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The talks at the conference presented a broad view of current research on 4-manifolds.
Particular emphasis was placed on the interrelation of three- and four-dimensional geom-
etry.

One focal point thus consisted of various Floer-type invariants: In a series of three talks,
P. Ozsvath and Z. Szabo presented 3- and 4-manifold invariants constructed by the use
of holomorphic disks in configuration spaces. Other aspects, including Manolescu’s stable
homotopy picture, were outlined in various other research reports.

Low dimensional symplectic and contact geometry was another focal point of the confer-
ence with talks for example on open book decompositions and on tight contact structures.

Other talks addressed the interplay of 4-manifold theory with complex geometry, stable
homotopy and L2-homology theory.



Abstracts

Legendrian Knots
JOHN ETNYRE

In this talk T will discuss what is currently known concerning the classification of Legen-
drian knots in tight contact three manifolds. Specifically, I will describe the classification
of Legendrian torus and figure eight knots and then explain some general ”structure theo-
rems.” The first structure theorem describes how the classification of reducible Legendrian
knots can be understood in terms of the classification of its prime summands. It is a little
surprising that using this theorem one can construct many Legendrian knots that are not
determined by their classical invariants. The second structure theorem says that under
certain circumstances Legendrian knots in a cabled knot type can be classified if a Legen-
drian classification for the uncabled knot type is known. Finally, I will indicate how to use
convex surface theory to prove these results.

Knotted curves in complex surfaces
SERGEY FINASHIN

Theorem: For any d > 5, there exist infinitely many surfaces F; € CP? homoeomor-
phic to and realizing the same homology class as non-singular curves of degree d, with
71 (CP?\F;) 2 Z/d, but pairwise non-diffeomorphic as pairs (CP?, F;). This answers a
long-standing problem.

The surfaces F; are obtained from an algebraic curve A by a version of rim-surgery of
Fintushel and Stern, applied along a 0-framed annulus membrane on A. Non-existence of a
diffeomorphism is detected by Seiberg-Witten invariants in the covering spaces X; — CP?
branched along F;.

This theorem can be generalized and applied to simply connected algebraic surfaces X
with a curve A admitting a degeneration to an irreducible curve with a unique singularity
of the type X, (four non-singular pairwise transverse branches), with A - A > 16.

Indeed, one can define rim-basic classes «;, for an embedded surface F' — X, lying in
H|(F) = H'(F). These classes (1) distinguish diffeomorhpism types of embeddings F <
X, (2) provide adjunction inequalities for membranes M on F: —x (M) > M-M +|0M - «|.
The basic classes «; can be viewed as differences of the relative basic classes in X\N(F),
where N(F) is a tubular neighborhood of F.

Seiberg-Witten Floer theory for rational homology 3-spheres
KiM FrROYSHOV

We defined irreducible and equivariant Seiberg-Witten Floer homology groups of oriented
rational homology 3-spheres with a spin-c structure. While the equivariant group is an
invariant of the oriented spin-c manifold, the irreducible Floer group depends in addition
on the chamber of the metric and perturbation form, which we label by a rational number.
This additional parameter runs through a coset mod Z.

The irreducible Floer groups come with some extra structure (u-map, and interaction
with the reducible critical point), which we use to construct a group homomorphism from



the spin-c rational homology cobordism group onto the rational numbers. This invariant,
which has analogues both in instanton Floer theory (of integral homology 3-spheres) and
in the Ozsvath-Szabo Floer groups, constrains the 4-manifolds that the homology 3-sphere
in question can bound. As an application we showed that if a simple lens space L(p, 1),
p > 1, bounds a smooth rational homology 4-ball then p = 4 (and L(4,1) does bound).
P. Kronheimer pointed out that the same argument proves that L(p,1) is not rational
homology cobordant to any integral homology 3-sphere unless p = 4.

Spin 4-manifolds with b; > 0
Mikio FURUTA

In this talk I tried to explain that one should consider the cup product on H' to formulate
the geography of 4-dimensional closed spin manifolds. In a joint work with Y. Kametani,
H. Matsue and N. Minami, we showed that a spin 4-manifold with the same rational
cohomology ring as K3#K3#T* does not have any S? x S? summand. A proof of this
statement is given by using a kind of Pin bordism group. An extension of the above
statement to spin 4-manifolds with larger b, or b; was discussed, which is a joint work with
Kametani.

Contact structures, linkings and fibrations
EMMANUEL GIROUX

The goal of the talk was to show that isotopy classes of contact structures on a closed
three-manifold are in one-to-one correspondence with “stable isotopy” classes of open book
decompositions. We also described some applications of this result, and in particular ex-
plained how it applies to answer a question of Harer on fibered links. Finally, we presented
the high-dimensional generalization of the main theorem.

On the Finiteness of Tight Contact Structures
Ko HoNDpA

In this joint work (in progress) with Vincent Colin and Emmanuel Giroux, we improve on
finiteness results of Eliashberg and Kronheimer-Mrowka to prove the following theorems:

1. On every closed 3-manifold there exist finitely many homotopy classes of 2-plane fields
which carry tight contact structures.

2. On a closed, atoroidal 3-manifold there exist finitely many isotopy classes of tight
contact structures.

Bounded cohomology of mapping class groups
DIETER KOTSCHICK

We discussed the comparison map from the second bounded cohomology in the sense of
Gromov to ordinary cohomology. In the case of mapping class groups of closed oriented
surfaces of genus at least three, this comparison map is surjective but not injective. The
image is generated by Meyer’s signature cocycle, and estimating its Gromov-Thurston



norm is equivalent to proving signature bounds for surface bundles over surfaces. We
proved such bounds using symplectic geometry, specifically the existence of symplectic
submanifolds Poincaré dual to the canonical class of any symplectic structure, see [2].

In joint work with H. Endo [1], this argument was extended to Lefschetz fibrations,
proving that the commutator lengths of powers of Dehn twists along separating simple
closed curves have linear growth. This shows that mapping class groups are not uniformly
perfect, and that the above comparison map is not injective.

At the end of the talk we discussed briefly some related work of Korkmaz, Bestvina-
Fujiwara, Farb-Lubotzky-Minsky, and of Burger-Monod.
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Floer homotopy type of rational homology 3-spheres, after Manolescu
PETER KRONHEIMER

This talk presented the work of Ciprian Manolescu, which provides a new viewpoint on
Seiberg-Witten Floer homology of rational homology 3-spheres. For the sake of exposi-
tion, the talk dealt with the case of integral homology 3-spheres: in this case, for each
Y3, Manolescu constructs a space o(Y) (actually an S'-equivariant suspension spectrum),
whose ordinary equivariant cohomology groups should recover the Floer cohomology of Y.
Two properties of o are: (i) if Y = S*, then o(Y) is the sphere spectrum; and (ii) if X
is a 4-dimensional cobordism with spin-c structure and with 90X = Y5 — Yj, then there
is an associated map o(X) from o(Y]) to o(Y2). In the case that X is obtained from a
closed manifold by removing two balls, 0(X) recovers the Furuta-Bauer invariant of the
4-manifold.

The construction of o(Y) uses finite-dimensional approximation and Conley index theory,
two ideas which were part of the early development of Floer homology and the related work
of Conley and Zehnder.

Sl-valued Morse Theory and Seiberg-Witten Invariants of 3-Manifolds
THOMAS MARK

We describe a technique introduced by Donaldson for computing the Seiberg-Witten
invariants of a closed 3-manifold Y having b; > 0 by using a circle-valued Morse function
¢ and a topological field theory arising from that situation. We show that the Seiberg-
Witten invariant is equal to the intersection number of a pair of submanifolds in a product
of symmetric powers of a slice for ¢, and use this fact to interpret the Seiberg-Witten
invariant as a count of certain gradient flow lines for ¢. In particular we verify a conjecture
of Hutchings and Lee, leading to an alternative proof of a theorem of Meng and Taubes
relating Seiberg-Witten and torsion invariants of 3-manifolds. Finally, this result suggests
the possibility of defining a Floer-type homology theory based on data given by the Morse
function, along the lines of recent work of Ozsvath and Szabd.



Amoebas in dimension 4: complex curves and surfaces
GRIGORY MIKHALKIN

Given an algebraic variety in the complex torus (C*)” one may consider its amoeba
which is the image of the variety under the map (zy,...,2,) — (log|z],...,log|z,|). Tt
turns out that the shape of the amoeba carries a lot of information about the topology
of the variety. In the talk I reviewed the current state of knowledge on amoebas as well
as their applications to topology of real and complex varieties, in particular to complex
surfaces.

Holomorphic disks and invariants for three- and four-manifolds
PETER OZsSVATH
(joint work with Zoltan Szabo)

I discussed joint work with Zoltan Szabo in which we defined invariants for three- and
four-manifolds. In my talk I focused mainly on the three-dimensional case. Start with a
Heegaard diagram for the three-manifold Y, and with splitting surface ¥ and attaching
circles {1, ...,a,} and {f, ..., B} for the two handlebodies (where g is the genus of the
surface). The invariants are then defined by using a suitable variant of Lagrangian Floer
homology in the g-fold symmetric product of X, relative to the totally real subspaces
ap X ... X ag and By X ... X fB.

Dual decompositions of 4-manifolds
FRANK QUINN

A dual decompositon is a description as a union of two submanifolds, each of which is
a handlebody with handles of index < 2. This is somewhat like a Heegard decomposition
of a 3-manifold, but the purposes and flavor of the theory are very different than in 3
dimensions, so we avoid use of the same term. Three areas of application have been
identified so far:
1) As a general setting for certain types of knot and link invariants. The links are the
attaching maps of 2-handles in one part of the decomposition, and invariants come from
algebraic topology of the other part. A perturbative version of the Cochran-Teichner-Orr
invariants arises this way.
2) As a setting for topological field theories in 341 dimensions. For some of these, state
spaces of 3-manifolds are defined in terms of Heegard decompositions. Dual decomposi-
tions of 4-manifolds seem to be the right notion of bordism for Heegard decompositions.
Specifically, half of a Heegard decomposition is a 3d thickening of a graph. Consider joining
two of these by a relative 4d thickening of a 2-complex. Map this to the interval, with
the two 3d thickenings mapping to the endpoints. Then time slices can be arranged to
generically be thickenings of graphs (slices through the 2-complex spine). This presents
the bordism as a 1-parameter family (with singularities) of thickenings of 1-complexes.
3) As a setting for a weak subsitute for standard handlebody theory. Generally handles
can be manipulated to follow algebra, particularly the chain complex of the universal cover,
but this fails for 2-handlebodies. This means we cannot manipulate handle structures on
half of a dual decomposition if the decomposition is fixed. The weak subsitute is to get the



desired sort of handle structure by controlled changes of the decomposition. The ambient
manifold is still held fixed.
The lecture described implementations of the third item.

An invariant of homology cobordism
NIKOLAI SAVELIEV

We prove the following theorem. TLet M be an integral homology 3-sphere which is
homology cobordant to a Seifert fibered one. If the Rohlin invariant of M is non-trivial
then no finite multiple of M can bound a smooth homology ball.

This is proved by defining an integral lift of the Rohlin invariant on the class of plumbed
homology spheres and proving its homology cobordism invariance for (at least) Seifert
fibered homology spheres and their multiples. Such a lift is defined as the Fukumoto-
Furuta invariant for a special class of plumbed 4-orbifolds which are introduced in the
talk.

Equivalently, this lift can be defined as the Neumann-Siebenmann invariant, and also
as an equivariant Casson invariant (joint with Olivier Collin) and as a particular linear
combination of the Floer Betti numbers.

Symplectic homotopy projective planes
I[VAN SMITH

It is a standard conjecture that a symplectic four-manifold homotopy equivalent to the
complex projective plane is in fact symplectomorphic to CP2. A partial result was proved
by Taubes: if X ~ CP? and satisfies Kx - [w] < 0 then X is standard. The crux of
Taubes’ proof is the construction of a symplectic sphere in X, which he deduces from
“Seiberg-Witten = Gromov”. Following joint work with Simon Donaldson, we explained
a new proof of Taubes’ theorem, building on the existence of Lefschetz pencils. A pencil
gives rise to a family of symmetric products over CP! and there is an associated Gromov
invariant counting JJ-holomorphic sections of this new fibration. We proved (i) that the non-
vanishing of this invariant is enough to construct symplectic surfaces and (ii) the invariant
is often computable - for instance in the case at hand - by using the Abel-Jacobi map to
reduce to families of tori and projective spaces. At the end we described a (speculative!)
parallel programme to prove that if X satisfies ¢? = 3¢y and Kx - [w] > 0 then it cannot
be a homotopy CP2?. The strategy is to construct flat connexions on X from ones on the
fibres of a Lefschetz fibration.

Holomorphic disks and invariants for smooth 4-manifolds
ZOLTAN SZABO
(joint work with Peter Ozsvath)

This talk presented a smooth four-manifold invariant F' : Spin®(X) — Z, where X
is a smooth, closed oriented 4-manifold, with by (X) > 1. F is contructed by using an
appropriate handle decomposition of X together with a pairing on the recently defined



Floer-homology groups HF*(Y,s), HF (Y, s) where s is a spin-c structure over the three-
manifold Y. While HF* and HF~ are defined by using a version of Lagrangian Floer-
homology in the g-fold symmetric product Sym?(X,) and counting holomorphic disks with
totally real boundary conditions, the pairing is given by counting holomorphic triangles.

As one of the application of this theory we proved that if Y is a three-manifold that
corresponds to a plumbing tree G, where the coefficient k; of any vertex v; satisfies that
k; > d(v;) (where d(v;) denotes the degree of v; in G), then it is impossible to embed
Y to a symplectic four-manifold X = X; Uy X, so that by (X;) > 0, by (X3) > 0. As
another application by using surgery exact sequences for the Floer homologies, we gave a
combinatorial formula for HF~ (Y, s) for a certain class of plumbed three-manifolds that
included for example all Seifert fibered three-manifolds with b, = 0. These are all joint
work with Peter Ozsvath.

Knot concordance and von Neumann 7-invariants
PETER TEICHNER
(joint work with Tim Cochran and Kent Orr)

Using gropes or Whitney towers in the 4-ball, we have defined a filtration of the knot
concordance group given by so called n-solvable knots. The previously known concordance
invariants, including those by Casson and Gordon, only detect whether the knot bounds
a symmetric grope of height 4, i.e. whether the knot is 4-solvable. We have previously
constructed infinitely many examples of 4-solvable knots which are not 5-solvable, showing
that the previously known concordance invariants cannot detect the concordance group.

Using the Cheeger-Gromov estimate for the von Neumann n-invariant, we can now show
that there are n-solvable knots which are not (n -+ 1)-solvable for all n. The idea is to start
with a seed fibred ribbon knot of genus 2, and then infect it with a lot of trefoil knots
which are tied into curves in the n-th term of the derived series of the ribbon knot group.

Homotopy K3’s with several symplectic structures
STEFANO VIDUSSI

Let M be a smooth 4-manifold. Whenever M admits a symplectic form, it is interesting
to discuss the uniqueness of this form up to homotopies in the space of symplectic forms
and diffeomorphisms of M. The canonical class of the symplectic form, lying in H?(M,7Z),
can help detect inequivalent structures. McMullen and Taubes provided the first example
of a manifold (a homotopy E(4)) admitting 2 inequivalent structures, following the idea
(that can be implicitely found in some Thurston’s papers) of using a link exterior admit-
ting inequivalent fibrations, and constructing from this, via Fintushel-Stern link surgery,
a smooth, simply connected 4-manifold admitting inequivalent symplectic structures, dis-
tinguished by their canonical class.

In my talk T have shown how, building a suitable family of 2-component fibered links, it
is possible to produce a family of homotopy E(2)’s whose n-th member admits n inequiv-
alent symplectic structures. It is necessary, in this approach, to exploit some accidental
diffeomorphism of the link surgery construction, which allow to present the same smooth



manifold as result of different symplectic fiber sums, inducing different symplectic struc-
tures. These are finally distinguished by their canonical classes, that can be studied by
analysing the Seiberg-Witten polynomial of the 4-manifold.

Edited by Birgit Schmidt and Markus Szymik
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