

d

a):

Theorem. Let hL;<i be a bi-orderable �nite distributive latti
e. Then there is a pseu-

dolatti
e homomorphism from R onto hL;<i.

We note that all �nite linearly ordered sets are bi-orderable, but that there are �nite dis-

tributive latti
es whi
h are not bi-orderable. We 
onje
ture that the bi-orderability of

hL;<i 
an be 
hara
terized in terms of the non-embeddability of a �nite set of latti
es into

hL;<i.

(1) W. C. Calhoun, In
omparable Prime Ideals of Re
ursively Enumerable Degrees, Annals

of Pure and Applied Logi
 631 (1993), 39{56.

Computable Automorphisms of Models

Andrei S. Morozov

In this talk, I present the modern state of a�airs in 
omputable symmetries of 
omputable

obje
ts and dis
uss some open problems.

Here is the list of some unsolved questions. Some of them are known to be diÆ
ult while

the other ones were not seriously tested yet.

� Whi
h natural 
lasses of permutations related to redu
ibilities form a group? It is

known that for at most all redu
ibilities ex
ept for Turing redu
ibility there exists a

degree su
h that the group of all permutations whose graph redu
es to it is not 
losed

under 
omposition. Is it true that for su
h redu
ibilities there exist degrees su
h that

this set forms a group?

� Find a more or less transparent des
ription of the 
lass of groups of 
omputable

automorphisms of 
omputable models.
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� (A. Nies) Assume d is a Turing degree. De�ne G

d

= ff 2 Sym! j f � dg. Let Fin be

a the group of all �nitary permutations and A be the group of all even permutations.

Is it true that G

d

=Fin ,! G

s

=Fin , d

0

� s

0

? The dire
tion ) is already known.

The same question is open for quotients modulo A.

� Do groups of all automorphisms of the basi
 
omputably enumerable predi
ates x 2

W

y

and fxg(y) = z have 
omputable presentations? In parti
ular, it is known that

all automorphisms of these predi
ates are 
omputable.

� Des
ribe the �nitely generated subgroups of the group of all 
omputable permutations.

It is known that the 
o-
omputable enumerability of the word problem is not enough.

� Does there exist a 
ountably 
ategori
al de
idable model su
h that 
omputable auto-

morphism group of ea
h of its de
idable 
opies is trivial?

� Des
ribe 
omputable automorphism groups of de
idable 
ountably 
ategori
al mod-

els with 
omputable sets of 
omplete senten
es. Are they always non 
omputably

presentable?

� (S.Gon
harov) Assume G

0

and G

1

are full 
omputable automorphism groups of ap-

propriate 
omputable models. Does G

0

�G

1

have the same property? I know how to

embed this group into the group of all 
omputable permutations.

� (Finite signature problem) Assume G = Aut




M . Is it possible to �nd a 
omputable

model N whose language is �nite su
h that G = Aut




N? The same question is also

open for usual automorphisms.

� Does there exist a 
omputable Boolean algebra B su
h that all its 
omputable families

of automorphisms are �nite?

� Classify the 
omputable ve
tor spa
es by their 
omputable automorphismgroups.

Model Theoreti
 Properties of Stru
tures from Computability Theory

Andr

�

e Nies

We study stru
tures from 
omputability theory using model theoreti
 
on
epts and tools,

espe
ially 
oding with �rst-order formulas. The questions 
onsidered are:

Whi
h restri
tions on possible automorphisms exist? Whi
h natural subsets are (parameter-)

de�nable? Can a 
opy of the natural numbers be interpreted?

We answer the latter question to the aÆrmative for the 
.e. wtt and Turing degrees.

Moreover, for the 
.e. Turing degrees, we obtain an approximation to the biinterpretability


onje
ture with parameters. For ea
h nonre
ursive degree d, there is a 1{1 parameter

de�nable map form [d; 1℄ into a 
oded 
opy of the natural numbers.

We also address a method from e�e
tive algebra, involving ideal latti
es of 
.e. Boolean

algebras. For instan
e, this method 
an used to show the theory of many distributive

stru
tures is 
omplex.

Proof Theory and Generalized Re
ursion Theory

Wolfram Pohlers

We give a survey on the methods of generalized re
ursion theory whi
h are needed in the

ordinal analysis of theories. While so 
alled \predi
ative theories" need nearly no re
ur-

sion theoreti
 ba
kground we 
laim that for in
reasingly stronger impredi
ative theories

re
ursion theoreti
 ba
kground is (pra
ti
ally) indispensable. This 
laim is substantiated

on the examples of theories for indu
tive de�nitions, set theoreti
 re
e
tion and the set

theoreti
 stability.
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Diophantine Unde
idability of Fun
tion Fields of Positive Chara
teristi


Alexandra Shlapentokh

Let F be a fun
tion �eld of 
hara
teristi
 p > 2, �nitely generated over a �eld C, where

C is algebrai
 over a �nite �eld and has an extension of degree p. We show that Hilbert's

Tenth Problem is unde
idable over F .

Medvedev Degrees, Mu
hnik Degrees, Subsystems of Z

2

, and Reverse

Mathemati
s

Stephen G. Simpson

Foundations of mathemati
s (f.o.m.) is the study of the most basi
 
on
epts and logi
al

stru
ture of mathemati
s as a whole. An important f.o.m. resear
h program is reverse

mathemati
s, where one dis
overs whi
h subsystems of se
ond order arithmeti
 are ne
es-

sary and suÆ
ient to prove spe
i�
 theorems in 
ore mathemati
al areas su
h as analysis,

algebra, geometry, and 
ountable 
ombinatori
s. One of the most important subsystems

for reverse mathemati
s is WKL

0

, 
onsisting of RCA

0

plus Weak K�onig's Lemma.

Let P be the set of nonempty �

0

1

subsets of 2

!

. For
ing with P (ordered by in
lusion)

is known as Jo
kus
h/Soare for
ing. I have used iterated Jo
kus
h/Soare for
ing to obtain

an !-model M of WKL

0

with the following property: for all X; Y 2 M , X is de�nable

over M from Y if and only if X �

T

Y . The proof is based on a homogeneity argument

involving the Re
ursion Theorem, and a fa
torization lemma. I dis
uss the foundational

signi�
an
e of M and its hyperarithmeti
al analog.

For P;Q 2 P one says that P is Mu
hnik redu
ible to Q (P �

w

Q) if for all Y 2 Q there

exists X 2 P su
h that X �

T

Y . One says that P is Medvedev redu
ible to Q (P �

M

Q)

if there exists a re
ursive fun
tional � : Q ! P . I introdu
e the 
ountable distributive

latti
es P

w

(P

M

) 
onsisting of the Mu
hnik (Medvedev) degrees of members of P. I have

shown that P 2 P is Mu
hnik (Medvedev) 
omplete if and only if P is degree isomorphi


(re
ursively homeomorphi
) to the set of 
omplete extensions of PA.

Stru
tural aspe
ts of P

w

and P

M

present a ri
h problem area for re
ursion theorists.

Stephen Binns and I have shown that every 
ountable distributive latti
e is latti
e-embeddable

below any nonzero degree in P

w

. We also have partial results in this dire
tion for P

M

.

The latti
es P

w

and P

M

are in some respe
ts similar to the upper semilatti
e of Turing

degrees of re
ursively enumerable subsets of !. However, P

w

and P

M

are mu
h better in

that they 
ontain spe
i�
, known, natural examples of degrees 6= 0; 1. Su
h examples are

espe
ially relevant for f.o.m. In P

w

there is the maximum Mu
hnik degree of �

0

1

subsets of

2

!

of positive measure. This is related to the reverse mathemati
s of measure theory. In

P

M

there are the Medvedev degrees of fX : X is k-valued DNRg, k � 3. This is related

to the reverse mathemati
s of graph 
oloring.

For referen
es see http://www.math.psu.edu/simpson/talks/obwf0101/.

Aspe
ts of the Turing Jump

Theodore A. Slaman

The Turing Jump is the fun
tion whi
h maps a set X � lN to X

0

, the halting problem

relative to X. Fixing a re
ursive enumeration of all Turing ma
hines,

X

0

= fe : The eth Turing ma
hine with ora
le X halts:g
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We will dis
uss two aspe
ts of the jump and its iterations. First, we will show that they

are impli
itly 
hara
terized by general properties of relative de�nability. Se
ond, we will

present the Shore and Slaman [1℄ theorem that the fun
tion x 7! x

0

is �rst order de�nable

in the partial order of the Turing degrees.

(1) R. Shore, T. Slaman, De�ning the Turing Jump, Mathemati
al Resear
h Letters, 6

(1999), 711{722.

Computable Algebra

Reed Solomon

This talk surveys some re
ent work in 
omputable algebra. First, we look at relations on


omputable stru
tures, 
ontrasting sets of Ar
himedean representatives in ordered groups

(whi
h 
an be non
omputable in every 
omputable presentation of the group (Solomon))

with bases in torsion free abelian groups (whi
h always have a 
omputable 
opy in some


omputable presentation of the group (Dobritsa)). Se
ond, we examine degrees and jump

degrees of stru
tures, fo
using on rank one torsion free abelian groups (whi
h always have

se
ond jump degree (Coles, Downey, and Slaman)). Third, we 
onsider examples of 
om-

putable 
ategori
ity and 
omputable dimension, spe
i�
ally trees (trees of in�nite height

have 
omputable dimension ! (Miller)) and ordered abelian groups (whi
h are 
omputably


ategori
al if they have �nite rank and have 
omputable dimension ! otherwise (Gon-


harov, Lempp, and Solomon)). Also, we look at 
onditions determining when Boolean

algebras and linear orders are �

0

2


ategori
al or relatively �

0

2


ategori
al (M
Coy). Finally,

we look at e�e
tivizing theorems, 
onsidering several results about linear extensions of par-

tial orders (Downey, Hirs
hfeldt, Lempp, and Solomon) whi
h answer two open questions

of Rosenstein.

Provable Re
ursiveness and Complexity

Stanley S. Wainer

This talk des
ribes some joint work with my students G. Ostrin and N. Cagman, on the

proof theory of low subre
ursive 
lasses, between Grzegor
zyk's E2 and E3. The basis is

\A new re
ursion-theoreti
 
hara
terization of the polytime fun
tions" by Bellantoni and

Cook (1992), in whi
h it is shown that a natural two-sorted reinterpretation of the primitive

re
ursion s
hemes 
hara
terizes polynomially bounded 
omputation. We show that if Peano

Arithmeti
 is instead formulated in this two-sorted fashion, with quanti�
ation allowed

only over one sort (\safe" variables) and indu
tion allowed only over the other (\normal"

variables), then the provably re
ursive fun
tions are exa
tly the E3 (elementary) fun
tions.

The provably re
ursive fun
tions of the n-quanti�er indu
tive fragments of this theory turn

out to be 
losely related to the levels of Rit
hie's indu
tion 
orresponding to the E2 (linear

spa
e) fun
tions. This work is (
learly) related to other results of Buss, Bellantoni, Leivant,

Be
kmann and Weiermann, and others too. In addition it illustrates ni
ely the use of


lassi
al ordinal analysis te
hniques even at this low level. The di�eren
e with 
lassi
al PA

is that the separation of indu
tion from quanti�
ation means that the bounding fun
tions

are now Slow Growing rather than Fast Growing. Below �

0

the Slow Growing fun
tions

only give elementary bounds | hen
e the results.
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Computable Analysis

Klaus Weihrau
h

Computable analysis is the theory of those fun
tions on the real numbers and related sets

whi
h 
an be 
omputed by digital 
omputers. There are various partly non-equivalent

mathemati
al approa
hes to 
omputable analysis. In the talk the representation approa
h

(TTE), whi
h generalizes a de�nition of 
omputable real fun
tions by Grzegor
zyk and

La
ombe, is used as a framework. It merges 
on
epts of approximation from analysis with


on
epts of ma
hine models and dis
rete 
omputation. Basi
 ideas of TTE are explained

and the present state of 
omputable analysis is illustrated by some re
ent results: Kol-

mogorov superposition, Riemann mapping theorem, the Pour-El/Ri
hards paradox and


omputable solution operators of the wave equation, solution operators of the S
hr�odinger

equation, 
omputational 
omplexity of on-line 
omputation, admissible representations of

weak limit spa
es.

For details of TTE and a dis
ussion of other models see K.Weihrau
h: Computable

analysis, Springer, 2000. Referen
es and more information 
an be obtained via

http://www.informatik.fernuni-hagen.de/

a/.

�

3

-Indu
tion and Slaman Density Theorem

Yang Yue

(joint work with S. B. Cooper)

Let PA

�

denote the �rst order Peano axioms minus the indu
tion s
heme and I�

n

(B�

n

,

resp.) denote the indu
tion (
olle
tion, resp.) s
heme for �

0

n

formulas. People has been

interested in �nding a theorem in 
omputability theory, whi
h requires I�

3

. We show that

over the base theory PA

�

+B�

3

, the Slaman Density Theorem, saying that the bran
hing

degrees are dense in 
omputably enumerable degrees, is equivalent to I�

3

.

A prime model theorem

Jessi
a Young

Barwise 
ompa
tness is used to prove the following question posed by Gon
harov: If a

theory T is de
idable and has only 
ountably many 
ountable models, then does T have

a de
idable homogeneous model? The answer is yes: in fa
t, if a theory has less than 2

�

0

many models, then it has a prime model whose elementary diagram is 
omputable in T .

Edited by Frank Stephan
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