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The conference was organized by Werner Ballmann (Bonn), Jean-Pierre Bourguignon
(Bures-sur-Ivette) and Wolfgang Ziller (Philadelphia). About 50 participants from all over
the world took part in it.

There were 22 talks given on new developments in (global) differential geometry, which
covered a big scope of current research. One main topic was the study of manifolds of
positive and nonnegative curvature. Recently new obstructions to manifolds of positive
sectional curvature with a certain amount of symmetries were found, and it was possible
to show that each cohomogeneity one manifold admits a metric of almost nonnegative sec-
tional curvature. Other talks focussed on the question which vector bundles admit metrics
of positive or nonnegative curvature. R. Bryant gave an introduction to calibrations and
opened the dicussion of Kéahler manifolds, which constituted another focus of the con-
ference. Other speakers presented results on the existence (or non-existence) of Einstein
metrics, discussed rigidity phenomena, bounds for eigenvalues of the Dirac operator, hy-
perbolic metrics and hyperbolization, applications of comparison geometry and geometric
aspects of random walks.

Beside the talks, which were attended by nearly all participants, the discussions, bringing
together mathematicians from different areas of research were very important.

The pleasent atmosphere of the Institute, the friendlyness and helpfulness of the staff
also contributed to the success of the conference.



Abstracts

Ricci curvature, Einstein metrics and the Seiberg-Witten equations

CLAUDE LEBRUN

Riemannian geometry is constrained by smooth topology in dimension 4 in a manner
quite unlike the situation occurring in high dimensions. For example consider the invariant
Is(M) = inf, [, |S,|"/?dpu, of a smooth, compact n-manifold M. Here the infimum is taken
over all Riemannian metrics g, and S, denotes the scalar curvature of g. Then there are
many 4-manifolds for which Ig # 0, whereas Ig is zero for any simply connected manifold
of dimension > 5. In this talk T attempted to describe some results concerning Is and the
related invariant I, (M) = inf, [ |r|*dr for smooth compact 4-manifolds, here r denotes the
Ricci curvature.

Theorem. Let M be the underlying 4-manifold of a complex surface of Kodaira dimension
# —o00. Let X be the minimal model of M, and let | denote the number of points at which
X must be blown up in order to obtain M; thus M=o X#ICPo (I mazimal). Then

Is(M) = 327%¢; (X)
I.(M) = 8r%[cy (X) + 1]
The same method also implies non-existence results for Einstein metrics
Theorem. Let X be a symplectic 4-manifold with b*(X) > 1. Then
M = X#ICP,
does not admit Einstein metrics if | > 3¢%(X).

By example, these results concern the diffeotype, rather then the homeotype, of M.

Group actions on manifolds of positive sectional curvature

BURKHARD WILKING

There are only few known examples of manifolds of positive sectional curvature. In
dimensions above 24 the known simply connected examples are diffeomorphic to rank one
symmetric spaces. On the other hand there are also only very few obstructions known for
these manifolds.

Grove '91 proposed to study isometric group actions on manifolds with positive sectional
curvature in order to find obstructions and perhaps new examples.

The aim of the talk is to give some new obstructions for isometric group actions on
manifolds of positive sectional curvature. One of the main new tool in the study of this
problem is the following

Theorem. Let (M™, g) be a compact Riemannian manifold of positive sectional curvature.
Suppose there is a totally geodesic embedded submanifold N"7F C M™ of codimension
k < Z. Then there is an element e € H*(M,Z) such that

Ue: HY(M,Z)— H"™(M,Z7)
s surjective for k —1 <i <n+1—2k and injective for k —1 <i <n-+1—2k.



Our main results are theorems on manifolds with sec > 0 and with a large amount of
symmetry. In order to measure the amount of symmetry of a Riemannian manifold we
consider the following three constants

symrank(M.g) =  rank(Iso(M,q))
symdeg(M,g) :=  dim(Iso(M,g))
cohom(M,qg) = dim(M/Iso(M,yg)),

where Iso(M, g) is the isometry group.
Under the general assumption that (M™, g) is a simply connected manifold of positive

sectional curvature we prove

. n 2 +2 forn=1mod4orn = 24,2526

o if symrank(M", g) > { % +1 otherwise
and n > 10, then M™ is homotopically equivalent to S”, CP™/? or HP™/*.

o if symdeg(M™, g) > 2n — 5, then M™ is homotopically equivalent to S®, CP™? or
HP"* or CaP? or (M™, g) is isometric to a homogeneous space.

o if cohom(M™", g) = k and n > 900(k + 1)?, then M is homotopically equivalent to S,
CP™? or HP™/*.

Algebraic geometry and Einstein manifolds in dimension five

KRzYszTOF GALICKI

On simply connected five-manifolds Sasakian-Einstein metrics coincide with Riemannian
metrics admitting real Killing spinors which are of great interest as models of near horizon
geometry for threebrane solutions in superstring theory. (M5, g) is Sasakian-Einstein if
(Ry x M,dt* + t*g) is Calabi-Yau (Kéahler, Ricci-flat). We expand on the recent work of
Demailly and Kollar and Johnson and Kollar who give methods for constructing Kahler-
Einstein metric on log del Pezzo surfaces. It is known that the circle V-bundle (orbifold
bundle) over a log del Pezzo surface with Kéhler-Einstein metric has a Sasakian-Einstein
metric on the total space of the bundle. Here, these 1-connected 5-manifolds arise as links
of isolated hypersurface singularities which by the well known work of Smale must be
diffeomorphic to S5#1(S? x S3). More precisely, using methods of algebraic geometry we
show the existence of 14 inequivalent Sasakian-Einstein structures on S? x S and infinite
families of such structures on S°#[(S? x S3) with 2 <1 < 9. In the case of [ = 2,1 =9
these are new examples of differentiable manifolds which are now known to admit Einstein
metrics of positive scalar curvature. In other case we show the existence of non-regular
Sasakian-Einstein structures on manifolds which were known to admit regular structures
of this type.

Almost non—negative curvature on cohomogeneity one manifolds
LORENZ SCHWACHHOFER
(joint work with Wilderich Tuschmann)

Let M be a closed manifold on which a (compact) Lie group G acts with cohomogeneity
one. According to a conjecture of Grove and Ziller, any such manifold supports a Rie-
mannian metric of non-negative sectional curvature. This is elementary if the orbit space
is a circle, so one may restrict to the only other possibility, namely that the orbit space
M /G = [a,b]. This means, in particular, that there are exactly two singular orbits M, and
M_. According to Grove and Ziller, the conjecture holds if My both have codimension



two, and moreover, any cohomogeneity-one manifold carries a metric of non-negative Ricci
curvature (even positive Ricci curvature if the fundamental group ist finite). Our main
result is the following

Theorem. Fvery cohomogeneity-one manifold is almost non—negatively curved, meaning
that for any € > 0 there exists a Riemannian metric g. on M whose diameter is 1, and
whose sectional curvature s bounded below by —e.

The proof of this result is constructive, i.e. the metrics g. are given explicitely. Similar
to the constructions of Grove and Ziller, we “glue” the metric along a principal orbit which
is hence totally geodesic.

Cohomogeneity one manifolds with positive curvature

LuiGcr VERDIANI

Homogeneous compact simply connected Riemannian manifolds are classified (Berger,
Wallach, Berard-Bergery). Looking for new examples it seems natural to consider the class
of cohomogeneity one manifolds. It has been recently proved that two of the three classes of
inhomogeneous known examples admit in some cases a cohomogeneity one action (Grove,
Ziller). More precisely those in dimension 7 and 13. Our main result is that new examples
may arise just in the odd dimensional case. More precisely:

Theorem. Let M be a compact cohomogeneity one manifold with wi(M) = 0. If dim(M)
s even and the sectional curvature of M is positive then M is equivariantly diffeomorphic
to a rank one symmetric space.

Extremal cycles in Hermitian symmetric spaces

ROBERT BRYANT

This talk was in two parts: A brief survey of calibration theory and then a summary of
some new results obtained by an extension of this idea.

Let (M, g) be a Riemannian manifold. A calibration ¢ on M is a closed p-form with
the property that its restriction to any oriented p-plane E is at most the (Riemannian)
volume element on £ C T, M. A p-dimensional, oriented submanifold N C M is said to be
calibrated by a calibration ¢ if ¢ pulls back to N to be the induced volume form on N The
Fundamental Lemma of Calibrated Geometry is that a closed p-dimensional submanifold
that is calibrated by a calibration ¢ is volume-minimizing in its homology class. This crite-
rion provides the most common method of proving that a (possibly singular) submanifold
is homologically volume minimizing.

The basic examples of calibrations and calibrated geometries are surveyed, following the
fundamental work of Harvey and Lawson on the subject. The Kéhler calibration (due to the
Wirtinger inequality) and its role in complex analysis, the special Lagrangian calibrations
and their role in special Lagrangian geometry, particularly in mirror symmetry on Calabi-
Yau manifolds, and other examples related to invariant forms on homogeneous spaces are
discussed. In the latter case, I discuss both existence and rigidity of calibrated cycles in
Lie groups and real Grassmannians. I also announce the result that any real-analytic arc
in a Calabi-Yau 3-fold is the singular locus of a (real-analytic) special Lagrangian 3-fold.

In the case of Hermitian symmetric spaces, the theory of calibrations is particularly
rich. When M is an Hermitian symmetric space of compact type, the homology groups



are freely generated by a special family of subvarieties called the (generalized) Schubert
cycles. In addition to being calibrated by the Kahler form, each such Schubert cycle o
of complex dimension p is dual to an invariant (p,p)-form ¢, that has two important
properties: The first is that ¢, is positive as a (p,p)-form (i.e., it restricts to every p-
dimensional complex subvariety to be a non-negative multiple of the volume form). The
second is that ¢, vanishes identically on each of the p-dimensional Schubert cycles o’ # o.
In particular, any p-dimensional complex subvariety V' C M that is homologous to o must
satisfy the first-order condition that ¢, vanishes identically on V' for all p-dimensional
Schubert cycles o’ # o. 1 show that these first order conditions are actually a set of
holomorphic differential equations on the subvariety V' and that these local conditions can
often be integrated to yield striking rigidity theorems for subvarieties that are homologous
to a multiple of a Schubert cycle.

These rigidity results have a number of applications: First, they prove that many sub-
varieties in Grassmannians and other Hermitian symmetric spaces cannot be smoothed
(i.e., are not homologous to a smooth subvariety). Second, they provide characterizations
of holomorphic bundles over compact Kahler manifolds that are generated by their global
sections but that have certain polynomials in their Chern classes vanish (for example,
s =0, ¢ciece —c3 = 0, c3 = 0, etc.). Third, they provide a complete description of the
moduli space of algebraic cycles in certain homology classes in Grassmannians or other
Hermitian symmetric spaces.

Kahler metrics on toric orbifolds

MIGUEL ABREU

In the first part of this talk T describe a symplectic approach to Kahler geometry on toric
orbifolds, based on the existence of action-angle coordinates. The main result is an effective
parametrization of all toric Kahler metrics via smooth functions on the moment-polytope.

The second part of the talk is devoted to two applications:

e simple explicit description of recent work of Robert Bryant that produces extremal
Kahler metrics on any weighted projective space;

e description of U(n)—invariant extremal K&hler metrics, which in this symplectic ap-
proach arise naturally as solutions to a linear second order ODE.

Contact and quaternionic geometry
JESUS GONZALO PEREZ

(joint work with Hansjorg Geiges)

We study the notions of contact sphere and contact circle.

Recall that a 1-form « on a 3—manifold M is a contact form if a A da is a volume form
on M.

A contact sphere on a 3—manifold is intrinsically defined as a triple of 1-forms wy, wo, w3
such that their linear combinations with constant coefficients are all contact forms (except
of course the zero combination). This notion is extrinsically motivated by a multiple
pseudoconvexity: quaternion space H has an S%worth of complex structures, and a real
hypersurface M? 9= H is pseudoconvex for all those complex structures if and only if
(iv,+), (jv,-), (kv,-) is a contact sphere on M, where v is the unit normal of M3,



A contact circle is a pair of 1-forms wy,ws satisfying the analogous condition, and is
thus also an intrinsic notion. We consider the study of these as a necessary step toward
the study of contact spheres. Also, contact circles are more abundant than contact spheres
and in this respect they provide a richer theory.

The first example of contact circle is the tautological pair of 1-forms on the orthonormal
frame bundle F'Y of a surface ¥ with a Riemann metric. This motivates the notion of a
taut contact circle, which is a contact circle wy,wy such that as A = (A;, \2) ranges over
S! the contact form \jw; + Aaws defines a volume form independent of A. We define taut
contact spheres similarly.

A contact circle on M? induces an almost complex structure J on M3 x R, and when M3
is closed the integrability condition for J amounts to the contact circle being taut. This
makes the notion of a taut contact circle a very natural one.

Theorem. A closed, connected 3-manifold admits a taut contact circle if and only if it is
a left-quotient of one of the following Lie groups: SU(2), SLy, or Es.

These Lie groups are the universal coverings of the (orientation—preserving) isometry
groups of the 2—dimensional space forms.

Those left—quotients are all Seifert manifolds, and a characterization in terms of the
Seifert invariants is known for them (due to Raymond and Vasquez). We have clarified
such characterization and made it fully synthetic.

The ingredients that go into the proof of this Theorem are the Enriques-Kodaira clas-
sification of complex surfaces, Wall’s study of geometric complex surfaces, and a famous
theorem of Bogomolov (stating that a class VII surface with co = 0 and by = 0 is a Hopf
or Inoue surface) for which the first completely correct proof was obtained by A.Teleman
using Seiberg-Witten theory.

Recently, we have constructed the moduli spaces of taut contact circles for all those man-
ifolds.

Theorem. Non-taut contact circles exist on all compact orientable 3—manifolds. More-
over, each orientation is realized.

Theorem. FEvery left—quotient of SU(2) admits taut contact spheres. The taut contact

circles on the left—quotients of SLo and EQ do not extend to contact spheres, not even to
non-taut contact spheres.

Obstructions to non-negative curvature
IGOR BELEGRADEK
(joint work with Vitali Kapovitch)

According to the Soul theorem of Cheeger and Gromoll any open nonnegatively curved
manifold is a vector bundle over a compact manifold with sec > 0. It is a natural question
which bundles admit sec > 0. In a joint work with Vitali Kapovitch we show that this
question can be often reduced to the case when the base is simply-connected. In particular,
a majority of R%-bundles over compact manifolds (with sec > 0 and infinite fundamental
group) admit no metric with sec > 0. Some similar but weaker results are proved for
higher rank bundles. For example, if the base is the product of a torus and a closed sim-
ply connected manifold whose rational cohomology algebra has no derivations of negative
degree, then a majority of R¥-bundles over this base do not carry sec > 0.



The condition about derivations is true for any compact homogeneous space, any 1-
connected Kahler manifold, and is closed under taking fiber bundles.

Conditions for non-negative curvature on bundles
KRISTOPHER TAPP
(joint work with Detlef Gromoll)

I propose a strategy for studying two related questions:

e which vector bundles admit nonnegative sectional curvature?
e which sphere bundles admit positive sectional curvature?

These questions partially translate into questions about whether the vector bundle admits
a connection and a tensor satisfying a certain differential inequality. For nonnegatively
curved metrics on S? x R?, the inequality forces rigidity of the metric at the soul, which
motivates the following classification:

Theorem. Any metric of nonnegative curvature on S x R? is isometric to a Riemannian
quotient of the form ((S?, go) x (R?,¢1) x R)/R

Boundary and conjugacy rigidity
CHRISTOPHER CROKE

In this talk we survey the known results concerning the boundary rigidity problem: For
a compact manifold M with smooth boundary M and Riemannian metric g we let

dg: OM x OM — R

be the boundary distance function, i.e. for p,q € OM dy(p,q) is the g distance between
p and ¢. The question is to determine to what extent d, determines g. After surveying
work we show how the problem is related to the conjugacy rigidity problem: compact
manifolds A and N have C*-conjugate geodesic flows if there is a C* diffeomorphism
F : UM — UN between the unit tangent bundles so that gy’ o FF = F o gj/' (where ¢
is the geodesic flow). We then survey the known results in this area. We include the new
result that if two 3-dimensional graph manifolds have C°- conjugate geodesic flows then
they must be isometric.

Asymptotic geometry of negatively curved manifolds and quasisymmetric
parametrization

BruckE KLEINER
(joint work with Mario Bonk)

The boundary 0, G of any non-elementary Gromov hyperbolic group G carries a natural
family of metrics which are Ahlfors regular and “approximately self-similar” . These met-
rics are pairwise quasisymmetrically homeomorphic by the identity map id : 0, G—0G.
If G| ans G5 are two non-elementary hyperbolic groups, then a homeomorphism 0, G1— 04 G2
is quasi-symmetric iff it is induced by a quasi-isometry G; — (5. Hence questions about
the existence of quasi-isometries between hyperbolic groups are equivalent to questions
about the existence of quasisymmetric homeomorphisms. In the latter part of the lecture,
several theorems about quasisymmetric homeomorphisms were presented.



Theorem. If Z is an Ahlfohrs 2-reqular metric 2-sphere, then Z is quasisymmetric to the
standard 2-sphere S? iff Z is linearly locally contractible.

Theorem. If Q > 2, and Z is an Ahlfors Q-regular metric 2-sphere admitting a (1,Q)-
Poincare inequality (in the sense of Heinonen-Koskela), then Q@ = 2 ans 7 is quasisym-
metric to S2.

Using similar techniques one can prove that many fractal 2-spheres are quasisymmetric
to S2.

Fuchsian affine actions of surface groups

FRANCOISE LABOURIE

The Auslander conjecture asserts that if I' acts properly on the affine space A" (for T" a
discrete group of affine transformations) in such a way that A™/T" is compact, then T" does
not contain a free group with 2 generators.

Milnor asked the question if free groups (with 2 generators) can act properly on A™.
Margulis proved that the answer to this question is positive: he constructed free groups
acting properly in A%, On the other hand, Mess in 1990 proved that a surface group (= m
of a surface) cannot act properly on A%. In 1999, Goldman and Margulis gave another
proof of this result. Inspired by their proof, I prove the following theorem.

Theorem. If ' is a subgroup of Aff(A™) such that the linear part of T is a cocompact
group in an irreducible SI(2,R) in SI(n,R) then T' do not act properly on A3

Obstructions to positive curvature with symmetry

ANAND DESSAI

We consider the following two questions:

e What can one say about the topology of a simply connected closed manifold with
positive sectional curvature (sec > 0)?
e How to distinguish sec > 0 from weaker curvature properties? (in this talk: positive
Ricci curvature, Ric > 0)
a) Gromovs Betti-number theorem and the examples of Sha—Yang with Ric > 0 give nice
answers to both questions. What is if Gromovs Betti-number theorem does not apply (if
Betti numbers are “small” )?
b) Lichnerowicz showed that A(M), the index of the Dirac operator, vanishes if M is spin
with scal > 0. Are there other chracteristic numbers which vanish if sec > 07
We consider these questions under mild symmetry assumptions.

Theorem. Let M be a closed spin manifold of dimension > 12r—4. If M admits a metric
with sec > 0 and symrank > 2r then the first r+1 coefficients of the elliptic genus @ey (M)
vanish.

Qet(M) = A(M) — A(M,TM¢)q + A(M,N>TMc + TMg)g® + ... a series of indices of
twisted Dirac operators.
Special case: M as above with sec > 0 and symrank > 2 and dim(M) > 8 then fl(]\/[) =0
and A(M,TM¢) = 0.

The theorem allows to distinguish Ric > 0 ans sec > 0 for manifolds with “small” Betti
numbers under mild symmetry assumptions (e.g. symrank > 6).



Proof of the theorem uses the following extension of a theorem of Hirzebruch and Slodowy
as well as Frankels theorem in sec > 0.

Theorem. Let M be a spin manifold with S'- action, o € St of order > 2. If codim(M?) >
201 then the first r + 1 coefficients of @eu(M) vanish.

Using in addition a recent theorem of Burkhard Wilking this leads to

Corollary. For every k > 2 and d € N there exists a simply connected closed manifold M
of dimension > d such that

o M carries a metric with Ric > 0 which admits an isometry o of order k which is
contained in a compact connected subgroup of the diffeomorphism group of M.
e M does not have this property if one replaces Ric > 0 by sec > 0.

Dirac eigenvalue estimates on surfaces

BERND AMMAN

Most classical eigenvalue estimates for the Dirac operator use only local data, e.g. scalar
curvature. We present several estimates for Dirac eigencalues depending on global data.
Let A? be the first eigenvalue of the square of the Dirac operator. We prove

inf A7, ,vol®" >0, h:=dim(kerD,,)

where the infimum runs over all Riemmanian metrics in a fixed conformal class [go] on a
fixed manifold with fixed spin structure. In the special case of the sphere in dimension 2,
Christian Bar derived the explicit value of the infimum, i.e. on S? we have

inf ANarea = 4.

We specialize now to the 2-dimensional torus. To any spin structure we define an invariant
of the spin structure, the Arf invariant, Arf € {—1,1}. If Arf = —1, then A\; = 0.
If Arf =1, then we obtain two explicit lower estimates for A;.

On integrability of geodesic flows on Riemannian manifolds
ALEXEY BoLsINOV
(joint work with Iskander Taimanov)
Let M be a smooth compact closed manifold. The question we discuss in our talk
is whether M admits a Riemannian metric with integrable geodesic flows. One knows
several topological obstructions to integrability of such flows (Koglov '78, Taimanov '84).

In 1992-94 G. Paternain suggested an approach to finding new obstructions based on the
topological entropy of the flow and formulated the following

Conjecture. If M admits integrable geodesic flows then its fundamental group has poly-
nomial growth.

and the
Question. Is it true that the topological entropy of an integrable geodesic flow vanishes?
We prove the following result

Theorem. There is a 3-dimensional real-analytic Riemannian manifold (M3, g) such that
e the geodesic flow of g is integrable in C*°-sense



e the topological entropy of this flow is positive
o the growth of w1 (M?) is exponential
e this flow is not integrable in real-analytical sense.

Thus we show that in the smooth case the answer to the above question is negative and
the conjecture is not true. However in the real-analytical case the answer to the question
is still unknown (the conjecture in this situation was proved by Taimanov much earlier in
1984).

Geometric aspects of large deviations for random walks on a crystal lattice
MOTOKO KOTANI

(joint work with Toshikazu Sunada)

A crystal lattice is an infinite graph which admits an action of a free abelian group P
with a finite quotient graph X,. We consider X as a metric space with the graphdistance
d. The Gromov-Hausdorff limit lim._,o(X,ed) is a vector space with a metric whose unit
ball is a compact convex polyhedra. This convex polyhedra turns out to be closely related
with the LDP (Large deviation principle) of a random walk on X. The polyhedra coincides
with the domain on which the entropy funtion in LDP is defined.

A variational approach to homogeneous Einstein metrics
CHRISTOPH BOHM

(joint work with McKenzie Wang and Wolfgang Ziller)

Let M = G/H be a compact, homogeneous space. Suppose GG, H connected, |m(M™)| <
0.

Definition. Let A € R. We call a sequence (g;) of G-invariant, volume 1 metrics on
M"™ = G/H a \-Palais-Smale-sequence, if

e scal(g;)) — A

o |[Ric"(gi)llg — 0.

Theorem. Let A > 0. Then every A-Palais-Smale-sequence of G-invariant, volume 1
metrics has a convergent subsequence.

Corollary. The set E(G/H) of G-invariant, volume 1 Finstein metrics on G/H is com-
pact.

Theorem. There exists a 0-Palais-Smale-sequence (g;) iff G/H is a homogeneous torus
bundle, i.e. 3K, H H C K C G with K/H =T*.

We assign to G/H a graph I'q/y, purely defined by Lie theoretic data, related to the
intermediate subgroups of G and H.

Theorem. Let G/H be a compact homogeneous space. If the graph T'¢ i of G/H has at
least two non-toral components, then G/H carries an Finstein metric of coindex > 1.

Definition. We call a compact homogeneous space G/H, (G, H connected), a homoge-

neous space of finite type, if there exist only finitely many connected subgroups in between
G and H.
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As above we assign to such a homogeneous space a simplicial complex Ag/g, purely
defined by Lie theoretic data.

Theorem. Let G/H be a compact homogeneous space of finite type, (G, H connected). If
Agyu is not contractible then G /H admits an Einstein metric. Furthermore, if Hy(Ag/u, F') #
0 for a field F', then we obtain an Finstein metric of coindex > q.

Geometrization in dimension 3
BERNHARD LEEB

(joint work with Michel Boileau and Joan Porti)

We explain Thurston’s conjecture that, after a canonical topological decomposition pro-
cess is applied to an arbitrary, say, closed orientable 3-manifold the resulting pieces are
geometric. There, a 3-manifold is called geometric if it admits a complete locally homoge-
neous Riemannian metric on its interior. There are 8 relevant types of model geometries,
the richest of which is hyperbolic geometry. The Geometrization Program extends to
orbifolds. The Orbifold Theorem states that a compact, connected and (for simplicity)
oriented 3-orbifold which is irreducible and atoroidal with non-empty singular set is geo-
metric. A complete written proof for this was obtained in 2000 by Boileau, Porti and
myself. One of the consequences is the Generalized Smith Conjecture that any smooth
non-free action by a finite group of orientation preserving diffeos on S? is conjugate to a
linear action.

Hyperbolic metrics on manifolds with boundary

JEAN MARC SCHLENKER

A well-known theorem of Pogorelov describes the convex isometric embeddings of sur-
faces in H*. It can be read as describing the hyperbolic metrics on B?* with convex bound-
ary: the induced metric on the boundary has K > —1, and each such metric on B3
is induced by a unique hyperbolic metric on B*. A conjecture of Thurston asserts that
this situation remains when one replaces B? by a 3-manifold with boundary admitting a
convex-cocompact hyperbolic metric. The existence part has been proved by Labourie. A
parallel theory takes place when one replaces the induced metric on the boundary by its
third fundamental form.

We show here that a third chose is possible, namely to consider the “horospherical
metric” of the boundary, [4+2I14+III. The analog of the Thurston conjecture is here true,
and fairly easy to check. The proof relies on a stuking duality between H* and the space
of its horospheres.

Lower bounds on K—energy on Kahler manifolds

XIUXIONG CHEN

We pose a new type Monge-Ampere equation:
For every positive (1,1) form x, does there exist a Kéhler metric w, € [wy], such that x is
harmonic with respect to this new metric w,? The Euler-Lagrange equations
(*) go‘ﬁxaﬁ = const, §,5 = 9045 T Pap are necessary conditions. If we normalized the
constant to 1, then
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(") (9a7) > (Xap)-

Conjecture (Donaldson). If (**) holds, then (*) has a solution.

If x =ci(M) > 0, then a solution of (*) leads to the lower bound of K—energy F(w,)
through the following formula

Blon) = [ W)+ i) + RIG,)

Jy is convex of x > 0 thus has a lower bound if 7, has a critical point. Note: the critical
points of J, satisfy (*).

Spines and topology of thin Riemannian manifolds
STEPHANIE ALEXANDER
(joint work with Richard Bishop)

We show, that if a complete Riemannian manifold M with nonempty boundary has
sufficiently small inradius relative to curvature, then the cut locus of M has a canonical
polyhedral structure of arbitrarily low branching number. This establishes a connection
between Riemannian comparison geometry and the PL notion of collapse to a simple poly-
hedral spine. We examine topological and geometric congruences. For example, suppose
OM is connected and sectional curvatures of the interior and second fundamental form of
OM satisfy |Kps| < 1 and |IIsp] < 1 respectively. Then if 7 (OM) and 7, (M) are isomor-
phic under the inclusion map, M has inradius at least 0.108 (sharp to within a factor of 2).
In dimension 3, we classify up to homeomorphism all compact M with simply connected
OM having |Kjs| < 1 and |[ITgy| < 1 and inradius < agz, where a3 is a universal constant
known to lie between 0.1 and 0.2.

Edited by Anna Wienhard
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