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The 
onferen
e was organized by Werner Ballmann (Bonn), Jean-Pierre Bourguignon

(Bures-sur-Ivette) and Wolfgang Ziller (Philadelphia). About 50 parti
ipants from all over

the world took part in it.

There were 22 talks given on new developments in (global) di�erential geometry, whi
h


overed a big s
ope of 
urrent resear
h. One main topi
 was the study of manifolds of

positive and nonnegative 
urvature. Re
ently new obstru
tions to manifolds of positive

se
tional 
urvature with a 
ertain amount of symmetries were found, and it was possible

to show that ea
h 
ohomogeneity one manifold admits a metri
 of almost nonnegative se
-

tional 
urvature. Other talks fo
ussed on the question whi
h ve
tor bundles admit metri
s

of positive or nonnegative 
urvature. R. Bryant gave an introdu
tion to 
alibrations and

opened the di
ussion of K�ahler manifolds, whi
h 
onstituted another fo
us of the 
on-

feren
e. Other speakers presented results on the existen
e (or non-existen
e) of Einstein

metri
s, dis
ussed rigidity phenomena, bounds for eigenvalues of the Dira
 operator, hy-

perboli
 metri
s and hyperbolization, appli
ations of 
omparison geometry and geometri


aspe
ts of random walks.

Beside the talks, whi
h were attended by nearly all parti
ipants, the dis
ussions, bringing

together mathemati
ians from di�erent areas of resear
h were very important.

The pleasent atmosphere of the Institute, the friendlyness and helpfulness of the sta�

also 
ontributed to the su

ess of the 
onferen
e.
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Abstra
ts

Ri

i 
urvature, Einstein metri
s and the Seiberg-Witten equations

Claude LeBrun

Riemannian geometry is 
onstrained by smooth topology in dimension 4 in a manner

quite unlike the situation o

urring in high dimensions. For example 
onsider the invariant

I

S

(M) = inf

g

R

M

jS

g

j

n=2

d�

g

of a smooth, 
ompa
t n-manifoldM . Here the in�mum is taken

over all Riemannian metri
s g, and S

g

denotes the s
alar 
urvature of g. Then there are

many 4-manifolds for whi
h I

S

6= 0, whereas I

S

is zero for any simply 
onne
ted manifold

of dimension � 5. In this talk I attempted to des
ribe some results 
on
erning I

S

and the

related invariant I

r

(M) = inf

g

R

jrj

2

dr for smooth 
ompa
t 4-manifolds, here r denotes the

Ri

i 
urvature.

Theorem. Let M be the underlying 4-manifold of a 
omplex surfa
e of Kodaira dimension

6= �1. Let X be the minimal model of M , and let l denote the number of points at whi
h

X must be blown up in order to obtain M ; thus M

�

=

diffeo

X#lC P

2

(l maximal). Then

I

S

(M) = 32�

2




1

(X)

I

r

(M) = 8�

2

[


1

(X) + l℄:

The same method also implies non-existen
e results for Einstein metri
s

Theorem. Let X be a symple
ti
 4-manifold with b

+

(X) > 1. Then

M = X#lC P

2

does not admit Einstein metri
s if l �

1

3




2

1

(X).

By example, these results 
on
ern the di�eotype, rather then the homeotype, of M.

Group a
tions on manifolds of positive se
tional 
urvature

Burkhard Wilking

There are only few known examples of manifolds of positive se
tional 
urvature. In

dimensions above 24 the known simply 
onne
ted examples are di�eomorphi
 to rank one

symmetri
 spa
es. On the other hand there are also only very few obstru
tions known for

these manifolds.

Grove '91 proposed to study isometri
 group a
tions on manifolds with positive se
tional


urvature in order to �nd obstru
tions and perhaps new examples.

The aim of the talk is to give some new obstru
tions for isometri
 group a
tions on

manifolds of positive se
tional 
urvature. One of the main new tool in the study of this

problem is the following

Theorem. Let (M

n

; g) be a 
ompa
t Riemannian manifold of positive se
tional 
urvature.

Suppose there is a totally geodesi
 embedded submanifold N

n�k

� M

n

of 
odimension

k <

n

3

. Then there is an element e 2 H

k

(M;Z) su
h that

[e : H

i

(M;Z)! H

i+k

(M;Z)

is surje
tive for k � 1 � i < n+ 1� 2k and inje
tive for k � 1 < i � n + 1� 2k.
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Our main results are theorems on manifolds with se
 > 0 and with a large amount of

symmetry. In order to measure the amount of symmetry of a Riemannian manifold we


onsider the following three 
onstants

symrank(M:g) := rank(Iso(M; g))

symdeg(M; g) := dim(Iso(M; g))


ohom(M; g) := dim(M=Iso(M; g));

where Iso(M; g) is the isometry group.

Under the general assumption that (M

n

; g) is a simply 
onne
ted manifold of positive

se
tional 
urvature we prove

� if symrank(M

n

; g) �

n

n

4

+ 2 for n � 1mod 4 or n = 24; 25; 26

n

4

+ 1 otherwise

and n � 10, then M

n

is homotopi
ally equivalent to S

n

, C P

n=2

or H P

n=4

.

� if symdeg(M

n

; g) � 2n � 5, then M

n

is homotopi
ally equivalent to S

n

, C P

n=2

or

H P

n=4

or CaP

2

or (M

n

; g) is isometri
 to a homogeneous spa
e.

� if 
ohom(M

n

; g) = k and n � 900(k + 1)

2

, then M is homotopi
ally equivalent to S

n

,

C P

n=2

or H P

n=4

.

Algebrai
 geometry and Einstein manifolds in dimension �ve

Krzysztof Gali
ki

On simply 
onne
ted �ve-manifolds Sasakian-Einstein metri
s 
oin
ide with Riemannian

metri
s admitting real Killing spinors whi
h are of great interest as models of near horizon

geometry for threebrane solutions in superstring theory. (M

5

; g) is Sasakian-Einstein if

(R

+

�M; dt

2

+ t

2

g) is Calabi-Yau (K�ahler, Ri

i-
at). We expand on the re
ent work of

Demailly and Koll�ar and Johnson and Koll�ar who give methods for 
onstru
ting K�ahler-

Einstein metri
 on log del Pezzo surfa
es. It is known that the 
ir
le V -bundle (orbifold

bundle) over a log del Pezzo surfa
e with K�ahler-Einstein metri
 has a Sasakian-Einstein

metri
 on the total spa
e of the bundle. Here, these 1-
onne
ted 5-manifolds arise as links

of isolated hypersurfa
e singularities whi
h by the well known work of Smale must be

di�eomorphi
 to S

5

#l(S

2

� S

3

). More pre
isely, using methods of algebrai
 geometry we

show the existen
e of 14 inequivalent Sasakian-Einstein stru
tures on S

2

� S

3

and in�nite

families of su
h stru
tures on S

5

#l(S

2

� S

3

) with 2 � l � 9. In the 
ase of l = 2, l = 9

these are new examples of di�erentiable manifolds whi
h are now known to admit Einstein

metri
s of positive s
alar 
urvature. In other 
ase we show the existen
e of non-regular

Sasakian-Einstein stru
tures on manifolds whi
h were known to admit regular stru
tures

of this type.

Almost non{negative 
urvature on 
ohomogeneity one manifolds

Lorenz S
hwa
hh

�

ofer

(joint work with Wilderi
h Tus
hmann)

Let M be a 
losed manifold on whi
h a (
ompa
t) Lie group G a
ts with 
ohomogeneity

one. A

ording to a 
onje
ture of Grove and Ziller, any su
h manifold supports a Rie-

mannian metri
 of non-negative se
tional 
urvature. This is elementary if the orbit spa
e

is a 
ir
le, so one may restri
t to the only other possibility, namely that the orbit spa
e

M=G = [a; b℄. This means, in parti
ular, that there are exa
tly two singular orbitsM

+

and

M

�

. A

ording to Grove and Ziller, the 
onje
ture holds if M

�

both have 
odimension
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two, and moreover, any 
ohomogeneity-one manifold 
arries a metri
 of non-negative Ri

i


urvature (even positive Ri

i 
urvature if the fundamental group ist �nite). Our main

result is the following

Theorem. Every 
ohomogeneity-one manifold is almost non{negatively 
urved, meaning

that for any " > 0 there exists a Riemannian metri
 g

"

on M whose diameter is 1, and

whose se
tional 
urvature is bounded below by �".

The proof of this result is 
onstru
tive, i.e. the metri
s g

"

are given expli
itely. Similar

to the 
onstru
tions of Grove and Ziller, we \glue" the metri
 along a prin
ipal orbit whi
h

is hen
e totally geodesi
.

Cohomogeneity one manifolds with positive 
urvature

Luigi Verdiani

Homogeneous 
ompa
t simply 
onne
ted Riemannian manifolds are 
lassi�ed (Berger,

Walla
h, Berard-Bergery). Looking for new examples it seems natural to 
onsider the 
lass

of 
ohomogeneity one manifolds. It has been re
ently proved that two of the three 
lasses of

inhomogeneous known examples admit in some 
ases a 
ohomogeneity one a
tion (Grove,

Ziller). More pre
isely those in dimension 7 and 13. Our main result is that new examples

may arise just in the odd dimensional 
ase. More pre
isely:

Theorem. Let M be a 
ompa
t 
ohomogeneity one manifold with �

1

(M) = 0. If dim(M)

is even and the se
tional 
urvature of M is positive then M is equivariantly di�eomorphi


to a rank one symmetri
 spa
e.

Extremal 
y
les in Hermitian symmetri
 spa
es

Robert Bryant

This talk was in two parts: A brief survey of 
alibration theory and then a summary of

some new results obtained by an extension of this idea.

Let (M; g) be a Riemannian manifold. A 
alibration ' on M is a 
losed p-form with

the property that its restri
tion to any oriented p-plane E is at most the (Riemannian)

volume element on E � T

x

M . A p-dimensional, oriented submanifold N �M is said to be


alibrated by a 
alibration ' if ' pulls ba
k to N to be the indu
ed volume form on N The

Fundamental Lemma of Calibrated Geometry is that a 
losed p-dimensional submanifold

that is 
alibrated by a 
alibration ' is volume-minimizing in its homology 
lass. This 
rite-

rion provides the most 
ommon method of proving that a (possibly singular) submanifold

is homologi
ally volume minimizing.

The basi
 examples of 
alibrations and 
alibrated geometries are surveyed, following the

fundamental work of Harvey and Lawson on the subje
t. The K�ahler 
alibration (due to the

Wirtinger inequality) and its role in 
omplex analysis, the spe
ial Lagrangian 
alibrations

and their role in spe
ial Lagrangian geometry, parti
ularly in mirror symmetry on Calabi-

Yau manifolds, and other examples related to invariant forms on homogeneous spa
es are

dis
ussed. In the latter 
ase, I dis
uss both existen
e and rigidity of 
alibrated 
y
les in

Lie groups and real Grassmannians. I also announ
e the result that any real-analyti
 ar


in a Calabi-Yau 3-fold is the singular lo
us of a (real-analyti
) spe
ial Lagrangian 3-fold.

In the 
ase of Hermitian symmetri
 spa
es, the theory of 
alibrations is parti
ularly

ri
h. When M is an Hermitian symmetri
 spa
e of 
ompa
t type, the homology groups
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are freely generated by a spe
ial family of subvarieties 
alled the (generalized) S
hubert


y
les. In addition to being 
alibrated by the K�ahler form, ea
h su
h S
hubert 
y
le �

of 
omplex dimension p is dual to an invariant (p; p)-form '

�

that has two important

properties: The �rst is that '

�

is positive as a (p; p)-form (i.e., it restri
ts to every p-

dimensional 
omplex subvariety to be a non-negative multiple of the volume form). The

se
ond is that '

�

vanishes identi
ally on ea
h of the p-dimensional S
hubert 
y
les �

0

6= �.

In parti
ular, any p-dimensional 
omplex subvariety V �M that is homologous to � must

satisfy the �rst-order 
ondition that '

�

0

vanishes identi
ally on V for all p-dimensional

S
hubert 
y
les �

0

6= �. I show that these �rst order 
onditions are a
tually a set of

holomorphi
 di�erential equations on the subvariety V and that these lo
al 
onditions 
an

often be integrated to yield striking rigidity theorems for subvarieties that are homologous

to a multiple of a S
hubert 
y
le.

These rigidity results have a number of appli
ations: First, they prove that many sub-

varieties in Grassmannians and other Hermitian symmetri
 spa
es 
annot be smoothed

(i.e., are not homologous to a smooth subvariety). Se
ond, they provide 
hara
terizations

of holomorphi
 bundles over 
ompa
t K�ahler manifolds that are generated by their global

se
tions but that have 
ertain polynomials in their Chern 
lasses vanish (for example,




2

= 0, 


1




2

� 


3

= 0, 


3

= 0, et
.). Third, they provide a 
omplete des
ription of the

moduli spa
e of algebrai
 
y
les in 
ertain homology 
lasses in Grassmannians or other

Hermitian symmetri
 spa
es.

K�ahler metri
s on tori
 orbifolds

Miguel Abreu

In the �rst part of this talk I des
ribe a symple
ti
 approa
h to K�ahler geometry on tori


orbifolds, based on the existen
e of a
tion-angle 
oordinates. The main result is an e�e
tive

parametrization of all tori
 K�ahler metri
s via smooth fun
tions on the moment-polytope.

The se
ond part of the talk is devoted to two appli
ations:

� simple expli
it des
ription of re
ent work of Robert Bryant that produ
es extremal

K�ahler metri
s on any weighted proje
tive spa
e;

� des
ription of U(n){invariant extremal K�ahler metri
s, whi
h in this symple
ti
 ap-

proa
h arise naturally as solutions to a linear se
ond order ODE.

Conta
t and quaternioni
 geometry

Jesus Gonzalo Perez

(joint work with Hansj�org Geiges)

We study the notions of 
onta
t sphere and 
onta
t 
ir
le.

Re
all that a 1{form � on a 3{manifold M is a 
onta
t form if � ^ d� is a volume form

on M .

A 
onta
t sphere on a 3{manifold is intrinsi
ally de�ned as a triple of 1{forms !

1

; !

2

; !

3

su
h that their linear 
ombinations with 
onstant 
oeÆ
ients are all 
onta
t forms (ex
ept

of 
ourse the zero 
ombination). This notion is extrinsi
ally motivated by a multiple

pseudo
onvexity: quaternion spa
e H has an S

2

{worth of 
omplex stru
tures, and a real

hypersurfa
e M

3

# H is pseudo
onvex for all those 
omplex stru
tures if and only if

hi�; �i; hj�; �i; hk�; �i is a 
onta
t sphere on M , where � is the unit normal of M

3

.
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A 
onta
t 
ir
le is a pair of 1{forms !

1

; !

2

satisfying the analogous 
ondition, and is

thus also an intrinsi
 notion. We 
onsider the study of these as a ne
essary step toward

the study of 
onta
t spheres. Also, 
onta
t 
ir
les are more abundant than 
onta
t spheres

and in this respe
t they provide a ri
her theory.

The �rst example of 
onta
t 
ir
le is the tautologi
al pair of 1{forms on the orthonormal

frame bundle F� of a surfa
e � with a Riemann metri
. This motivates the notion of a

taut 
onta
t 
ir
le, whi
h is a 
onta
t 
ir
le !

1

; !

2

su
h that as � = (�

1

; �

2

) ranges over

S

1

the 
onta
t form �

1

!

1

+ �

2

!

2

de�nes a volume form independent of �. We de�ne taut


onta
t spheres similarly.

A 
onta
t 
ir
le onM

3

indu
es an almost 
omplex stru
ture J onM

3

�R, and whenM

3

is 
losed the integrability 
ondition for J amounts to the 
onta
t 
ir
le being taut. This

makes the notion of a taut 
onta
t 
ir
le a very natural one.

Theorem. A 
losed, 
onne
ted 3{manifold admits a taut 
onta
t 
ir
le if and only if it is

a left{quotient of one of the following Lie groups: SU(2),

f

SL

2

, or

e

E

2

.

These Lie groups are the universal 
overings of the (orientation{preserving) isometry

groups of the 2{dimensional spa
e forms.

Those left{quotients are all Seifert manifolds, and a 
hara
terization in terms of the

Seifert invariants is known for them (due to Raymond and Vasquez). We have 
lari�ed

su
h 
hara
terization and made it fully syntheti
.

The ingredients that go into the proof of this Theorem are the Enriques{Kodaira 
las-

si�
ation of 
omplex surfa
es, Wall's study of geometri
 
omplex surfa
es, and a famous

theorem of Bogomolov (stating that a 
lass VII surfa
e with 


2

= 0 and b

2

= 0 is a Hopf

or Inoue surfa
e) for whi
h the �rst 
ompletely 
orre
t proof was obtained by A.Teleman

using Seiberg{Witten theory.

Re
ently, we have 
onstru
ted the moduli spa
es of taut 
onta
t 
ir
les for all those man-

ifolds.

Theorem. Non{taut 
onta
t 
ir
les exist on all 
ompa
t orientable 3{manifolds. More-

over, ea
h orientation is realized.

Theorem. Every left{quotient of SU(2) admits taut 
onta
t spheres. The taut 
onta
t


ir
les on the left{quotients of

f

SL

2

and

e

E

2

do not extend to 
onta
t spheres, not even to

non{taut 
onta
t spheres.

Obstru
tions to non-negative 
urvature

Igor Belegradek

(joint work with Vitali Kapovit
h)

A

ording to the Soul theorem of Cheeger and Gromoll any open nonnegatively 
urved

manifold is a ve
tor bundle over a 
ompa
t manifold with se
 � 0. It is a natural question

whi
h bundles admit se
 � 0. In a joint work with Vitali Kapovit
h we show that this

question 
an be often redu
ed to the 
ase when the base is simply-
onne
ted. In parti
ular,

a majority of R

2

-bundles over 
ompa
t manifolds (with se
 � 0 and in�nite fundamental

group) admit no metri
 with se
 � 0. Some similar but weaker results are proved for

higher rank bundles. For example, if the base is the produ
t of a torus and a 
losed sim-

ply 
onne
ted manifold whose rational 
ohomology algebra has no derivations of negative

degree, then a majority of R

k

-bundles over this base do not 
arry se
 � 0.
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The 
ondition about derivations is true for any 
ompa
t homogeneous spa
e, any 1-


onne
ted K�ahler manifold, and is 
losed under taking �ber bundles.

Conditions for non-negative 
urvature on bundles

Kristopher Tapp

(joint work with Detlef Gromoll)

I propose a strategy for studying two related questions:

� whi
h ve
tor bundles admit nonnegative se
tional 
urvature?

� whi
h sphere bundles admit positive se
tional 
urvature?

These questions partially translate into questions about whether the ve
tor bundle admits

a 
onne
tion and a tensor satisfying a 
ertain di�erential inequality. For nonnegatively


urved metri
s on S

2

� R

2

, the inequality for
es rigidity of the metri
 at the soul, whi
h

motivates the following 
lassi�
ation:

Theorem. Any metri
 of nonnegative 
urvature on S

2

�R

2

is isometri
 to a Riemannian

quotient of the form ((S

2

; g

0

)� (R

2

; g

1

)� R)=R

Boundary and 
onjuga
y rigidity

Christopher Croke

In this talk we survey the known results 
on
erning the boundary rigidity problem: For

a 
ompa
t manifold M with smooth boundary �M and Riemannian metri
 g we let

d

g

: �M � �M ! R

be the boundary distan
e fun
tion, i.e. for p; q 2 �M d

g

(p; q) is the g distan
e between

p and q. The question is to determine to what extent d

g

determines g. After surveying

work we show how the problem is related to the 
onjuga
y rigidity problem: 
ompa
t

manifolds M and N have C

k

-
onjugate geodesi
 
ows if there is a C

k

di�eomorphism

F : UM ! UN between the unit tangent bundles so that g

N

t

Æ F = F Æ g

M

t

(where g

t

is the geodesi
 
ow). We then survey the known results in this area. We in
lude the new

result that if two 3-dimensional graph manifolds have C

0

- 
onjugate geodesi
 
ows then

they must be isometri
.

Asymptoti
 geometry of negatively 
urved manifolds and quasisymmetri


parametrization

Bru
e KLeiner

(joint work with Mario Bonk)

The boundary �

1

G of any non-elementary Gromov hyperboli
 group G 
arries a natural

family of metri
s whi
h are Ahlfors regular and \approximately self-similar" . These met-

ri
s are pairwise quasisymmetri
ally homeomorphi
 by the identity map id : �

1

G!�

1

G.

IfG

1

ansG

2

are two non-elementary hyperboli
 groups, then a homeomorphism �

1

G

1

!�

1

G

2

is quasi-symmetri
 i� it is indu
ed by a quasi-isometry G

1

! G

2

. Hen
e questions about

the existen
e of quasi-isometries between hyperboli
 groups are equivalent to questions

about the existen
e of quasisymmetri
 homeomorphisms. In the latter part of the le
ture,

several theorems about quasisymmetri
 homeomorphisms were presented.
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Theorem. If Z is an Ahlfohrs 2-regular metri
 2-sphere, then Z is quasisymmetri
 to the

standard 2-sphere S

2

i� Z is linearly lo
ally 
ontra
tible.

Theorem. If Q � 2, and Z is an Ahlfors Q-regular metri
 2-sphere admitting a (1,Q)-

Poin
are inequality (in the sense of Heinonen-Koskela), then Q = 2 ans Z is quasisym-

metri
 to S

2

.

Using similar te
hniques one 
an prove that many fra
tal 2-spheres are quasisymmetri


to S

2

.

Fu
hsian aÆne a
tions of surfa
e groups

Fran
�oise Labourie

The Auslander 
onje
ture asserts that if � a
ts properly on the aÆne spa
e A

n

(for � a

dis
rete group of aÆne transformations) in su
h a way that A

n

=� is 
ompa
t, then � does

not 
ontain a free group with 2 generators.

Milnor asked the question if free groups (with 2 generators) 
an a
t properly on A

n

.

Margulis proved that the answer to this question is positive: he 
onstru
ted free groups

a
ting properly in A

3

. On the other hand, Mess in 1990 proved that a surfa
e group (= �

1

of a surfa
e) 
annot a
t properly on A

3

. In 1999, Goldman and Margulis gave another

proof of this result. Inspired by their proof, I prove the following theorem.

Theorem. If � is a subgroup of Aff(A

n

) su
h that the linear part of � is a 
o
ompa
t

group in an irredu
ible Sl(2;R) in Sl(n;R) then � do not a
t properly on A

3

Obstru
tions to positive 
urvature with symmetry

Anand Dessai

We 
onsider the following two questions:

� What 
an one say about the topology of a simply 
onne
ted 
losed manifold with

positive se
tional 
urvature (se
 > 0)?

� How to distinguish se
 > 0 from weaker 
urvature properties? (in this talk: positive

Ri

i 
urvature, Ri
 > 0)

a) Gromovs Betti{number theorem and the examples of Sha{Yang with Ri
 > 0 give ni
e

answers to both questions. What is if Gromovs Betti{number theorem does not apply (if

Betti numbers are \small" )?

b) Li
hnerowi
z showed that

^

A(M), the index of the Dira
 operator, vanishes if M is spin

with s
al > 0. Are there other 
hra
teristi
 numbers whi
h vanish if se
 > 0?

We 
onsider these questions under mild symmetry assumptions.

Theorem. Let M be a 
losed spin manifold of dimension > 12r�4. If M admits a metri


with se
 > 0 and symrank � 2r then the �rst r+1 
oeÆ
ients of the ellipti
 genus '

ell

(M)

vanish.

'

ell

(M) =

^

A(M) �

^

A(M;TM

C

)q +

^

A(M;�

2

TM

C

+ TM

C

)q

2

+ : : : a series of indi
es of

twisted Dira
 operators.

Spe
ial 
ase: M as above with se
 > 0 and symrank � 2 and dim(M) > 8 then

^

A(M) = 0

and

^

A(M;TM

C

) = 0.

The theorem allows to distinguish Ri
 > 0 ans se
 > 0 for manifolds with \small" Betti

numbers under mild symmetry assumptions (e.g. symrank � 6).
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Proof of the theorem uses the following extension of a theorem of Hirzebru
h and Slodowy

as well as Frankels theorem in se
 > 0.

Theorem. LetM be a spin manifold with S

1

- a
tion, � 2 S

1

of order � 2. If 
odim(M

�

) >

2�r then the �rst r + 1 
oeÆ
ients of '

ell

(M) vanish.

Using in addition a re
ent theorem of Burkhard Wilking this leads to

Corollary. For every k � 2 and d 2 N there exists a simply 
onne
ted 
losed manifold M

of dimension � d su
h that

� M 
arries a metri
 with Ri
 > 0 whi
h admits an isometry � of order k whi
h is


ontained in a 
ompa
t 
onne
ted subgroup of the di�eomorphism group of M .

� M does not have this property if one repla
es Ri
 > 0 by se
 > 0.

Dira
 eigenvalue estimates on surfa
es

Bernd Amman

Most 
lassi
al eigenvalue estimates for the Dira
 operator use only lo
al data, e.g. s
alar


urvature. We present several estimates for Dira
 eigen
alues depending on global data.

Let �

2

1

be the �rst eigenvalue of the square of the Dira
 operator. We prove

inf �

2

h+1

vol

2=n

> 0; h := dim(kerD

g

0

)

where the in�mum runs over all Riemmanian metri
s in a �xed 
onformal 
lass [g

0

℄ on a

�xed manifold with �xed spin stru
ture. In the spe
ial 
ase of the sphere in dimension 2,

Christian B�ar derived the expli
it value of the in�mum, i.e. on S

2

we have

inf �

2

1

area = 4�:

We spe
ialize now to the 2-dimensional torus. To any spin stru
ture we de�ne an invariant

of the spin stru
ture, the Arf invariant, Arf 2 f�1; 1g. If Arf = �1, then �

1

= 0.

If Arf = 1, then we obtain two expli
it lower estimates for �

1

.

On integrability of geodesi
 
ows on Riemannian manifolds

Alexey Bolsinov

(joint work with Iskander Taimanov)

Let M be a smooth 
ompa
t 
losed manifold. The question we dis
uss in our talk

is whether M admits a Riemannian metri
 with integrable geodesi
 
ows. One knows

several topologi
al obstru
tions to integrability of su
h 
ows (Koglov '78, Taimanov '84).

In 1992-94 G. Paternain suggested an approa
h to �nding new obstru
tions based on the

topologi
al entropy of the 
ow and formulated the following

Conje
ture. If M admits integrable geodesi
 
ows then its fundamental group has poly-

nomial growth.

and the

Question. Is it true that the topologi
al entropy of an integrable geodesi
 
ow vanishes?

We prove the following result

Theorem. There is a 3-dimensional real-analyti
 Riemannian manifold (M

3

; g) su
h that

� the geodesi
 
ow of g is integrable in C

1

-sense

9



� the topologi
al entropy of this 
ow is positive

� the growth of �

1

(M

3

) is exponential

� this 
ow is not integrable in real-analyti
al sense.

Thus we show that in the smooth 
ase the answer to the above question is negative and

the 
onje
ture is not true. However in the real-analyti
al 
ase the answer to the question

is still unknown (the 
onje
ture in this situation was proved by Taimanov mu
h earlier in

1984).

Geometri
 aspe
ts of large deviations for random walks on a 
rystal latti
e

Motoko Kotani

(joint work with Toshikazu Sunada)

A 
rystal latti
e is an in�nite graph whi
h admits an a
tion of a free abelian group P

with a �nite quotient graph X

0

. We 
onsider X as a metri
 spa
e with the graphdistan
e

d. The Gromov{Hausdor� limit lim

"!0

(X; "d) is a ve
tor spa
e with a metri
 whose unit

ball is a 
ompa
t 
onvex polyhedra. This 
onvex polyhedra turns out to be 
losely related

with the LDP (Large deviation prin
iple) of a random walk on X. The polyhedra 
oin
ides

with the domain on whi
h the entropy funtion in LDP is de�ned.

A variational approa
h to homogeneous Einstein metri
s

Christoph B

�

ohm

(joint work with M
Kenzie Wang and Wolfgang Ziller)

LetM = G=H be a 
ompa
t, homogeneous spa
e. Suppose G, H 
onne
ted, j�

1

(M

n

)j <

1.

De�nition. Let � 2 R. We 
all a sequen
e (g

i

) of G-invariant, volume 1 metri
s on

M

n

= G=H a �-Palais-Smale-sequen
e, if

� s
al(g

i

)! �

� jjRi


0

(g

i

)jj

g

i

! 0.

Theorem. Let � > 0. Then every �-Palais-Smale-sequen
e of G-invariant, volume 1

metri
s has a 
onvergent subsequen
e.

Corollary. The set E(G=H) of G-invariant, volume 1 Einstein metri
s on G=H is 
om-

pa
t.

Theorem. There exists a 0-Palais-Smale-sequen
e (g

i

) i� G=H is a homogeneous torus

bundle, i.e. 9K;H H ( K ( G with K=H = T

z

.

We assign to G=H a graph �

G=H

, purely de�ned by Lie theoreti
 data, related to the

intermediate subgroups of G and H.

Theorem. Let G=H be a 
ompa
t homogeneous spa
e. If the graph �

G=H

of G=H has at

least two non{toral 
omponents, then G=H 
arries an Einstein metri
 of 
oindex � 1.

De�nition. We 
all a 
ompa
t homogeneous spa
e G=H, (G;H 
onne
ted), a homoge-

neous spa
e of �nite type, if there exist only �nitely many 
onne
ted subgroups in between

G and H.
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As above we assign to su
h a homogeneous spa
e a simpli
ial 
omplex �

G=H

, purely

de�ned by Lie theoreti
 data.

Theorem. Let G=H be a 
ompa
t homogeneous spa
e of �nite type, (G;H 
onne
ted). If

�

G=H

is not 
ontra
tible then G=H admits an Einstein metri
. Furthermore, ifH

q

(�

G=H

; F ) 6=

0 for a �eld F , then we obtain an Einstein metri
 of 
oindex � q.

Geometrization in dimension 3

Bernhard Leeb

(joint work with Mi
hel Boileau and Joan Porti)

We explain Thurston's 
onje
ture that, after a 
anoni
al topologi
al de
omposition pro-


ess is applied to an arbitrary, say, 
losed orientable 3-manifold the resulting pie
es are

geometri
. There, a 3-manifold is 
alled geometri
 if it admits a 
omplete lo
ally homoge-

neous Riemannian metri
 on its interior. There are 8 relevant types of model geometries,

the ri
hest of whi
h is hyperboli
 geometry. The Geometrization Program extends to

orbifolds. The Orbifold Theorem states that a 
ompa
t, 
onne
ted and (for simpli
ity)

oriented 3-orbifold whi
h is irredu
ible and atoroidal with non-empty singular set is geo-

metri
. A 
omplete written proof for this was obtained in 2000 by Boileau, Porti and

myself. One of the 
onsequen
es is the Generalized Smith Conje
ture that any smooth

non-free a
tion by a �nite group of orientation preserving di�eos on S

3

is 
onjugate to a

linear a
tion.

Hyperboli
 metri
s on manifolds with boundary

Jean Mar
 S
hlenker

A well-known theorem of Pogorelov des
ribes the 
onvex isometri
 embeddings of sur-

fa
es in H

3

. It 
an be read as des
ribing the hyperboli
 metri
s on B

3

with 
onvex bound-

ary: the indu
ed metri
 on the boundary has K > �1, and ea
h su
h metri
 on �B

3

is indu
ed by a unique hyperboli
 metri
 on B

3

. A 
onje
ture of Thurston asserts that

this situation remains when one repla
es B

3

by a 3{manifold with boundary admitting a


onvex-
o
ompa
t hyperboli
 metri
. The existen
e part has been proved by Labourie. A

parallel theory takes pla
e when one repla
es the indu
ed metri
 on the boundary by its

third fundamental form.

We show here that a third 
hose is possible, namely to 
onsider the \horospheri
al

metri
" of the boundary, I+2II+III. The analog of the Thurston 
onje
ture is here true,

and fairly easy to 
he
k. The proof relies on a stuking duality between H

3

and the spa
e

of its horospheres.

Lower bounds on K{energy on K�ahler manifolds

Xiuxiong Chen

We pose a new type Monge-Ampere equation:

For every positive (1; 1) form �, does there exist a K�ahler metri
 !

'

2 [!

0

℄, su
h that � is

harmoni
 with respe
t to this new metri
 !

'

? The Euler{Lagrange equations

(*) g

��

�

��

= 
onst, g

��

= g

0

��

+ '

��

are ne
essary 
onditions. If we normalized the


onstant to 1, then
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(**) (g

��

) > (�

��

).

Conje
ture (Donaldson). If (**) holds, then (*) has a solution.

If � = 


1

(M) > 0, then a solution of (*) leads to the lower bound of K{energy E(!

'

)

through the following formula

E(!

'

) =

Z

ln(

!

n

'

!

n

)!

n

'

+ J

�

(!

'

) +RI(!

'

)

J

�

is 
onvex of � > 0 thus has a lower bound if J

�

has a 
riti
al point. Note: the 
riti
al

points of J

�

satisfy (*).

Spines and topology of thin Riemannian manifolds

Stephanie Alexander

(joint work with Ri
hard Bishop)

We show, that if a 
omplete Riemannian manifold M with nonempty boundary has

suÆ
iently small inradius relative to 
urvature, then the 
ut lo
us of �M has a 
anoni
al

polyhedral stru
ture of arbitrarily low bran
hing number. This establishes a 
onne
tion

between Riemannian 
omparison geometry and the PL notion of 
ollapse to a simple poly-

hedral spine. We examine topologi
al and geometri
 
ongruen
es. For example, suppose

�M is 
onne
ted and se
tional 
urvatures of the interior and se
ond fundamental form of

�M satisfy jK

M

j � 1 and jII

�M

j � 1 respe
tively. Then if �

1

(�M) and �

1

(M) are isomor-

phi
 under the in
lusion map,M has inradius at least 0:108 (sharp to within a fa
tor of 2).

In dimension 3, we 
lassify up to homeomorphism all 
ompa
t M with simply 
onne
ted

�M having jK

M

j � 1 and jII

�M

j � 1 and inradius < a

3

, where a

3

is a universal 
onstant

known to lie between 0:1 and 0:2.

Edited by Anna Wienhard
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