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Die Tagung ,,Nonlinear Evolution Problems* diente dem Gedankenaustausch unter den 47
eingeladenen Wissenschaftlern. Diese kamen unter anderem aus Deutschland, Frankreich,
Italien, Japan, der Schweiz, den USA. Die Tagungsleiter, Herr Klainerman (Princeton) und
Herr Struwe (Ziirich), konnten aus deren neueren Forschungsergebnissen ein interessantes
Vortragsprogramm zusammenstellen. Schwerpunkte waren

e Wellenabbildungen (vor allem globale Existenz- und Regularititsfragen)
e Geometrische Evolutionsprobleme

e Dispersionsgleichungen

e Evolutionsgleichungen in der Allgemeinen Relativitéitstheorie

Die folgenden Seiten stellen diese Prisentationen als Kurzfassungen vor. Das Programm
bot jedoch iiber diese Einzeldarstellungen hinaus ausgiebige Gelegenheiten, viele Probleme
in kleineren und gréferen Gruppen zu diskutieren, bestehende Projekte weiterzuverfolgen
und neue Arbeitsgemeinschaften zu begriinden.



Abstracts

Global CMC foliations
LARS ANDERSSON

Constant mean curvature Cauchy surfaces of spatially compact vacuum spacetimes satis-
fy uniqueness properties which makes CMC time a natural time gauge for the Einstein
equations. The Einstein equations are known to be hyperbolic in this gauge.

The standard conjecture for CMC foliations is that global existence holds in CMC time,
i.e. that CMC time trK takes on all allowed values, depending on the Yamabe invariant
of the Cauchy surface. This is known to hold in many cases with symmetry.

We consider some results for spacetimes with little or no symmetry. For flat spacetimes with
hyperbolic spatial topology, global CMC foliations exist [L.A., 2000]. For spacetimes with
L curvature bounds, global CMC foliations and asymptotic geometrization are known [M.
Anderson, 2000]. Small data global existence for CMC foliations is known for polarized
U(1) spacetimes, in the expanding direction [Choquet-Bruhat and Moncrief, 2001], as well
as for 3+1 rigid spacetimes with hyperbolic spatial topology.

Critical behaviour at the threshold for blowup
P10TR BizoN

In order to gain insight into critical phenomena at the threshold for black hole formation
in gravitational collaps, we study the threshold for blowup in toy models, such as wave
maps in 3 + 1 dimensions or Yang-Mills equations in 5 + 1 dimensions. Using mixed
numerical-analytical methods we show that the threshold for blowup is determined by
the codimension-one stable manifolds of a self-similar solution. We also conjecture that
the blowup in these models is generically asymptotically self-similar. We point out that
the nature of blowup and transition between blowup and dispersion (global existence) is
completely different in the critical dimensions (2 4+ 1 for wave maps and 4 + 1 for Yang-
Mills).

Averages over spheres for kinetic transport equations
NIKOLAOS BOURNAVEAS
We consider averages over spheres for kinetic transport equations in d > 2 space dimensions.
In the case d > 3 we prove that averages over spheres satisfy the same estimates as averages
over balls. In the case d = 2 however, 1/4 derivative is lost in the various forms of the
Averaging Lemmas. We show that it is possible to recover the optimal regularity working

in the hyperbolic Sobolev spaces H*®°. Strichartz type inequalities follow with better
exponents than those given by classical Sobolev imbeddings.

Viscosity solutions for hyperbolic systems

ALBERTO BRESSAN

We consider a nonlinear strictly hyperbolic system of the form
u+ A(u)uy = Sug,
u(0,z) = u(x)



Assuming that the initial condition u has small total variation, we prove uniform BV
bounds and Lipschitz continous dependence of the solution on the initial data, for all £ > 0,
e > 0. Letting ¢ — 0 we obtain in the limit a continous semigroup S, whose trajectories
can be regarded as “viscosity solutions” to the hyperbolic n x n system u; + A(u)u, = 0.
In the conservative case A(u) = D f(u), the limit solutions coincide with the entropy weak
solutions to the system of conservation laws u;+ f(u), = 0 obtained via the Glimm scheme.
The proofs are obtained through a decomposition of the gradient u, as a sum of gradients
of viscous travelling waves, via center manifold theory. Interactions among viscous waves
are controlled by suitable new Lyapunov functionals.

Strong cosmic censorship and the spherically symmetric
Einstein-Maxwell-Scalar field equations

MIiHALIS DAFERMOS

We consider a trapped characteristic initial value problem for the spherically symmetric
Einstein-Maxwell-Scalar field equations. For an open set of initial data whose closure
contains Reissner-Nordstrom data, the future boundary of the maximal domain of deve-
lopment is found to be a lightlike surface along which the curvature blows up, and yet the
metric can be continously extended beyond it. This result is related to the strong cosmic
censorship conjecture of Roger Penrose.

A local monotonicity formula for mean curvature flow

KrAus ECKER

For the standard heat equation, a local mean value formula due to Fulks and Watson states
that the temperature at a particular point in space and time equals the average temperature
taken over heat-balls centred ar this point. Heat-balls are the subsets of space-time where
the backward heat kernel is larger then a given number, their boundaries are the level sets
of the backward heat kernel (or its translates in space-time).

We present a local mean value formula for submanifolds moving by their mean curvature
and show how this is related to a monotonicity formula for mean curvature flow proved by
Huisken.

Transonic shocks for steady potential flows and free boundary problems

MikHAIL FELDMAN, GUI-QIANG CHEN

We establish the existence and stability of multidimensional transonic shocks for steady
potential flows, via solving a nonlinear free bondary problem. The equations for the tran-
sonic shocks are nonlinear second order elliptic-hyperbolic equations of mixed type, which
can be derived from compressible Euler equations consisting of conservation law of mass
and the Bernoulli law for velocity. The free boundary is the location of the shock, dividing
two regions of the smooth flow; and the equation is hyperbolic in the upstream region
where the flow is supersonic, and elliptic in the downstream region. We show that for any
sufficiently small pertubation of the supersonic flow there exists a unique elliptic (subsonic)
solution in the downstream region, and the free boundary is stable.



New results on inverse mean curvature flow

GERHARD HUISKEN

Inverse mean curvature flow is described by the nonlinear parabolic system

d 1

it = Zvi)

for a family of surfaces F': M"x[0,T] — (N"*! g) in a Riemannian manifold. In joint work
with Tom Ilmanen (ETH) new regularity estimates are established concerning lower bounds
for H on starshaped surfaces and the longterm asymptotic behaviour in asymptotically flat
manifolds. In the asymptotically flat case it is also shown that the inverse mean curvature
flow solution converges to the same center of mass as given by the constant mean curvature
foliation near infinity.

Stability of Ricci flows converging to flat metrics

JAMES ISENBERG

Motivated by studies of the Ricci flow of warped products (X2 xS'3g =2¢g(z)+eV®d#?), we
consider the following stability question: Let the Ricci flow g(t) of a given metric (M™, go)
converge to a flat metric (M™,n). Does it follow that the Ricci flow g(¢) of a nearby metric
(M™, go) must also converge to a flat metric (M™,7)?

Christine Guenther, Dan Knopf and I prove that indeed Ricci flow is stable in this sense.
Our proof relies on a dynamical system picture of the flow, and on the maximal regularity
theory for parabolic flows with a center manifold. Our sense of “nearby” is based on a
“little Holder” 2+ o (0 € (0, 1)) neighborhood of go. The techniques we employ to prove
this result should be useful for the study of Ricci flow stability for higher dimensional
(m > 4) Riemannian metrics which are Ricci flat with nonzero scalar curvature.

Vortex filament dynamics for Gross-Pitaevsky type equations

ROBERT JERRARD

We study solutions of the Gross-Pitaevsky equation and similar equations in m > 3 space
dimensions in a certain scaling limit, with initial data uj for which the Jacobian Juj
concentrates around an (oriented) rectifiable (m — 2)-dimensional set, say 'y, of finite
measure. It is widely conjectured that under these conditions, the Jacobian at later times
t > 0 continues to concentrate around some codimension 2 submanifold, say I';, and that
the family {I';} of submanifolds evolves by binormal mean curvature flow. We prove this
conjecture when I’y is a round (m — 2)-dimensional sphere with multiplicity 1. We also
prove a number of partial results for more general inital data.

A preprint is posted at http://www.mis.mpg.de/preprints/2000, where the paper appears
as preprint number 45/2000.



Viscous Hamilton-Jacobi equations

HERBERT KoOCH
The viscous Hamilton-Jacobi equations
1
(1) u—Au+—|VulP = 0 (u>0, 1<p< o)
p

combine good properties of the heat equation and the Hamilton-Jacobi equation.

p=1
< <p;1> ’
p
for all nonnegative solutions.
Thm 2: For all nonnegative functions uy € C(R™) there exists a unique solution to (1) with
initial data wug.
This is joint work with S. Benachour and Ph. Laurencot.

Thm 1 : t% VupT71

Gradient flow for the Willmore functional

ERNST KUWERT, REINER SCHATZLE

The Willmore energy of a closed, immersed surface f: ¥ — R" is the L? integral of its
curvature. We consider the corresponding L? gradient flow, which is a quasilinear, fourth-
order geometric evolution equation with critical scaling. We prove that if a smooth flow
develops a singularity in finite time 7", then the energy must concentrate on balls of radius
o(t) = o((T — t)'/*), with centers possibly depending on #. A suitable blowup is shown to
converge to a static solution, which is a properly immersed, nonumbilic Willmore surface.
If 3 is topologically a sphere, then the flow converges smoothly to a round sphere if the
initial energy is not too big. A numerical example by Mayer and Simonett shows that in
general singularities may occur.

The blowup locus for the heat flow of harmonic maps

Jiayu L1

Let M and N be two compact Riemannian manifolds. Let ug(z,t) be a sequence of strong
stationary weak heat flows from M x R" to N with bounded energies. Assume that u; — u
weakly in H?(M x R™, N) and that X is the blowup set for a fixed ¢ > 0. In this talk
we first prove Y! is a H™ 2-rectifiable set for almost all + € R*. And then we prove two
blowup formulas for the blowup set and the limiting map. From the formulas we can see
that if the limiting map u is also a strong stationary weak heat flow, ¢! is a distance
solution of the (m — 2)-dimensional mean curvature flow. If a smooth heat flow blows up
at a finite time, we derive a tangent map or a weakly quasi harmonic sphere and a blow up
set UpcoX! x {t}. We prove the blowup map is stationary if and only if the blowup locus
is a Brakke motion.

The motion of the free surface of a liquid
HANS LINDBLAD
We study the motion of an incompressible perfect liquid surrounded by vacuum, without

surface tension. This can be thought of as a model for the motion of the ocean or a
galaxy. The free surface moves with the velocity of the liquid. The pressure is zero on the



free surface and the pressure determines the acceleration. This leads to a free boundary
problem for Euler’s equations, where the regularity of the boundary enters to highest order.
Together with Christoudoulou I proved local a priori bounds for Sobolev norms assuming
a “physical condition”, related to the fact that the pressure of a fluid has to be positive.
Recently T showed that the linearized problem is well-posed.

Smooth geometric evolutions of hypersurfaces

CARLO MANTEGAZZA

We consider the gradient flow associated to the following functionals

Fule) = /1 + V™ dp.
M

The functionals are defined on hypersurfaces immersed in R**! via a map ¢: M — R,
where M is a smooth closed and connected n-dimensional manifold without boundary.
Here p and V are respectively the canonical measure and the Levi-Civita connection on
the Riemannian Manifold (M, g), where the metric g is obtained by pulling back on M the
usual metric of R**! with the map ¢. The symbol V™ denotes the m-th iterated covariant
derivative and v is a unit normal vector field to the hypersurface.

Our main result is that if the order of derivation m € N is strictly larger than the integer
part of n/2 then singularities in finite time cannot occure during the evolution.

These geometric functionals are related to similar ones proposed by Ennio De Giorgi, who
conjectured for them an analogous regularity result. In the final section we discuss the
original conjecture of De Georgi and some related problems.

Modified wave operators for the Hartree equation

KENJI NAKANISHI

We construct modified wave operators for the Hartree equation with the Coulomb potential.
Those maps are defined everywhere in a weighted L? space, and the main novelty is that we
can avoid derivative losses so that we have the image, strong convergence and continuity in
the same weighted space. The lower bound of the weight is optimal in view of the scaling.

Asymptotic decoupling of solutions of the Einstein equations

ALAN RENDALL

According to an idea of Belinskii, Khalatnikov and Lifshitz (BKL) solutions of the Ein-
stein equations should be approximated near their singularities by solutions of a system of
ordinary differential equations. A major obstacle to proving this for the vacuum Einstein
equations is the existence of the Mixmaster solution. Lars Andersson and I showed that
this can be avoided by adding a scalar field. Our results, which prove the existence of a
large class of solutions conforming to the BKL proposal, still have some undesirable limi-
tations. Methods of removing these restrictions have been tested on simple model cases,
such as the Gowdy spacetimes.



Improved regularity for the vacuum Einstein equations

IGOR RODNIANSKI, SERGIU KLAINERMAN

The vacuum Einstein equations for a Lorentzian metric ¢ say that the Ricci curvature
R,s3(g) = 0. In wave coordinates this becomes a system of the quasilinear wave equations
of the form

Dggaﬁ = Qaﬁ (g, 89)

We consider the Cauchy problem for the above equation with initial data set prescribed
on R?® and show that it is locally well posed in the Sobolev space H**¢ for any £ > 0. The
proof relies on the combination of the PDE and geometric techniques, as well as elements
of harmonic analysis.

Higher order curvature flows on surfaces

HARTMUT SCHWETLICK

We consider a sixth order conformal flow on Riemannian surfaces, which arises as the
gradient flow for the Calabi energy with respect to a higher order norm. Motivated by a
recent work of M. Struwe which unified the approach to the Hamilton-Ricci and Calabi
flow we extend the method to this higher order flow. Our results contain global existence
and exponentially fast convergence to a constant scalar curvature metric.

Uniform bounds on the conformal factor are obtained via the concentration-compactness
result for conformal metrics. In the case of the sphere we use the idea of DeTurcks gauge
flow to derive first bounds up to conformal transformations.

We prove exponential convergence by showing that the Calabi energy decreases exponen-
tially fast. The problem of the non-trivial kernel in the evolution of Calabi energy on the
sphere is resolved by using Kazdan-Warner’s identity.

On the critical regularity of wave maps in higher dimensions

JALAL SHATAH, MICHAEL STRUWE

We show global existence, uniqueness and preservation of regularity for the Cauchy pro-
blem for wave maps of the (4+1)-dimensional Minkowski space into a Riemannian target
manifold of bounded curvature for initial data which are small in the critical (H? x H')-
norm. The proof is very direct; all estimates are carried out in physical space rather than
frequency space. An essential tool is the use of endpoint Strichartz estimates and their
Lorentz space improvement, established in a recent paper of Keel-Tao.

The null condition and global existence for nonlinear elastic waves

THOMAS SIDERIS

The nonlinear hyperbolic system of partial differential equations governing the evolution of
the deformation of homogeneous, isotropic, hyperelastic materials filling space are studied.
Under an additional nonresonance or null condition, the system has global smooth solutions
close to a one-parameter family of dilations. The proof combines energy estimates with
vector fields and a new decay estimate for the linear problem.



A new approach to study the Vlasov-Maxwell system

GIGLIOLA STAFFILENI

We give a new proof based on Fourier transform of the classical Glassey-Strauss global
existence result for the 3D relativistic Vlasov-Maxwell system, under the assumption of
compactly supported particle densities. Though our proof is not substantially shorter
then that of Glassey-Strauss, we believe it to be more flexible for future progress on the
outstanding problem of global existence, without the additional support assumption.

Global regularity of wave maps

TERENCE TAO

Wave maps ¢: R — (M, g) are critical points of the Lagrangian

//<8a<p 0% > .

We are interested in the global regularity problem: Do smooth solutions to the Cauchy
problem stay smooth for all time?

We establish regularity when the H: x Hz'! norm of the initial data is small, for n > 2,
when the target manifold is a sphere.

The principal difficulties are (a) the failure of 2 to control L%, and (b) technical problems
in differentiating the equation in low dimensions.

(b) is resolved by using Littlewood-Paley projections instead of differentiation, and (a)
is resolved by a gauge transformation of the wave map equation in frequency-localized
connection form.

Local well-posedness for the nonlinear wave equation with rough data
DANIEL TATARU
We consider the local well-posedness question for a general quasilinear second order hyper-
bolic equation O, (u) = G(u)(Vu)? in R” x R. The initial data (u(0), u(0)) = (ug, uq) is
taken in Sobolev spaces H*(R") x H* '(R"). Our result is that local well-posedness holds

for s > 7/4 in dimension 2, and for s > (n — 1)/2 in dimension three and higher. It is
sharp in dimensions 2 and 3. This is joint work with Hart Smith.

Blowup of complex valued solutions of the Korteweg—de Vries and other
dispersive equations

FRED WEISSLER

Theorem (J. Bona and F.W.)
Let u(t, ) be a regular, say u: [0,T) — C(S'), solution of KdV:

Up + Uggy + (UQ)x =0

of the form

u(t,r) = Zak(t)eikm



with initial value
o0

u(0,2) = Y ap(0)e.
k=1
If |a1(0)| is sufficiently large, then u(¢) “blows up” in finite time.
More precisely there is a o, 0 > 0, such that if u: [0,00) — C(S') is a global solution of
the above form, then |a;(0)| < p.
This theorem also holds for the generalized KAV equation, u; + tgze + (uP™1), =0, p > 1
integer, as well as for a wider class of equations of the form

10 10
: - - - p+1 —
1ut+R<iax>u Q<i8x> (u ) 0,

where R and () are polynomials satisfying various conditions.

Edited by Thomas Jurke
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