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The onferene was organized by Volker En� (Aahen) and Christian G�erard (Palaiseau),

the 44 partiipants ame from twelve ountries.

Both random and deterministi Shr�odinger and Dira operators were studied inluding

interations with eletri and magneti �elds and with quantized �elds. Speial topis

of the talks were the integrated density of states for random Shr�odinger operators, the

photoeletri e�et, Born-Oppenheimer approximation, quantum �eld theory and semi-

lassial analysis, high energy asymptotis and long range sattering theory and resolvent

estimates.

1



Abstrats

Ohmi behaviour in a Hamiltonian model

Stephan De Bi

�

eve

(joint work with L. Bruneau)

Many simple mirosopi or marosopi systems obey a phenomenologial equation of the

type

�q(t) +rV (q(t)) +  _q(t) = 0; ( > 0):

Examples inlude the motion of eletrons in a metal, or of a small partile in a visous

medium. The energy loss (at a rate � _q

2

) implied by the above equation leads to several

well-known phenomena: for potentials bounded below, the partile will ome to a stop at

one of the ritial points of the potential. If the ritial point is a minimum, it will do so

exponentially fast. If, on the other hand, rV (q) = �F , the partile will reah a limiting

speed v(F ), proportional to the applied �eld. This is at the origin of Ohmi law.

The phenomenologial frition term � _q summarizes the reation of the environment of

the partile to the motion of the latter. The energy lost by the partile is transferred to

the medium in whih it moves and one expets a Hamiltonian treatment of the ombined

system to be possible.

We have presented suh a model, whih is of the Pauli-Fierz type and vaguely related

to the Caldeira-Leggett model as well. Its Hamiltonian is

H(q; p; �; �) =

p

2

2

+ V (q) +

ZZ

dx dy

�



2

(r

y

�)

2

(x; y) + �(x; y)

2

�

+

Z

dx dy�(x� q; y)�(x; y):

Here � is a \form fator" (� 2 C

1

0

; � � 0) desribing the extension of the partile. The

orresponding equation of motion are

(�

2

t

� 

2

�

y

)�(x; y) = ��(x� q(t); y)

�q +rV (q) = �

Z

R

3

dx

Z

R

3

dy �(x� q; y)(r

x

�)(x; y):

Staring at there for a while, one realises that one an see the wave �eld �(x; y) as rep-

resenting for eah x an \obstale" in the form of a three-dimensional osillating medium.

When the partile passes at x, it pumps energy into the �eld �(x; �).

For this model we have proven that, if  is large enough and if the initial ondition does

not have to muh energy, then, for all rV = �F not too large

jq(t)� (q

1

+ v(F )t)j ! 0

where v(F ) is an expliitly omputable funtion with v

0

(0) 6= 0. We have also proven the

expeted results for on�ning potentials.

Singular Lagrangian manifolds and semi-lassial analysis

Yves Colin de Verdi

�

ere

We want to desribe miroloal solutions of a family of Shr�odinger equations

^

H

E;t

u =

O(h

1

), where

^

H

E;t

= �h

2

�

2

x

+ V

t

(x)� E
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and t is a parameter in R

d

, x 2 R. The potential V

t

is smooth w.r. to (t; x), uniformly

w.r. to (t; x).

We look at generi (non removable) singularities of the family of urves �

2

+V

t

(x)�E = 0.

We study the problem on the lassial level desribing normal forms and universal un-

foldings. Typial simple examples are the Morse ase (see YCdV and B. Parisse, CMP

205, 459{500) and the usp. We desribe the miroloal normal forms using Fourier In-

tegral operators. From this normal form, we get a miroloal sattering matrix near

eah singular point. We an then study the global problem leading to the \singular

Bohr-Sommerfeld rules" for the eigenvalue problem. There is a preprint available on

http://www-fourier.ujf-grenoble.fr/~yolver. The higher dimensional ase (inte-

grable ase) is studied in the PhD thesis of San V~u Ngo

.

 (CPAM 53, 143{217) and in the

preprint YCdV and SVN (pr�epubliations Institut Fourier no. 508).

Spetral methods in the study of the return to equilibrium

Jan Derezinski

The problem of the return to equilibrium for W*-dynamial systems an be redued to

the study of the spetrum of ertain self-adjoint operators, alled Liouvilleans. I desribe

some methods due to V. Jak�si �, C. A. Pillet and myself, with an be used to study Pauli-

Fierz Liouvilleans and to prove the return to equilibrium for Pauli-Fierz systems at various

temperatures.

Pauli operator and Aharonov Casher theorem for measure valued magneti

�elds

L

�

aszl

�

o Erd

}

os

(joint work with Vitali Vougalter)

We de�ne the two-dimensional Pauli operator and identify its ore for magneti �elds

that are regular Borel measures. The magneti �eld is generated by a salar potential

hene we bypass the usual A 2 L

2

lo

ondition on the vetor potential whih does not allow

to onsider suh singular �elds. We extend the Aharonov-Casher theorem for magneti

�elds that are measures with �nite total variation and we present a ounterexample in ase

of in�nite total variation. One of the key tehnial tools is a weighted L

2

estimate on a

singular integral operator.

On the spetral theory of some quantum �eld hamiltonians

Vladimir Georgesu

Let H be an in�nite dimensional omplex Hilbert spae and C a unital C*-algebra on H

without non-zero �nite rank projetions. If N <1, let �

N

(H) be the trunated symmetri

Fok spae assoiated to H, and a

N

(u) the trunated annihilation operators. Denote by

C

N

the C*-algebra on �

N

(H) generated by the operators a

N

(u) with u 2 H and �

N

(s)

with s 2 C.

The main result presented in this talk says that there is a unique morphism C

N

!

C 
 C

N�1

suh that the image of a

N

(u) is 1 
 a

N�1

(u) and that of �

N

(s) is s 
 �

N�1

(s).

Moreover, the kernel of this morphism is the algebra of ompat operators on �

N

(H).
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This fat allows one to ompute the essential spetrum and to prove the Mourre estimate

for boson �eld hamiltonians with a partile number ut-o� and one-boson kineti energy

aÆliated to C.

Rigorous Results on Moleular Propagation: Past, Present, and Hopes for the

Future

George Hagedorn

The time-dependent Born-Oppenheimer Approximation is the main soure of information

about moleular propagation. It leads to an asymptoti expansion in powers of � for

solutions to the moleular Shr�odinger equation. Here �

4

is the eletron mass divided by

the mean nulear mass. By applying an optimal trunation tehnique to this expansion,

we obtain an approximation whose errors are bounded by C

1

exp(�C

2

=�

2

) with C

2

> 0.

A basi assumption of Born-Oppenheimer Approximations is that the eletron energy

level of interest stays well separated from the rest of the eletroni spetrum. The simplest

violations of this assumption our at rossings and avoided rossings. We desribe the

e�ets of these phenomena on the propagation of moleular wave pakets.

To do better than the exponential estimates desribed above, one must injet new physis

into the approximations. We desribe onjetures about how one might desribe moleular

propagation when non-adiabati behavior of eletrons is involved.

Wegner estimate and integrated density of states for random operators with

nonsign de�nite potentials

Peter David Hislop

We study the IDS of random Shr�odinger and wave operators with Anderson type poten-

tials. The new result is that we an treat single-site potentials with no sign onditions. We

prove a Wegner estimate at energies below inf �(H

0

) and, provided the disorder is small,

at internal band edges. These results apply to a family of Shr�odinger operators with

random magneti �elds. The proof is based on the vetor �eld method of Klopp and the

L

p

estimate on the spetral shift funtion of Combes, Hislop, Nakamura.

QFT for salar partiles in external fores on Riemannian manifolds

Hiroshi Isozaki

We introdue a lass of nonompat Riemannian manifolds on whih we an disuss QFT

in external fores. This lass ontains physially important examples suh as Eulidean

spae, hyperboli spae and, by passing to onformal hange, the Shwarzshild metri.

The S-matrix for massive Klein-Gordon equation is unitarily implemented on the Fok

spae.

We an also do the same thing for the massless ase provided the spae is asymptotially

at or it is hyperboli.
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Sharp spetral asymptotis for operators with irregular oeÆients. Pushing

the limits.

Vitor Ivrii

For operators with �rst derivatives of oeÆients ontinuous with ontinuity modulus

O((log jx� yj)

�1

) resp. o((log jx� yj)

�1

)

we prove spetral asymptotis with the remainder estimate O(h

1�d

) (resp. o(h

1�d

) under

billiard ondition). The advane is based on the logarithmi unertainty priniple. One

an use miroloal analysis as soon as

�



� C

�

hj loghj

where �;  are sales with respet to �; x respetively.

Semilassial resolvent estimates for Shr�odinger matrix operators

Thierry Jeko

For the semilassial Shr�odinger operator �h

2

�

x

I

2

+M(x) in L

2

(R

n

; C

2

) with smooth

long range potential, we investigate the semilassial Mourre method to get the resolvent

estimates R(� � i0) = O(h

�1

) as bounded operator from L

2

s

(R

n

; C

2

) in L

2

�s

(R

n

; C

2

) for

s >

1

2

. If the eigenvalues of M do not ross, it suÆes to require a non-trapping ondition

on the eigenvalues of the symbol at energy �, but if the eigenvalues of M ross in a

odimension 2 submanifold, then an obstrution an our at the rossing (that might

generates resonanes lose to the real axis). However, if this obstrution do not our and

a non-trapping ondition holds, one an perform the semilassial Mourre method under

a further, quite restritive assumption on the Hamiltonian ows of the eigenvalues of the

symbol.

The High-Energy Asymptotis of One-Dimensional Dira Sattering

Wolf Jung

Denote the transmission amplitude in one-dimensional quantum sattering by � = e

�iÆ

.

Now Æ has an asymptoti expansion in inverse powers of the momentum q or of the energy

E. Standard tehniques for obtaining these expansions are related to Krein's spetral shift

funtion �(E) or to the WKB method. I proposed a di�erent tehnique, whih is simpler

and has a diret physial interpretation:

1. onstrut a onvergent series (Born or Jost)

2. the terms onsist of osillatory integrals, whih yield an asymptoti expansion by

partial integration

3. knowing that an asymptoti expansion exists, obtain the oeÆients from an ansatz

and reursion relations.

The method inluded transforming both the Shr�odinger- and the Dira equation to a

massless Dira-type equation with energy-dependent potential matrix. I have learned from

the audiene that the results and the tehniques of the above are well-known in the theory

of solitons, at least for energy-independent potentials. New aspets are the parallel treat-

ment of Shr�odinger- and Dira equations, a modi�ed Born series taking into aount the

largest term in the energy-dependent potential, the physial interpretation in terms of su-

perposition and interferene of Feynman amplitudes, and a onjeture about interhanging
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the limits q !1 and ~! 0. A preprint on these topis will be available from mp ar in

autumn.

The photoeletri e�et for an atom oupled to a seond quantized

eletromagneti �eld

Fr

�

ederi Klopp

(joint work with V. Bah, H. Zenk)

We onsider an atom with a single bound state (that is the ground state) oupled to a

quantized eletromagneti �eld. We onsider the ionization of the atom by an inident

photon loud onsisting of N involved photons. We prove that the total ionized harged

is additive in the N involved photons. Furthermore, Einstein's predition for the photo-

eletri e�et is quantitatively and qualitatively orret to leading order in the oupling

parameter; that is ionization only happen if the single photons have momentum large

enough to ross the energy gap, and the kineti energy of the ejeted eletron is then

given by the di�erene of the photon energy of eah single photon (in the loud) and the

ionization energy.

Regularity of the surfae density of states for random Shr�odinger operators

Vadim Kostykin

(joint work with Robert Shrader)

We onsider random Shr�odinger operators with the interation loalized at a hypersurfae

R

�

1

in R

�

, �

1

� �. An important quantity related to suh a kind of operators is the

surfae density of states, whih measures a density of states per unit surfae. So far it

was known that this quantity is a distribution of order at most 3. Using the onept of

the spetral shift density and applying the theory of the spetral shift funtion we prove

that the surfae density of states belongs to L

p

lo

for any 1 � p <1. In the ase of Jaobi

matries (disrete Shr�odinger operators) the result is sharper: the surfae density of states

is uniformly bounded by one.

Spetral shift funtion and semi-lassial asymptotis for trapping

perturbations

Vesselin Petkov

(joint work with V. Bruneau)

We examine the representation of the derivative �

0

(�; h) of the spetral shift funtion related

to two self-adjoint operators L

j

(h), j = 1; 2 for � 2 [a; b℄, 0 < a < b, 0 < h � h

0

. The

operators

L

j

(h) =

X

j�j�2

a

j;�

(x; h)(hD)

�

are long-range perturbations of �h

2

� and the distribution �(�; h) 2 D

0

(R) is de�ned by

the trae

C

1

0

(R) 3 ' 7! tr('(L

1

(h))� '(L

2

(h)) = h�

0

(�; h); '(�)i

D

0

;D

:
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Our main result says that �

0

(�; h) admits a representation

�

0

(�; h) =

h

X

w2ResL

j

\
;Imw 6=0

�

Im

�j�� wj

2

+

X

w2ResL

j

\J

Æ(�� w)

i

2

j=1

+

1

�

r(x; h);(1)

where 
 �� C is a ompat domain, J = 
 \ R

+

, ResL

j

denotes the set of resonanes

of L

j

in fImw � 0g and jr(�; h)j � C(w)h

�n

for W �� 
, � 2 I = W \ R

+

, while

[a

j

℄

2

j=1

= a

2

� a

1

. Applying the representation (1), we obtain a loal trae formula and a

Breit-Wigner approximation of E

0

(�; h).

Finite gap potentials and WKB asymptotis for 1D Shr�odinger operators

Christian Remling

(joint work with Thomas Krieherbauer)

Consider a one-dimensional Shr�odinger operator H = �

d

2

dx

2

+ V (x) with power deaying

potential V (x) = O(x

��

). We onstrut examples whih show that a previously obtained

dimensional bound on exeptional sets is optimal in its whole range of validity. This

onstrution uses �nite gap potentials and relies on pointwise bounds on these potentials.

The main part of the argument onsists of an analysis of the so-alled Jaobi inversion

problem.

Relativisti Hamiltonian for Eletron in Heavy Atoms

Heinz Siedentop

(joint work with Raymond Brummelhuis and Edgardo Stokmeyer)

Jansen and He� | orreting an earlier paper of Douglas and Kroll | have derived

a (pseudo-)relativisti energy expression suessfully desribing heavy atoms. It is an

approximate no-pair Hamiltonian in the Furry piture. We present a reent result on

the boundedness of the energy jointly obtained with Brummelhuis and Stokmeyer: the

orresponding (one-partile) quadrati form is bounded from below if and only if 0 �

�Z � 1:006. This allows to de�ne a distinguished self-adjoint operator for the same range

of oupling onstants.

Long-range three-body sattering

Erik Skibsted

We onsider the problem of asymptoti ompleteness (AC) for a system of three quantum

mehanial partiles with pair interations

�

�

V

�

(x

�

) = O(jx

�

j

���k�j

):

With the assumption of spherial symmetry and a negative upper bound at in�nity, AC

holds in the regime � 2 (

1

2

;

p

3� 1℄. In one dimension and under further onavity ondi-

tions, AC holds in (0;

1

2

℄ as well.

Another new result is AC for a lass of potentials with a ertain positive lower bound

at in�nity, again in the regime � 2 (0;

1

2

℄.
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Adiabati deoupling and the time-dependent Born-Oppenheimer theory

Stefan Teufel

(joint work with Herbert Spohn)

We onsider a moleular Hamiltonian of the form

H =

~

2

2M

�

� ir

x

+ A

ext

(x)

�

2

+

~

2

2m

�

� ir

y

� A

ext

(y)

�

2

+ V (x; y)(2)

on H = L

2

(R

3n

x

)
L

2

(R

3e

y

). Here n is the number of nulei, e is the number of eletrons, M

is the mass of the nulei and m the mass of the eletrons. Sine the ratio "

2

:=

m

M

� 10

�4

is

typially small, it an be used as an expansion parameter. Going to atomi units ~ = m = 1

and resaling the potentials turns (2) into

H

"

=

"

2

2

�

� ir

x

+ A

ext

(x)

�

2

+H

e

(x)(3)

with

H

e

(x) :=

1

2

�

� ir

y

� A

ext

(y)

�

2

+ V (x; y) :

We show that on subspaes belonging to isolated energy bands E(x), i.e. H

e

(x) 

E

(x; y) =

E(x) 

E

(x; y) and E(x) separated from the rest of spe(H

e

(x)) by a gap uniformly for

x 2 R

3n

, the full time evolution is well approximated by an e�etive one generated by

H

"

BO

=

"

2

2

�

� ir

x

+ A

ext

(x) + A

geo

(x)

�

2

+ E(x)

for the nulei only. A

geo

(x) := �ih 

E

(x);r

x

 

E

(x)i is known as the Berry onnetion and

the replaement H

"

! H

"

BO

as Peierl's substitution.

For the preise statement let U : H ! L

2

(R

3n

),  7! h 

E

(x);  (x)i

L

2

(R

3e

)

. We show that

there is a onstant  <1 suh that







�

e

�iH

"

t

"

� U

�

e

�iH

"

BO

t

"

U

�

P

�







B(H)

�  " (1 + jtj)

with P

�

:=

R

�

dx h 

E

(x); �i 

E

(x). We also prove a version of the above statement whih

holds \loally" in the on�guration spae of the nulei.

The Wegner estimate and the ommon density of the Anderson oupling

onstants

Ivan Veseli

�



Wegner's estimate (Z.Phys B44, 1981) plays a ruial role in the analysis of random

Sh�odinger operators from solid state physis. On the one hand, it is part of the exis-

tene proof of pure point spetrum in ertain energy regions. On the other, it supplies

information about the regularity properties of the integrated density of states.

The talk presents a new proof of Wegner's estimate, whih is valid also for ertain

inde�nite Anderson models. A new aspet is the use of the ommon density of the Anderson

oupling onstants instead of the often used onditional density.
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Resolvent estimates on in�nite volume Riemannian manifolds with usps

Georgi Vodev

The limiting absorption priniple is proved for the Laplae-Beltrami operator on in�nite

volume Riemannian manifolds whih may have usps. Moreover, an exponential bound

(with respet to the spetral parameter) of the norm of the limiting operator (on the real

axis) is proved. This extends a previous result by Burq to more general manifolds. As a

onsequene, a free of resonanes region of the form

jIm�j � e

�C

1

j�j

; j�j � C

2

; C

1

; C

2

> 0;

is obtained for two dimensional Riemann surfaes of the form

M = Z [X

1

[ � � � [X

I

[ Y

1

[ � � � [ Y

J

; I � 0; J � 1;

where Z is a ompat Riemannian manifold and

X

i

= [a

i

;1)

r

� (R n h

i

Z)

t

; a

i

; h

i

> 0; with metri dr

2

+ e

�2r

dt

2

Y

i

= [b

i

;1)

r

� (R n `

i

Z)

t

; b

i

; `

i

> 0; with metri dr

2

+ osh

2

rdt

2

;

and the resonanes are de�ned as being the poles of the meromorphi ontinuation of the

resolvent

R(�) :=

�

�

M

� �

2

�

1

4

�

�1

: L

2

omp

(M; dvol

g

) �! L

2

lo

(M; dvol

g

)

from Im� < 0 to the whole omplex plane C .

Lifshits Tails in Magneti Fields

Simone Warzel

(joint work with Thomas Hupfer and Hajo Leshke)

We investigate the leading low-energy fall-o� of the integrated density of states of a harged

quantum partile subjet to a onstant magneti �eld and repulsive impurities randomly

loated aording to Poisson's distribution.

This so-alled magneti Lifshits tail is determined for the ase of two spae dimen-

sions with a perpendiular magneti �eld and for all single-impurity potentials with either

super-Gaussian, Gaussian or regular sub-Gaussian deay at in�nity. While the result for

regular sub-Gaussian deay oinides with the orresponding lassial one, the Lifshits

tail aused by super-Gaussian deay exhibits a universal quantum behaviour. As a onse-

quene, Gaussian deay is proven to disriminate between quantum and lassial tailing.

In the ase of three spae dimensions, the magneti Lifshits tail is investigated for all

impurity potentials with super-Gaussian or Gaussian deay. Its preise form is determined

for all impurity potentials with strethed (sub-) Gaussian deay. In this ase it turns

out that the tail is independent of the magneti �eld and oinides, up to a logarithmi

aeleration, with that for one dimension and not too slowly deaying impurity potentials.

High energy asymptotis of the sattering amplitude

Dimitrij Yafaev

We �nd an expliit expression for the kernel of the sattering matrix ontaining at high

energies all terms of power order. It turns out that the same expression gives a omplete
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desription at the diagonal singularities of the kernel in the angular variables. Both short-

and long-range eletri as well as magneti potentials are onsidered.

Behavior at in�nity of fundamental solution of time dependent Shr�odinger

equations

Kenji Yajima

Let E(t; s; x; y) be the distribution kernel of the propagator for the time dependent

Shr�odinger equation in R

n

,

i

�u

�t

= �

1

2

4u+ V (t; x)u; u(s; x) = �(x):(4)

We prove that the asymptoti behavior at in�nity of E is stable under the subquadrati

perturbations. �

2

x

V (t; x) is the Hessian of V wrt. x and

I

";T

= f(t; s) : 0 < jt� sj < T; jt� s�m�j > "; 8m 2 Z n f0gg

Theorem 1. (a) Let V satisfy the ondition

(SQ) lim

jxj!1

sup

t2R

1

j�

2

x

V (t; x)j = 0; j�

�

x

V (t; x)j � C

�

; j�j � 3

Then, for any 0 < �(t� s) < T , E is C

1

wrt. (x; y) and may be written in the form

E(t; s; x; y) =

e

�in�=4

(2�jt� sj)

n=2

e

iS(t;s;x;y)

a(t; s; x; y);

where S is real smooth and, as x

2

+ y

2

!1, uniformly wrt. 0 < jt� sj < T ,

�

�

x

�

�

y

�

S(t; s; x; y)�

(x� y)

2

2(t� s)

�

! 0; j�+ �j � 2;(5)

�

�

x

�

�

y

(a(t; s; x; y)� 1)! 0; j�+ �j � 0:(6)

(b) Let V (t; x) =

1

2

x

2

+W (t; x) and W satis�es (SQ). Then, for any (t; s) 2 I

";T

, E is C

1

wrt. (x; y) and may be written in the form, for 0 < t� s�m� < �, m 2 Z,

E(t; s; x; y) =

i

�m

e

�in�=4

(2�j sin(t� s)j)

n=2

e

iS(t;s;x;y)

a(t; s; x; y);

where S is real smooth and, as x

2

+ y

2

!1, uniformly wrt. (t; s) 2 I

";T

�

�

x

�

�

y

�

S(t; s; x; y)�

(x

2

+ y

2

) os(t� s)� 2xy

2 sin(t� s)

�

! 0; j� + �j � 2;(7)

�

�

x

�

�

y

(a(t; s; x; y)� 1)! 0; j�+ �j � 0:(8)

Spetral Asymptotis of Weyl type for Shr�odinger operators with disrete

spetrum

Leh Zielinski

Let A be a self-adjoint operator in L

2

(R

d

) formally given by

X

1�j;k�d

D

j

(a

jk

(x)D

k

) + v(x)

10



where D

j

= �i

�

�x

j

, a

jk

= a

kj

2 L

1

(R

d

) suh that

a

0

(x; �) =

X

1�j;k�d

a

jk

(x)�

j

�

k

� j�j

2

; ( > 0)

(1 + jxj)



� v(x) � C(1 + jxj)



: (C;  > 0)

Let �; r 2℄0; 1℄ be �xed and assume that

jx� yj � v(x)

3

)  �

v(x)

v(y)

� C

jx� yj � 1 ) jv(x)� v(y)j � Cv(x)

1��

jx� yjr

jx� yj � 1 ) ja

jk

(x)� a

jk

(y)j � Cv(x)

��

jx� yjr

for some C;  > 0. Let �

0

> 0, r

0

> 0 be arbitrary �xed numbers satisfying

�

0

< � and r

0

< r

and h(x; �) = v(x)

��

0

(1 + jxj)

�r

0

. Then there exists C > 0 large enough to ensure the

estimate (for � � C)

�

�

N (A; �)�

Z

a(x;�)<�

dx

d�

(2�)

d

�

�

� C

Z

a(1�Ch)<�<a(1+Ch)

dx d�

where N (A; �) is the ounting funtion of A and a(x; �) = a

0

(x; �) + v(x). In the ase

(1 + jxj)

m

� v(x) � C(1 + jxj)

m

the above result gives

N (A; �) =

Z

a(x;�)<�

dx

d�

(2�)

d

�

1 +O(�

�

0

�r

0

=2

)

�

; (�

0

< �; r

0

< r):

Edited by Olaf Post
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