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The meeting was organized by Randolph E. Bank (La Jolla, USA), Wolfgang Hackbusch

(Leipzig), and Gabriel Wittum (Heidelberg).

The main topic of the conference was the analysis and the application of fast solution

methods for partial di�erential equations, emphasizing

� Multigrid methods

� Domain Decomposition methods.

The presentations were divided into di�erent sessions with special topics. Some sessions

were devoted to the convergence analysis of fast solvers, other sessions on special solver

aspects such as algebraic multigrid methods, Mortar elements, wavelets, anisotropic mes-

hes, etc.

A further part of the meeting was concerned with the application of fast solvers, e. g. to


ow problems, image processing, electrodynamics, solid mechanics, remediation problems,

optimization problems, and Einstein equations.

The meeting con�rmed by the high quality and the large variety of the presented results

that fast solvers for partial di�erential equations are an important research �eld with a

large impact on many challenging applications.
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Abstracts

Multigrid Methods for Anisotropic Edge Re�nement

Thomas Apel

(joint work with Joachim Sch

�

oberl)

We consider partial di�erential equations in non-smooth three-dimensional domains. A

�nite element method with optimal convergence requires anisotropic mesh re�nement to-

wards edges with large internal angles. Such meshes contain elements with a small mesh

size perpendicularly to the edge (in the direction of the rapid variation of the solution) and

a much larger mesh size in the direction of the edge.

In this talk we suggest and analyze a new multigrid scheme combining semi-coarsening and

line smoothers to obtain a solver of optimal algorithmic complexity for anisotropic meshes

along edges.

Robust coarse space construction for the Neumann-Neumann algorithm

Petter Bj�rstad

This lecture explains the algebraic construction of an appropriate coarse space assembled

from the low energy eigenvectors from individual substructures. The method is tested by

complex examples. The method is adaptive in selecting a di�erent number of equations

from each substructure until a tolerance is met. Preliminary results are promising and the

method compare well with the so-called cross point method.

Tensor-Product Multigrid

Steffen B

�

orm

We consider a multigrid algorithm for anisotropic problems of the form

� div

�

�(x)

�(x)

�

grad u(x; y) = f(x; y)

on a domain 
 � R

n

.

The anisotropy is aligned with the coordinate axes, so a row-block method is the natural

choice for the smoothing iteration. Since the coe�cients depend only on one coordinate, a

semicoarsened grid with constant resolution with respect to this coordinate is used.

For domains of the form 
 = 


x

�


y

and tensor-product �nite element spaces, the discrete

problem can be split into a family of problems of the form �� + c on 


y

. We show that

a multigrid analysis of our algorithm only requires the analysis of these well-known simple

problems.

The idea of splitting the space into subspaces on which the operator is reduced to a simple

form can be extended to problems in H

0

(curl) and H

0

(div).

A Cascadic Multigrid Method for Mortar Elements

Dietrich Braess

Cascadic multigrid methods require a severe analysis since errors that are done on so-

me level cannot be simply compensated later. Speci�cally the transfer between the grids

has to be considered carefully. An estimate of the norm of the transfer operator by a
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constant C is not su�cient since C

level

would enter in the �nal result. An estimate by

1 + C=(number of iterations) is possible by a duality argument. The basis of the cg-

algorithm (on each level) is the restricted Richardson iteration. Formally the Lagrange

multiplier from the preceding step has no impact on the iterates, but this is misleading.

Reasonable values are required to have small residues in an auxiliary problem. A shifted

optimality property is helpful which together with another observation on the inverses of

block matrices gives rise to an e�cient imbedding into a cg-iteration.

An additive theory for V-cycle algorithms

Susanne C. Brenner

In this talk an additive convergence theory for the V-cycle algorithm will be presented.

This theory is e�ective for establishing the asymptotic behavior of the contraction number

of the V-cycle algorithm as the number of smoothing steps is increased.

The following applications of the additive theory will be discussed:

(1) a complete generalization of the classical V-cycle convergence theorem of Braess and

Hackbusch to the case of less than full elliptic regularity,

(2) convergence of V-cycle and F-cycle algorithms for nonconforming methods with a suf-

�ciently large number of smoothing steps.

Fast Solvers for Nonlinear PDEs Arising in Image Processing

Tony F. Chan

The use of nonlinear partial di�erential equations (PDE) in image processing has attrac-

ted a lot of attention recently. It o�ers new and complementary ideas and techniques to

traditional approaches such as transform and stochastic techniques and brings the vast

knowledge base of nonlinear PDEs (and CFD) to bear on image problems. Many of these

PDE image models give rise to challenging computational problems, including the solution

of large and ill-conditioned linear systems and the associated preconditioning techniques,

linearization and iterative methods for highly nonlinear systems, and optimization pro-

blems involving non-di�erentiable objectives. In this talk, I'll give a survey of some of the

ideas and techniques that have been proposed, with some emphasis on work done at our

group at UCLA.

An adaptive solver for saddle point problems

Wolfgang Dahmen

(joint work with S. Dahlke, K. Urban)

An adaptive wavelet scheme for saddle point problems is presented which has asymptoti-

cally optimal work/accuracy balance when compared with the number of wavelets needed

to approximate the solution within some given target accuracy. The basic strategy is to (i)

establish �rst a certain mapping property of the operator induced by the underlying va-

riational problem, (ii) characterize the corresponding \energy function" spaces in terms of

norm equivalences induced by suitable wavelet bases, (iii) combine (i) and (ii) to transform

the original problem into an equivalent one on `

2

which is well conditioned, (iv) concep-

tually apply an iterative scheme to the full in�nite dimensional `

2

-problem by adaptively

evaluating the action of the involved in�nite dimensional matrices on �nitely supported
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vectors within dynamically updated accuracy tolerances. As a consequence one can pro-

ve that compatibility constraints such as the LBB condition do not arise. This and the

quantitative performance of the scheme are illustrated by some numerical experiments.

A FETI-DP method for the mortar discretization of elliptic problem

Maksymilian Dryja

(joint work with Olof Widlund)

The dual-primal FETI (FETI-DP) method for solving discrete problems arising from the

approximation of the Dirichlet problems de�ned on a union of substructures 


i

is discus-

sed. The discretization is obtained by the mortar method on nonmatching triangulation

across @


i

. As in all other iterative substructuring methods the unknowns corresponding

to interior nodal points are eliminated; in this dual-primal FETI method unknowns at the

vertices of 


i

are eliminated as well. The remaining Schur complement system is solved by

the FETI method.

It is proved that the discussed method is convergent with a rate of convergence almost

optimal. The method is well suited for parallel computations.

New Advances in Algebraic Multigrid

Robert D. Falgout

AMG is well-suited for solving unstructured grid problems, and works remarkably well over

a wide variety of applications. However, for some problems, AMG is not e�ective without

certain problem-speci�c modi�cations or careful parameter tuning. To address this, CASC

researchers are developing a new class of algorithms for �nite element problems called

AMGe. As a departure from standard AMG that only requires the system matrix, AMGe

also assumes access to local element sti�ness matrices. These sti�ness matrices are used to

construct a local measure derived from multigrid theory to determine a local representati-

on of algebraically \smooth" error. This representation provides the basis for constructing

e�ective interpolation and coarsening procedures.

In this talk, we present the latest developments in AMGe research, including a new spectral

AMGe method. We also discuss recent �ndings relating Achi Brandt's compatible relaxa-

tion ideas to the AMGe measure.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under contract no. W-7405-Eng-48.

Using Krylov-subspace iterations in discontinuous Galerkin methods for

nonlinear reaction-di�usion equations

Roland W. Freund

(joint work with Donald J. Estep)

Discontinuous (in time) Galerkin methods for the numerical solution of time-dependent

ordinary and partial di�erential equations have a number of advantages over their more

common continuous counterparts. These advantages include an increased convergence or-

der at the time nodes, better behavior for long-time integration, and in the case of PDEs,

the easy implementation of spatial grids that change with time. On the other hand, discon-

tinuous Galerkin methods can be signi�cantly more expensive than continuous Galerkin

methods, especially when no attention is paid to the linear algebra problems that actually
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dominate the computational costs. In this talk, we discuss the linear algebra issues arising

in discontinuous Galerkin methods and demonstrate how this class of methods can be made

competitive.

Multigrid methods for gridless discretizations

Michael Griebel

(joint work with A. Schweitzer)

We present a multigrid method for the Partition of unity (PUM) discretization of elliptic

PDEs. There, a sequence of coarser particle sets is constructed with help of an octree

approach. The next step is to discretize the PDE on all these sets. This leads to a sequence

of non-nested PUM-spaces. Consequently the intergrid transfer operators have to be set

up via L

2

projections between the spaces. Here, the PUM property helps to simplify things

substantially. We obtain cheap local operators. We show the resulting convergence rates

for the V and W cycle. They exhibit convergence rates of 0.25 independent of the number

of particles. For higher polynomial degrees p of the PUM the rates grow with p.

A General Concept for the Construction and Parallelization of Algebraic

Multigrid methods

Gundolf Haase

(joint work with Ulrich Langer and Stefan Reitzinger)

Solving huge systems of equations requires an optimal solver, i.e., the memory requirements

and the time for solving should be proportional to the number of unknowns. Recent rese-

arch has enhanced multigrid methods which are now ful�lling these requirements for many

problem classes, i.e., 3D Maxwell equations. In contrast to geometric multigrid methods,

the algebraic multigrid method (AMG) presented requires only system matrix informati-

on. This is su�cient for constructing the typical multigrid hierarchy. For certain problem

classes, the knowledge on the di�erential operator makes the method robust.

The classical algebraic multigrid (AMG) method requires the M-matrix property of the gi-

ven sparse matrix. This requirement is often violated in practical applications. We present

an approach for this case by constructing an auxiliary matrix from the original matrix.

This auxiliary matrix is an M-matrix by construction. The application of a standard AMG

coarsening on the auxiliary matrix results in the set of coarse nodes used for de�ning the

inter grid transfer operators of the original system matrix. Both matrices will be projec-

ted to the coarse space by the Galerkin approach. The coarse auxiliary matrix is again

an M-matrix. Promising numerical results are presented for anisotropic operators and for

coupled systems.

The parallelization needs some modi�cations in the coarsening process such the the in-

ter grid transfer operators ful�ll a certain condition on the pattern of the interpolati-

on/restriction. This guarantees that the parallel AMG is only a simple modi�cation of

the sequential AMG. The presented parallelization strategy for AMG results in very good

speedups.

Discretized di�erential equations have to be solved several thousand times inside the solu-

tion process of an inverse problem. We got for this special application of AMG a signi�cant

gain in CPU time (factor 4 and more) due to additional acceleration of our code PEBBLES

by simultaneous handling of several data sets, cache aware programming and by merging
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of multigrid subroutines. Together with a parallelization, the solution time of the original

code was accelerated from 8 days to 5 hours on a 12 processor parallel computer.

Multigrid in H(curl; 
): Latest News

Ralf Hiptmair

Multigrid methods forH(curl; 
)-elliptic problems discretized by means of conforming edge

elements can be viewed as subspace correction schemes that also involve nodal splittings of

discrete potentials spaces. Up to now proofs of optimal asymptotic convergence have relied

on discrete and continuous Helmholtz decompositions. However, for general domains the

components of the Helmholtz decomposition lack the essential H

1

(
)-regularity required

for the current proofs.

The idea is to use decompositions

H

0

(curl; 
) =H

1

(
) \H

0

(curl; 
) + gradH

1

0

(
)

that are no longer L

2

(
)-orthogonal, but retain regularity. They can be used to establish

the uniform stability of the multilevel decomposition by resorting to known results about

multilevel splittings of standard Lagrangian �nite element spaces.

Adaptive solution of the Einstein constraints using partition of unity and

parallel computers

Michael Holst

In this talk we consider a coupled nonlinear elliptic system representing the Hamiltonian

and momentum constraints in the Einstein equations. This system must be solved exact-

ly or numerically to produce consistent initial data for general relativistic simulations of

black hole and neutron star collisions. Moreover, the constraints must hold at all times

in dynamical situations. Well-posedness of the system on connected compact Riemannian

manifolds with Lipschitz boundaries was previously unstudied, and therefore in the �rst

part of the talk we establish that the constraints have unique weak solutions under mini-

mal smoothness assumptions on the data. The proof technique (Riesz-Schauder theory and

convex analysis) allows for some degree of negative conformal scalar curvature. We also

establish two quasi-optimal a priori error estimates for Galerkin approximations, and de-

rive an a posteriori error estimate which leads to two distinct error indicators for adaptive

simplex subdivision algorithms (one estimator is purely residual based, the other involves

a linearized dual problem).

In the second part of the talk we outline an implementation of the adaptivity techniques

using the adaptive �nite element software package "MC", which is designed to adaptively

solve general nonlinear systems of tensor equations on manifolds. MC is an adaptive multile-

vel �nite element package which employs a posteriori error estimation, simplex subdivision,

algebraic multilevel methods, global inexact Newton methods, and numerical continuation

methods, for the solution of coupled elliptic systems on 2- and 3-manifolds. MC employs

a new low-communication approach in parallel adaptive �nite element methods, develo-

ped jointly with R. Bank at UCSD. We derive a global H

1

-error bound for the solutions

produced by the new parallel adaptive method by reinterpreting it as a partition of unity

method, and by employing Xu and Zhou's generalizations of the Nitsche-Schatz interior

estimates.
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E�cient Solvers in Electromagnetic Field Computation

Ronald H.W. Hoppe

We consider multigrid and domain decomposition techniques in the numerical computation

of electromagnetic �elds based on curl-conforming edge element discretizations. In parti-

cular, we focus on domain decomposition approaches on nonmatching grids also known as

mortar edge element methods. The macro-hybrid variational formulation of the problem

involving a subtle analysis of the trace spaces of vector �elds in H(curl) is the clue how to

impose continuity constraints on the skeleton of the decomposition and how to realize them

by means of appropriate Lagrange multipliers. In the discrete regime, the speci�cation of

the multiplier space is discussed in detail which is crucial to prove an LBB condition for

the resulting saddle point problem. For the numerical solution of the saddle point problem

a multigrid algorithm is proposed featuring a distributive smoothing process involving a

defect correction on the subspace of irrotational vector �elds that takes care of the non-

trivial kernel of the discrete curl-operator. A posteriori error estimation is addressed as

well.

Numerical simulation of density driven 
ow

Klaus Johannsen

The numerical simulation of density driven 
ow in porous media is still a challenging

problem. A number of benchmarks has been designed to validate the mathematical model

and to compare numerical codes. But most of them are 2D test cases and there is still

a lack of 3D problems. Recently new laboratory experiments have been performed which

can be used to de�ne a 3D benchmark. We present new 3D test cases derived from model

calibrations for these experiments. For the well-de�ned mathematical model we show the

numerical results to match the experiments within a reasonable accuracy. The test cases

are analyzed numerically and error bounds of the discrete solution are given in di�erent

norms. Furthermore the sensitivity of the (numerical) results w.r.t. some of the parameters

is investigated. The simulations have been done using the program package d

3

f , a simulator

for density driven 
ow in porous media for unstructured grids running on MIMD parallel

computers. It is based on a second order �nite volume / �nite di�erences discretization in

space / time using a full coupled / full implicit solving strategy.

Approximate elliptic solutions and Poincare-Steklov operators

Boris Khoromskij

(joint work with W. Hackbusch and M. Melenk)

We consider the problem of a data-sparse approximation of elliptic solutions and Poincare-

Steklov operators. Typical examples of nonlocal operators are given by boundary/volume

potential operators, by the fundamental solutions of elliptic operators, Green functions

and Poincare-Steklov operators, operator exponentials, and fractional powers of elliptic

operators. In the case of constant coe�cients we discuss the data-sparse approximation to

the Greens function by a sum ofH-matrices and low complexity matrices which can only be

implemented with matrix-vector multiplication. The latter is realized by using boundary

concentrated FEM which shows the linear logarithmic complexity w.r.t. the number of

boundary degrees of freedom. The preconditioning issues have been also addressed.
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Uniform Finite Element Error Estimates for Di�erential Equations with

Jumps in Coe�cients

Andrew V. Knyazev

(joint work with Olof B. Widlund)

We consider a parametric family of boundary value problems for the di�usion equation

with the di�usion coe�cient equal to a small constant in a subdomain. Such problems are

not uniformly well-posed when the constant gets small. However, in a series of papers, Bak-

hvalov and Knyazev have suggested a natural splitting of the problem into two well-posed

problems. Using this idea, we prove a uniform regularity of the solution and a uniform �-

nite element error estimate for our model problem in the standard parameter-independent

Sobolev norm. We consider a traditional �nite element method with only one additional

assumption, namely, that the boundary of the subdomain with the small coe�cient does

not cut any �nite element.

The talk is based on the following paper: A. V. Knyazev and Olof Widlund, Lavrentiev

Regularization + Ritz Approximation = Uniform Finite Element Error Estimates for Dif-

ferential Equations with Rough Coe�cients. A revised version accepted to Math. Comp.,

2001. Published as a technical report UCD-CCM 132, 1998, at the Center for Computatio-

nal Mathematics, University of Colorado at Denver (Viewgraphs of the talk are available

at http://www-math.cudenver.edu/ aknyazev/research/confs/prism01.ps.gz).

Local Estimates for Algebraic Multigrid

Jan Mandel

1) AMG is based on heuristics guided by numerical sensors. The weak approximation

property (WAP)

8u9v ku� Pvk � c u

T

Au

is one important sensor. Convergence of smoothed aggregation AMG can be established

under such assumption even in in multilevel case. WAP can be localized if A =

P

A

i

,

A

i

� 0 and the footprint of A

i

is related to nonzeros of P . We prove that in general given

A and the footprints such A

i

do not exists. But estimates on approximation A =

~

A

i

+

rest, A

i

� 0, rest � 0 are useful to access the di�culty of Ax = b, and we describe the

construction of such pseudo-local

~

A

i

with a given footprint.

2) Given A =

P

A

i

, footprint A

i

an element, one tries to aggregate the elements so that

P

aggregate

A

i

is well conditioned (modulo the rigid body modes subspace common to all A

i

). It

turns out that aggregation including strongly coupled elements are performable. Coupling

of elements i and j is de�ned as �

7

(A

i

+ A

j

), the 7th smallest eigenvalue of common

footprint of A

i

and A

j

. A computer visualization of such algorithm was demonstrated.

Algebraic Multilevel Methods and Sparse Approximate Inverses

Volker Mehrmann

We introduce a new approach to algebraic multi level methods and their use as precon-

ditioners for the solution of positive de�nite linear systems. The multilevel process and

in particular the coarsening process is based on the construction of sparse approximate

inverses and their augmentation with corrections of smaller size. We present comparisons

of the e�ectiveness of the resulting multilevel technique and numerical results.
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Preconditioned eigensolvers

Klaus Neymeyr

The discretization of eigenvalue problems for self-adjoint and coercive elliptic partial dif-

ferential operators leads to generalized matrix eigenvalue problems for sparse symmetric

positive de�nite matrices. Preconditioned gradient type eigensolvers, which use standard

preconditioners as designed for the solution of boundary value problems, can be applied

to determine a modest number of the smallest eigenvalues and eigenvectors with multigrid

e�ciency.

We present a geometric convergence theory which interprets such a scheme as a perturba-

tion of inverse iteration. The analysis provides sharp estimates for the Rayleigh quotient

and guarantees that the convergence properties of the preconditioner transfer to the pre-

conditioned eigensolver, which makes possible grid-independent convergence. The results

hold for the generalized eigenvalue problem and for an associated subspace iteration sche-

me. The new estimates stimulate the search for new proof techniques that could be used

to analyze such practically important improved preconditioned eigensolvers as the Locally

Optimal Block Preconditioned Conjugate Gradient method. Numerical results are given

for the Laplacian, which demonstrate the e�ectiveness of these preconditioned eigensolvers

for mesh eigenproblems.

A genetic search for optimal multigrid components within a Fourier analysis

setting

Cornelis W. Oosterlee

(joint work with R. Wienands)

An important analysis tool for multigrid methods is Fourier analysis. The two-grid analy-

sis is the basis for the classical asymptotic multigrid convergence estimates. Furthermore,

the local Fourier analysis (also called local mode analysis) is, in fact, the main multigrid

analysis possibility for nonsymmetric problems.

Recently, we generalized the classical analysis in two ways. First of all, we have provided

a Fourier analysis framework for analyzing the use of multigrid as a preconditioner for

restarted GMRES quantitatively. Secondly, we have proposed the so-called three-grid ana-

lysis. Compared to the usual two-grid analysis, the three-grid analysis can yield additional

insights especially for singularly perturbed and nonelliptic equations. An issue that can be

evaluated in more detail by three-grid analysis is the coarse grid correction. In the two-

grid analysis, one assumes an exact solve of the coarse grid problem on the �rst coarser

grid level. It can, however, occur that an operator on the coarse grids is not favorable for

the smoothing method applied. This cannot be taken into account by a two-grid Fourier

analysis, but it can be by the three-grid analysis. An important example of such a coarse

grid discretization is the Galerkin discretization. Its entries are not known in advance and

depend on the �ne grid discretization and the transfer operators in use. If a large di�erence

in convergence factors occurs between the two-grid and the three-grid convergence factors

from Fourier analysis, this is an indication for a problematic coarse grid correction.

The Fourier analysis tools can give a good insight into possible multigrid convergence di�-

culties from the smoother or from the coarse grid correction. It is, however, not easy in the

case of convergence troubles to �nd from the analysis improved or even optimal multigrid

components for the PDE under consideration. This is even more true if the Galerkin coarse

grid operators are employed, since it is di�cult to oversee their e�ect for nonsymmetric,

singularly perturbed or inde�nite problems.
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The new idea in this paper is that we will employ an optimization technique help us sear-

ching for optimal multigrid components. We use a genetic algorithm in a three-grid analysis

setting to �nd improved combinations of smoothers, coarse grid correction components and

relaxation parameters for PDE problems that are known to be di�cult for standard mul-

tigrid. The reason for choosing the genetic optimization is that the objective function, i.e.,

obtaining the best three-grid convergence factors, is not at all a smooth function in the

"parameters" of the optimization, like di�erent smoothers, transfer operators and the coar-

se grid discretization. Therefore, conventional calculus-based local optimization methods

cannot be used for our purpose. On the other hand, it is also not possible to just apply an

optimization by enumeration of all possibilities, as we can have a search space of about 2

38

possibilities with about 10 varying parameters. So, the genetic algorithm is the method of

choice here: The �tness function is well-de�ned. Genetic algorithms usually work with a

binary coding of the underlying parameter set. They work with a population of a number

of di�erent parameter sets in the search space and base on probabilistic genetic rules, in

which recombination and mutation operators play an important role. The selection of an

individual parameter set is based on the �tness of the individual related to this set. A

strong, i.e. �t individual spreads its genes into the next generation of individuals.

The research will be oriented towards sets of satisfactory components, say those that gua-

rantee a three-grid convergence factor of less than a certain value instead of just looking

for the optimal components. This directs towards robustness of the multigrid method, as it

becomes possible to observe trends within the di�erent parameters. The robustness of the

multigrid algorithms can also be improved by considering multi-objective �tness functions:

the algorithm should converge well for di�erent PDEs.

Multigrid for the Navier-Stokes equations in rotation form

Arnold Reusken

(joint work with Maxim A. Olshanskii)

The topic of this presentation is motivated by the Navier-Stokes equations in rotation form:

@u

@t

� ��u + (curlu)� u+rP = f in 
� (0; T ];

divu = 0 in 
� (0; T ]:

Linearization and application of an implicit time stepping scheme results in a linear sta-

tionary problem of Oseen type. In well-known solution techniques for this problem such as

the Uzawa (or Schur complement) method, a subproblem consisting of a coupled nonsym-

metric system of linear equations of di�usion-reaction type must be solved to update the

velocity vector �eld. In this talk we analyze a standard �nite element method for the dis-

cretization of this coupled system and we introduce and analyze a multigrid solver for the

discrete problem. Both for the discretization method and the multigrid solver the question

of robustness with respect to the amount of di�usion and variation in the convection �eld

is addressed. We prove stability results and discretization error bounds for the Galerkin

�nite element method. We present a convergence analysis of the multigrid method which

shows the robustness of the solver. Results of numerical experiments are presented which

illustrate the stability of the discretization method and the robustness of the multigrid

solver.
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Grid Generation, Stable Interpolation and Multigrid

Stefan Sauter

(joint work with N. Fraub

�

ose)

We will study the convergence of multi-grid methods for solving linear systems as they

arise from �nite element discretisations of elliptic boundary value problems on complicated

domains. \Composite �nite elements" are employed for the construction of the sequence

of coarse-level discretisations, where the minimal dimension of the coarsest linear system

is very small, independent of the number and size of geometric details in the domain.

The convergence of the corresponding multi-grid method is proved in the framework of

geometric multi-grid methods while the emphasis is on the \robustness" with respect to

the geometric details in the domain.

Parameter Identi�cation in Flow Problems

Volker Schulz

In this talk we present simultaneous optimization approaches for two parameter identi�-

cation problems in 
ow models of di�erent structure.

In the �rst problem we investigate special reduced SQP techniques for the numerical deter-

mination of material properties in Bingham 
ow. These techniques allows a computational

e�ort bound of factor two compared with the e�ort necessary for the solution of the 
ow

simulation problem alone. The practical problem stems from an application together with

the �rm Braun, Friedrichshafen. In addition to that also optimum experimental design ap-

proaches have to be applied to improve the measurement device used. Here, the underlying


ow problem is considered stationary.

Furthermore we investigate parameter identi�cation for instationary multiphase 
ow. The-

re, a special reduced Gauss-Newton technique in combination with a multiple shooting

approach is presented which allows a robust solution of the identi�cation problem. This

approach also enables a reuse of most of the numerical state of the art for multiphase 
ow

as manifested in the package MUFTE-UG [Bastian/Helmig].

Preconditioning techniques for elliptic variational problems

Olaf Steinbach

For preconditioning the sti�ness matrix appearing from the Galerkin discretization of an

elliptic operator A : V ! V

�

we use an appropriate operator of opposite order, B : V

�

! V .

The Galerkin discretization of B

�1

then yields an almost optimal preconditioner. However,

for an e�cient application we need to have a computable approximation available. Beside

the original trial space V

h

� V we need to introduce a trial space V

�

h

� V

�

satisfying a

certain stability condition. We will discuss these conditions in detail for di�erent choices

of trial spaces. Applications are preconditioning strategies for boundary and �nite element

methods.

A stable direct solver of the gradient equation

Rob Stevenson

Multi-level �nite element discretizations of the equation grad p = g are presented. The

discretizations lead to invertible systems that can be solved directly, requiring a number

of operations proportional to the number of unknowns. We give optimal error estimates,
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and furthermore show that the methods are stable with respect to perturbations in the

right-hand side. Applications to the Stokes equations and the Poisson equation in mixed

form are discussed.

Fast pressure calculation for two- and three-dimensional time dependent

incompressible 
ow

Pieter Wesseling

A black box geometric multigrid preconditioner is described for second order elliptic partial

di�erential equations in two and three dimensions. The number of cells in a block is not re-

stricted to multiples of 2(+1), as in standard geometric multigrid, but completely arbitrary.

The code can be used in a multiblock environment. The code is applied to pressure cal-

culations in a pressure correction method for the incompressible Navier-Stokes equations.

A comparison with conventional preconditions is made regarding wall-clock times. Details

can be found in: J. van Kan, C. Vuik, P. Wesseling, Fast pressure calculation for 2D and 3D

time dependent incompressible 
ow Numerical Linear Algebra with Applications 7:429{447

2000. The multigrid code is freely available at http://dutita0.twi.tudelft.nl/Ftp/nw/vankan/multigrid.

An Algebraic Multilevel Method { Development and Application to a

remediation problem

Christian Wagner

The basic idea of the presented algebraic multilevel approach is to determine for each node

a set of nodes (usually two) which allow an optimal interpolation of the considered node.

The selected set of nodes is called suitable set of parent nodes. For some nodes e.g. due to

symmetry, several sets of suitable parent nodes can be constructed. A theoretical analysis

shows that the problem of �nding these parent nodes for a node i can be reduced to a

minimization problem of the form

minimize jjS

T

zjj subject to (z; t) = 0, (1)

where S is a smoothing operator, �z is the i-th row of the projection operator I � P R

inj

and t is a given test vector. Except for z

i

= �1, the non-zero entries in z de�ne the weights

in the prolongation matrix P . Hence, solving the minimization problem (1) under the addi-

tional constraint that only a certain number, e.g. 2, non-zero entries z

j

, j 6= i, are allowed,

leads to the suitable sets of parent nodes and the interpolation weights. As (1) can be

solved locally, the construction scheme is relatively cheap.

After the possible sets of parent node have been determined, the nodes are labeled as C-

and F-nodes such that each F-node can be interpolated using these suitable sets of parent

nodes and the already computed coe�cients. Additionally, a simple heuristic algorithm

tries to minimize the number of C-nodes and the number of edges in the coarse grid graph.

The algorithm has been parallelized and generalized to systems of reaction transport equa-

tions. Realistic numerical experiments with up to 14 mil. unknowns con�rm the e�ciency

of the presented algorithm. In addition, a biochemical groundwater remediation problem

is presented as real live test case.

12



An ELLAM-MFEM solution technique for accurate and e�cient simulation of

compressible subsurface 
ow

Hong Wang

As an intermediate step in developing a fully coupled, accurate and e�cient numerical simu-

lation technique for multiphase, multicomponent 
uid 
ow or compositional models, we de-

velop an ELLAM-MFEM solution technique for a single-phase, multicomponent compres-

sible 
uid 
ows in compressible porous media with point sources and sinks. An Eulerian-

Lagrangian localized adjoint method (ELLAM), which was shown to be very competitive

with many widely used and well regarded methods in the context of linear transport partial

di�erential equations (PDEs), is presented to solve the transport equations for the concen-

trations. Since accurate 
uid velocities are crucial in numerical simulations, a mixed �nite

element method (MFEM) is used to simultaneously solve the pressure PDE as a system

of �rst-order PDEs for the pressure and mass 
ow rate. This minimizes the numerical dif-

�culties occurring in standard methods caused by di�erentiation of the pressure and then

multiplication by rough coe�cients.

While optimal-order error estimates were derived for the ELLAM schemes, computational

experiments show that the developed ELLAM-MFEM solution technique can accurately

simulate compressible 
uid 
ows in porous media with coarse spatial grids and very lar-

ge time steps, which are one or two orders of magnitude larger than those used in many

numerical methods. The ELLAM-MFEM solution technique symmetrizes the governing

PDEs, eliminates nonphysical oscillation and/or excessive numerical dispersion in many

large-scale simulators. It conserves mass and treats boundary conditions in a natural man-

ner. It can treat large adverse mobility ratios, discontinuous permeabilities and porosities,

anisotropic dispersion in tensor form, compressible 
uid, heterogeneous media, and point

sources and sinks.

Furthermore, the ELLAM formulation can be utilized much like a \preconditioner" or

\preprocessor" in the development of domain decomposition methods (DDMs) or multi-

grid methods (MGs) for unsteady-state advection-di�usion transport PDEs. Because of

their hyperbolic nature, many DDMs or MGs that work very well for elliptic and parabo-

lic equations could perform less promising for these problems. The fundamental reason is

that these DDMs or MGs are aimed at elliptic PDEs and do not necessarily respect the

hyperbolic nature of unsteady-state advection-di�usion transport PDEs.

Extensive research was carried out on the development of DDMs or MGs for unsteady-

state advection-dominated PDEs. For example, in the context of DDMs, Cai developed

multilevel additive and multiplicative Schwartz preconditioners. The Adaptive Dirichlet-

Neumann (ADN) and Adaptive Robin-Neumann (ARN) nonoverlapping DDMs introduced

by Gastaldi et al. and Ciccoli choose the interface matching conditions to be adapted to the

local 
ow direction. However, the underlying numerical methods used in these DDMs (and

other MGs) are often conventional methods possibly with certain upwinding, which tend

to generate solutions with nonphysical oscillations or numerical dispersion unless very �ne

spatial grids and time steps are used. This leads to very large, strongly nonsymmetric co-

e�cient matrices at each time step, and thus requires signi�cant computational e�ort/cost

in numerically solving the discrete systems even though very advanced DDM or MG tech-

niques are used.

Rannacher and Zhou and Tai et al. developed overlapping DDMs based on the modi-

�ed method of characteristics (MMOC). Due to the intrinsic di�culty of characteristic

methods in treating general boundary conditions and in conserving mass, there is no

Eulerian-Lagrangian type of nonoverlapping DDMs reported in the literature. We present
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an ELLAM-based, nonoverlapping DDMs for unsteady-state advection-dominated PDEs

by carefully choosing the subdomain interface matching conditions to respect the hyper-

bolic nature of the problems. The DDMs allow MGs to be used as an inner solver on

each subdomain. The use of the characteristic (ELLAM or MMOC) methods in all these

DDMs generate symmetric and positive-de�nite coe�cient matrices with greatly reduced

sizes that need to be solved at much less number of time steps.

Balancing Neumann-Neumann methods for incompressible Stokes equations

Olof B. Widlund

(joint work with Luca F. Pavarino)

Balancing Neumann-Neumann methods are introduced and studied for incompressible Sto-

kes equations discretized with mixed �nite or spectral elements with discontinuous pres-

sures. After decomposing the original domain of the problem into nonoverlapping subdo-

mains, the interior unknowns, which are the interior velocity component and all except the

constant pressure component, of each subdomain problem are implicitly eliminated.

The resulting saddle point Schur complement is solved with a Krylov space method with

a balancing Neumann-Neumann preconditioner based on the solution of a coarse Stokes

problem with a few degrees of freedom per subdomain and on the solution of local Sto-

kes problems with natural and essential boundary conditions on the subdomain boundary.

This preconditioner is of hybrid form in which the coarse problem is treated multiplica-

tively while the local problems are treated additively.

The condition number of the preconditioned operator is independent of the number of

subdomains and is bounded from above by the product of the square of the logarithm of

the local number of unknowns in each subdomain and the inverse of the inf-sup constants

of the discrete problem and of the coarse subproblem.

Numerical results show that the method is quite fast; they are also fully consistent with

the theory. A discussion is given on the performance of the method for the spectral ele-

ment case as well as some genuine experiments on parallel computing systems using an

implementation in PETSc by Paulo Goldfeld, a graduate student at the Courant Institute.

Multigrid methods for �nite elements

Christian Wieners

(joint work with Nicolas Neuss)

Applications. We present di�erent applications for multigrid methods for �nite elements:

a standard conforming method (Q

1

elements for �nite plasticity), a stabilized method

(Q

1

=P

0

elements for in�nitesimal plasticity, nonnested, �ts to the 1. Strang Lemma), a

mixed method ( Q

2

=Q

1

Taylor-Hood elements for a hybrid-viscoplastic soil model), a non-

conforming method (Q

1

� Q

1

mortar coupling for linear elasticity, �ts to the 2. Strang

Lemma), and a hybrid method (RT

1

elements for computing error bounds, implemented

via interelement Lagrange multipliers).

Proofs. For providing a uni�ed multigrid analysis for these applications, we extend the ab-

stract framework for nonconforming �nite elements by Brenner: we provide a full set for

criteria guaranteeing the approximation property which can be applied to a large class of

nonnested �nite element spaces including nonconforming elements on curved boundaries.
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Problems. Finally, we present numerical experiments showing e�ects with respect to regu-

larity, local smoothing, and interface robustness which up to now cannot be explained by

multigrid analysis.

A sharp Convergence Theory for the Method of Subspace Corrections

Jinchao Xu

The method of subspace corrections refers to a class of methods for �nding the solution

of a linear (or nonlinear) equation in a Hilbert space by approximately solving equations

restricted to a number of subspaces the make up the entire space. In this talk, we �rst

discuss the close relationship of this method with another class of methods, namely the

method of alternating projections (which refers to a class of iterative methods for deter-

mining the best approximation to a given point in a Hilbert space from the intersection

of a �nite number of subspaces by alternatively computing the best approximations from

the individual subspaces which make up the intersections). We then present a sharp con-

vergence theory for these methods based on a new identity for estimating the norm of the

product of nonexpansive operators in the Hilbert space. Finally, we discuss how this new

theory may be used in the design of algebraic multigrid methods.

Edited by Christian Wieners
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