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This meeting was the fourth on Computational Group Theory held at the Mathematis-
ches Forschungsinstitut. The meeting was attended by 49 participants. There was a good
mix of nationalities, age-groups, and research communities — such as matrix group recogni-
tion, representation theory, finitely-presented groups. There were 9 people for whom this
was their first meeting. (The gender balance reflected that of the community.)

We made a strong effort to provide a balance between time in the lecture room and
more informal discussion — quite a bit at the terminals in the basement. We were very
pleased to see the continuing progress with this facility. (Some of us recall the first meeting
in 1988 when a significant effort had to be put into transporting equipment from Aachen
and setting it up.) This enabled people to test ideas from discussions in familiar (and
sometimes extensive) computing environments at other locations. Posters were used to
good effect (they included a report on an associated meeting on Finitely-presented groups:
questions and algorithms held in Trento, Italy, the week before). There were several invited
survey talks. We also had a formal discussion on the theme: Support for software. All the
newcomers were given the opportunity to make a formal presentation.

It is perhaps a sign of the increasing maturity of the field that there was more emphasis
on theoretical developments — though of course these would not have been possible without
significant implementational developements.

The abstracts which follow give a good indication of the range of topics that are active
in the field. The matrix group recognition project continues to receive a lot of attention.
There were surveys by O’Brien and Kantor. Other surveys were by Sims on the Knuth-
Bendix procedure, Hifl on Representation Theory and Holt on automatic and hyperbolic
groups.

The abstract of Leedham-Green’s closing talk gives an indication of the very positive
interactions which were made possible by a face-to-face meeting. This underlines that
even in an era of “quick” communication a community needs to meet face-to-face from
time-to-time.

The organisers: G. Hif}, D. Holt, M. Newman, H. Pahlings.



Abstracts

Groups acting on trees
L. BARTHOLDI

The class of “finite-state groups” seems to combine the best qualities of many worlds: they
are describable by finite data yet can be infinite; they are simple to compute with yet can
possess exotic properties; they served as a source of examples and counter-examples in
group theory for the last 20 years.

Given an isometry g of the d-regular tree T', it decomposes as a permutation m, € Sy
of the top d branches, and isometries (g1, ..., gq) of the d subtrees, each isomorphic to T.
These g; can in turn be decomposed, and the set of all g;, gi;, ... obtained in this way is
the states of g. A group G is finite-state if it is generated by isometries with finite set of
states; equivalently, if all elements of G' have a finite set of states.

As examples, all finite groups and countable abelian groups admit finite-state represen-
tations; this class is closed under wreathing with a finite group and taking direct products;
and contains examples like the Grigorchuk group G, which is a finitely generated, infinite,
torsion, recursively presented 2-group of finite width and intermediate growth.

I will explain how computations can be performed on such groups; they have a solv-
able word problem, and admit a natural family of approximating quotients obtained by
restricting the action to some level of the tree T

Its lattice of normal subgroups, and its tower of automorphism groups, have recently
been determined. I hope to discuss such computations, and outline their generalization to
the whole class of finite-state groups.

Extracting Generators and Relations for Matrix Algebras
J. CARLSON

This is a report of work in progress. For some time I have been talking to John Cannon
about methods to redesign the structures for finite dimensional algebras in magma. At the
present time there are numerous “algebra” types in magma, each optimized for a particular
type of tasks. But there is no communication between the types. One can not, for example,
define a module over a matrix algebra or a structure constant algebra. The best way to
solve this problem it would seem, is to introduce generators and relations for algebras in
general. Then a basis for the algebra could be computed as elements in a polynomial ring
with non-commuting variables and Groebner basis methods could resolve such questions
as dimensions of the algebra.

The center post of such a system then would be a type of free algebra and a program for
computing non-commutative Groebner bases. Some of this has been written for magma
though it is not yet available in any official release. In order to make the system work it will
be necessary to have the capability of obtaining generators and relations for the various
types of algebras. The most difficult and also most general of the types is the matrix
algebra. Currently we are working on the development of algorithms for this purpose
and we have some implementations. In addition the programs being written could have
numerous other uses.



Parallelizing Coset Enumeration
G. COOPERMAN

Coset enumeration for group presentations, like Groebner bases, is well known to be a
challenging problem to parallelize. Recently, a new parallel coset enumerator was developed
jointly with Victor Grinberg, which is believed to have achieved the greatest degree of
parallelism (32 CPU’s on an SGI Origin 2000 with an eight times speedup) to date among
parallel enumerators. The method is based on a new strategy (clouds) for defining many
cosets at once. In a traditional computer program (even a sequential one), the quality
of the enumeration with respect to both CPU time and memory depends strongly on the
ability to process coincidences and make deductions as soon as possible after they are
discovered. We present a class of what we call bulk definition strategies, which avoid this
restriction.

This leads to an interesting strategy for parallelization. STEP 1: Find a bulk definition
strategy such that the sequential algorithm does not degrade excessively when using the
strategy. STEP 2: Parallelize it. (Parallelize the relator tracing.)

We will observe that STEP 2 exhibits a nearly linear speedup over the modified sequential
algorithm of STEP 1.

We also describe a sequential “prescan strategy”, which is surprisingly effective during
the second half of an enumeration (speeding up the sequential enumeration by a factor of
about three on Lyons’ group). The “prescan strategy” suffers from not maintaining Felsch
consistency. Hence, the final table must be verified, but this is usually fast.

TOP-C (Task Oriented Parallel C/C++, www.ccs.neu.edu/home/gene/topc.html) was
used for the parallel implementation. This allowed us to parallelize a 3,200 line sequential
program by adding approximately 250 lines of parallel-specific code.

The orbit-stabiliser problem for polycyclic groups
B. Eick
(joint work with G. Ostheimer)

The general problem considered in this talk is the development of practical algorithms
for (possibly infinite) polycyclic groups. A useful general approach to such methods is by
induction over a normal series with elementary or free abelian factors. In the inductive
step, an elementary or free abelian normal subgroup A of a group G is considered. There
are two fundamental problems which often arise this setting.

e The orbit-stabilizer problem:
(1) Given b, c € A, determine Stabg(b) and an element g € G with b9 = ¢ (if g exists).
(2) Given B,C < A, determine Stabg(B) and an element g € G with BY = C (if g
exists).

e The extension problem: Determine H'(G/A, A) and H*(G/A, A).

For elementary abelian groups A, practical solutions to these problems are well-known.
For free abelian groups A, practical methods to solve these problems have been developed
recently. The resulting approach to solve the orbit-stabilizer problem for elements (1) is
described in this talk.



Solutions to these and related problems have further been used to obtain a variety of
practical algorithms for polycyclic groups. These include the following.

e Determine Cg(g), Ng(U) and UNV for g € G and U,V < G.

e Compute the torsion subgroup T'(G) (if it exists) or the normal torsion subgroup
TN(QG).

e Calculate the conjugacy classes of finite subgroups.

e Construct the subgroups of low index in G.

e Calculate F'it(G), Z(G) or the FC-centre F'C(G).

e Exhibit the nilpotent-by-abelian-by-finite structure of G.

Implementations for most of these methods are available in the Polycyclic package (joint
work with W. Nickel). This package is based on GAP and Kant.

Bounds on the degree of commutativity of a p-group of maximal class
M. GARCIA-SANCHEZ
(joint work with A. Vera-Lépez, J. Arregi, F. Vera-Lépez, R. Esteban-Romero)

A group G of order p™ is said to be a p-group of maximal class if Y,,, | # 1, where Yy = G,
i

Y; =[G,...,G]| for every i > 2 and Y] such that Y;/Y, = Cq/v, (Y2/Ya).

One of the main invariants of a p-group of maximal class is its degree of commutativity c.
Another important invariant associated to such a group is defined by v = v(G) = min{k €
[2,m—c—2]| [V1,Ys] = Vitric}. It is proved that v = v(G) is an even number 2! satisfying
v=2<p—Tlandifv+2=2[+2<m-—c—1,then1 <1< (p—3)/2.

We have designed an algorithm that gives us a lower bound for the degree of commuta-
tivity of a p-group of maximal class of order p™. Running this algorithm for primes p < 43,
we have conjectured the existence of a function ¢(p,[,cq) such that 2¢ > m — g(p, [, cp),
where ¢q is the residue class of ¢ modulo p — 1, for all p-group of maximal class with the
invariants [ and ¢p. In fact, we have proved the validity of g(p, 1, cy) for the six regions.
The union of these six regions covers almost all possible (I, ¢y). Besides, the given bound
is exact in three of the six regions.

Experiments in GAP and special pieces in unipotent varieties
M. GEcCK
(joint work with G. Malle)

This is a report on a joint work with Giinter Malle which appeared in Experimental Math-
ematics 8 (1999), 281-290. It is the result of experiments performed using computer
programs written in the GAP language. We describe an algorithm which computes a set
of rational functions attached to a finite Coxeter group W. Conjecturally, these rational
functions should be polynomials which have the following meaning.

Assume that W is the Weyl group of a Chevalley group G' defined over the finite field F,,.
We consider the conjugacy classes of G consisting of unipotent elements. It is known that
there are only finitely many such classes and that they can be classified in a uniform way



if the characteristic is large enough; the classification in small characteristics is different,
however.

Now, following Lusztig and Spaltenstein, one can define a partition of the variety of
unipotent elements of GG into so-called special pieces. These special pieces are unions of
unipotent classes and they are classified in terms of certain irreducible characters of the
finite group W (and, hence, independently of the characteristic). Lusztig showed (by an
extremely elaborated counting argument) that the number of F -rational points in a special
piece is given by a well-defined polynomial in ¢. Our conjecture is that these polynomials
are precisely the ones produced by our algorithm.

The algorithm is a variant of a known algorithm (due to Shoji and Lusztig) for computing
the Green functions in the character theory of finite groups of Lie type. It even works for
complex reflection groups. We give a number of examples which show, in particular, that
our conjecture is true for all types except possibly B, and D,,.

Computing Canonical Bases of quantum groups
W. DE GRAAF

Let U~ be the negative part of the quantized universal enveloping algebra of a semisimple
Lie algebra. Kashiwara and Lusztig have independently constructed a basis of U~ with
very favourable properties. This basis is called the canonical basis. In this talk I sketch
an algorithm for computing the elements of the canonical basis of a given weight. This
algorithm is based on the following two facts. Firstly, the matrix giving the base change
from the canonical basis to a basis consisting of standard monomials is upper triangular
with 1’s on the diagonal. Secondly, the same holds for the matrix of the base change from
the canonical basis to a basis of PBW-type. The algorithm based on this computes the
elements of the canonical basis as linear combinations of elements of a PBW-type basis.

ACME, an Andrews-Curtis move enumerator
G. Havas

Andrews and Curtis have conjectured that every balanced presentation of the trivial group
can be transformed into the standard presentation by a finite sequence of elementary
transformations. Previous computational work on this problem has been based on genetic
algorithms. We show that a computational attack based on a breadth-first search of the tree
of equivalent presentations is also viable, and seems to outperform that based on genetic
algorithms. Tt allows us to extract shorter proofs (in some cases, provably shortest) and
to consider the length thirteen case for two generators. We prove that, up to equivalence,
there is a unique minimum potential counterexample.



Computational Representation Theory
G. Hiss

In this survey talk I discussed three topics:

1. The Modular Atlas,
2. Minimal Degrees,
3. Symmetric Groups.

Ad 1. Here I summarized some recent results, in particular the completion of the Brauer trees
of the Lyons simple group, accomplished by Miiller, Neunhoffer, Rohr and Wilson.
I also discussed the work that still needs to be done, giving some more details for
three of the sporadic groups, the Fischer group Fis,, the Thompson group Th and the
Harada-Norton group HN.

Ad 2. Here I shortly discussed the knowledge on the smallest degrees of representations of
the finite simple groups and their covering groups. More details were given in the talk
by Frank Liibeck.

Ad 3. Here I presented some recent results on the representation theory of symmetric and
alternating groups, as well as their covering groups. There exist GAP-programs for
computing the ordinary character tables of 2.4, and 2.S,,, implemented by Miiller
and Noeske. The modular tables for the symmetric groups 5,, are completely known
for all n < 17. In Sig, only one bit of information is missing in characteristic 2. Also,
the Brauer trees for 2.4, and 2.S,, are now known for all n by the work of Miiller
and Noeske. Finally I mentioned the programs by Frank Liibeck for computing the
Jantzen filtration of Specht modules.

Collection in polycyclic groups
B. HOFLING

Given a finite polycyclic presentation (gi,...,gn | 9;" = wis, 9] = wij,i < j), multipli-
cation of reduced words is performed by collecting, i. e., by reducing the word obtained
by concatenation of the original words. Collection is usually done from the left, that is,
choosing the leftmost occurrence of a left hand side of a rewriting rule. While this works
well in practice, theoretical bounds on the complexity are extremely bad, usually O(N"*1),
where N is the input length, or O(N€), where ¢ is the p-class of the p-group G.

Using a polycyclic presentation obtained from the derived series of GG in a natural way, [
could show that a collection can be carried out in O(N3?) steps. This assumes that certain
powers (g;-l)-"? are pre-computed. But even this bound (which is sub-exponential in N)
apparently is far from reality.

A reason for this might be that most intermediate collection steps actually take place
in small exhibited subgroups H of G. These are subgroups of the form H = {g7* ... g% |
0<a; <e;,a =0ifi¢ I}, where I is a subset of {1,...,n}. Using this observation, one
obtains upper bounds and estimates for the average cost of a collection. The estimates
thus obtained generally agree with experimental data to within an order of magnitude.

As a consequence, it seems to be advisable to choose generators {gi,... ,g,} such that
G = HG;, where G is a small normal subgroup of G and H is exhibited, and then to
recursively decompose H in the same way. There is an algorithm for obtaining such a
polycyclic presentation from one refining a normal series with nilpotent factors.



Computation in automatic and hyperbolic groups
D. HoLr

This was a survey talk, summarising recent progress in the art of computing efficiently in
automatic and hyperbolic groups.

The definition of an automatic group is due to Thurston and dates from about 1985.
Roughly speaking, a (finitely generated) group is automatic if there is a finite state au-
tomaton (FSA) recognising a unique word in the generators for each group element, and
other automata that read two words in the generators simultaneously and synchronously,
and accept the pair if both are in normal form and one is equal in the group to the other
multiplied on the right by a group generator.

Once these FSA have been computed for a specific group, the word problem in that
group can be solved in quadratic time by reducing the word to its normal form. The
growth function (which is necessarily rational) and orders of elements can also be computed.
Recently these programs have been used to prove that various groups are infinite that have
resisted other methods of proof. For example, the Heineken group

H= <33, Y, 2 | [xa [xay]] =%, [ya [yaz]] =, [Za [Zax” = y>
is automatic (indeed, it is hyperbolic), and infinite.

Hyperbolic groups form an important subclass of the automatic groups in which more
problems are solvable efficiently. Presentations of certain subgroups, known as quasiconvex
subgroups, can be computed, and the generalized word problem can be solved for these
subgroups. Recently, my student Joe Marshall has implemented algorithms for testing
elements of infinite order for conjugacy, and for testing quasiconvex subgroups for malnor-
mality in hyperbolic groups. For example, the subgroup ([x,y], [y, 2], [z, 2]) of the group
H defined above is free of rank three and is malnormal in H.

Algorithms for finite linear groups
W. KANTOR AND A. SERESS

In the first half of the talk, we survey recognition algorithms for finite simple groups. Given
any quasisimple matrix representation of a finite simple group G, there is a Monte Carlo
algorithm which, in time polynomial in the input length, determines the standard name
of G. In slightly more time, namely polynomial in the input length and in the size ¢ of
the underlying field of definition of G if G is of Lie type, it is also possible to identify G
with a standard copy C' of its isomorphism type constructively. This means that there is
an isomorphism A : G — C such that for any g € G we can compute A\(g) € C, and for any
c € C we can compute A~!(c). Moreover, we can express any g € GG in polynomial time as
a function of some fixed generating set X of G.

In the second part, we outline an algorithm which reduces the basic handling of arbitrary
matrix groups G to the constructive recognition of its composition factors. The algorithm
is based on structural properties of (7, instead of trying to exploit the geometric properties
of the action of G in the input representation. The latter approach is described in Eamonn
O’Brien’s talk.



A modular version of Molien’s formula
G. KEMPER
(joint work with I. Hughes)

Molien’s formula is one of the most remarkable tools in invariant theory of finite groups. It
allows the computation of the Hilbert series of an invariant ring without touching a single
invariant. Unfortunately, Molien’s formula breaks down in the modular case, i.e., when
the characteristic p of the ground field divides the group order |G|.

In this work we obtain a formula for computing the Hilbert series in the “mildly” modular
case, i.e., when p divides |G| but p? does not. The main ingredients we use are:

- species and linear combinations thereof,
- symmetrization and the lambda-structure of representation rings,
- a periodicity property of symmetric powers

An extension of our formula also allows the easy computation of the depth of a mildly
modular invariant ring.

Isometry classes of linear codes
A. KERBER

A brief review was given on our (i.e. mainly A. Betten, A.K., A. Kohnert and R. Laue’s) ac-
tivities in the field of constructive theory of finite structures. We are mainly after ezistence
proofs (via construction) of structures for given sets of parameters (e.g. of t — (v, k, \)-
designs for given v, t, k) as well as after the development and the implementation of algo-
rithms for the systematic and exhaustive construction of complete catalogs.

Our generator MOLGEN for molecular graphs corresponding to a given chemical formula
and (optional) further conditions was mentioned and it was shown in which situation in
molecular structure elucidation the fast generation of complete catalogs is necessary. It
was also pointed to the package DISCRETA that is devoted to the systematic construction
of designs with a prescribed group of automorphisms.

Then it was described what we did for the systematic evaluation of representatives of
isometry classes of linear codes. Isometry classes were introduced and it was shown how
the calculation of transversals of such classes amounts to a consideration of orbit sets of
the following form:

GLi()\(Sn \Pe—1(q)"),

where Py_1(¢) means a projective geometry. (This shows perfectly why there is such a close
connection between projective geometry and the theory of linear codes!) Numerical results
on the number of (indecomposable) isometry classes were shown, and it was mentioned that
the corresponding generator matrices are available and that the corresponding minimal
distances are known. Details can be found in the book A. Betten, H. Fripertinger, A.
Kerber, A. Wasserman, K.-H. Zimmermann: Codierungstheorie, Springer-Verlag 1998.



Matrix groups recognition: The seven last transparencies
C. LEEDHAM-GREEN

My lecture was a post-script to O’Brien’s lecture. His lecture (at the start of the confer-
ence) showed how, after many years work, and with the collaboration of a large proportion
of the participants at the conference, the matrix recognition project was beginning to come
to fruition. This provoked a collection of challenge problems, constructed by Parker and
Wilson, and I mentioned at the end of my lecture that the first five had already been
solved, which provoked a supply of some ‘harder’ problems by Miiller and Liibeck.

Small degree projective irreducible representations of finite simple groups

F. LUBECK

Let G be a finite simple group and F' = F an algebraically closed field of characteristic .

In my talk T considered the following two problems:

(a) What are the (few) smallest degrees d > 1 of irreducible projective representations of

G over F?

(b) Given F and (a reasonably small) d: Which simple G have a projective irreducible

representation of degree d over F'?

Such questions arise in various classification and identification problems. For example
it is of relevance in the matrix recognition project which was a major topic during this
meeting.

In my talk I gave an overview on five papers concerning these questions. I tried to give
an idea how the results look like (using some transparencies) and about the methods used
to obtain the results.

In some more detail:

1.

Landazuri-Seitz-Zalesskii (1974/93): gave lower bounds for the smallest degree d for
G = G(q),q = p’ of Lie type and [ # p. These are given as ‘polynomial in ¢.

. Tiep-Zalesskii (1996): Considered the case [ = 0 and G = G(q) a classical group of

Lie type. Gave the smallest d (in some cases also the second and third smallest) and
its multiplicity.

. Liibeck (2001): Considered the case [ = 0 and G = G(q) an exceptional group of Lie

type. Gave the seven smallest degrees and their multiplicities. Also the (few) known
results for these G and primes [ # p are collected.

. HiB-Malle (2001): Considered [ a prime and d < 250. Determined all G which occur,

except the G = G(q) groups of Lie type in defining characteristic [ = p.

. Liibeck (2001): G = G(q), ¢ = p’ group of Lie type and [ = p: Gave for r =

rank(G) > 12 all representations of degree < r3/8 for type A, and of degree < r3 for
the other types of classical groups. Furthermore for » < 12 there are longer lists of
all such representations of degree smaller some bound, which depends on the type.



The 5-modular character table of the sporadic simple Harada-Norton group
K. Lux

I report on joint work with R. Borcherds, UC Berkeley, and A. Ryba, Queen’s College,
New York. We have determined all but two of the 5>-modular irreducible characters for the
Harada-Norton group using theoretical and computational methods. From our results it
follows that the degrees of the first 14 Brauer characters, by, ..., by4 in the principal block
are

1 133 626 2451 6326 8152 9271 54473 69255 84798 131747

145275 170258 335293.

For the last two irreducible Brauer characters in the principal block we get the following
explicit bounds, where a5 = 638571 and a4 = 784379,

a5 < by < ays + by + b
and

a16 S blg S a1 + 2b2 + bg + 2[)7 + bg.

Our method of proof uses the following techniques.

1) Modular character theory.
2) Vertex operator algebras.
3) Condensations of symmetrized powers and direct condensations.

For 3) we used a package for determining condensations of symmetrized powers developed
by A. Ryba and a package for calculating direct condensations by F. Liibeck and M.
Neunhoffer, both at Lehrstuhl D fiir Mathematik, RWTH Aachen. We are particularly
thankful to M. Neunhoffer, who constructed two direct condensations using the St.Andrews

cluster of PCs. For other relevant computations we also relied upon the following software
packages: GAP 3 and 4, the C-Meataxe 2.4, and MOC.

Computations arising from Monstrous Moonshine
J. McKaAy

The objects of interest are the monstrous moonshine functions, {f} and their discrete
invariance groups, G'y. There is a fascinating interplay between the functions, their groups,
analysis, and number theory.

P1 and P2 each characterize the elliptic modular function, j(z), with invariance group
G; = PSL(2,Z), and monstrous normalization

J(2) =1/q+0+> arg®, k>0,
with ¢ = €™ §(z) > 0, (z € H, the upper 1/2-plane).
Replicable functions generalise the j-function:

P1. Under the Hecke operator:
Vn > 1, nx To(j) = Y j((az +b)/d) = Fo(j),

10



where F), is the Faber polynomial of degree n with coefficients dependent on its argument,
thus Fy;(j) = j* — 2¢1, with ¢; = 196884. We characterize the Faber polynomial, and
define the Grunsky coefficients, {h, .}, by

Fog(f) =1/¢"+ > hmng™, m > 1.

P1 generalizes to replicable functions (Norton) by requiring that hy,, = h. if
ged(m,n) = ged(r, s) and lem(m, n) = lem(r, s). (This is equivalent to the introduction of
replication power maps into the Hecke sum.)

P2. Under the Schwarzian (Dedekind 1878):

{2,7} = R(j) = N(7)/(D(7))?, with R(j) = (365> — 41j +32)/36(j(j — 1))?
where Dedekind uses the analytic normalization for j: 17285(z) = 1/q+744+196884¢+- - -,
for which j takes the values so, = o0, s, = 0, s; = 1 at its critical points (j'(z;) = 0,
J(zi) = s;), w = e(mi/3).

The partial fraction expansion of R(j) makes its choice more apparent. This Schwarzian

equation is available for all Hauptmodules. The Hecke and the Schwarzian approach are
related.

It is conjectured that replicable functions are either

a) modular functions f(z) = 1/q + cq (including exp, cos, sin) or
b) Normalized Hauptmodules, f, with I'o(N) < Gy, with I'((N) = upper-triangular
matrices mod N.

We have: McKay-Sebbar (Math. Annalen 2000):
{f,Z}/(47T2) = 1+12Zm'n'h’m,nqm+n7 m, n > 1.

When is {f, 2z} holomorphic? Just when G has no elliptic fixed points which is when
G is free and of finite index in PSL(2, Z). Such free, finite index, genus zero, congruence
subgroups have been classified (McKay-Sebbar):

There are 33 of these, each described by a dessin d’enfant (which is a coset graph of
PSL(2,Z) over Gy).

References: URL: http://www-cicma.concordia.ca/ and follow “Moonshine”.

Multiplicity-free permutation representations of the sporadic groups
J. MULLER
(joint work with T. Breuer, I. Héhler and M. Neunhéffer)

For the sporadic finite simple groups and their automorphism groups, there are 253 multi-
plicity-free transitive permutation representations [Breuer-Lux, 1996]. For 249 of them,
i. e., currently 4 are missing, we have compiled a database containing: the collapsed adja-
cency matrices, the character tables of their endomorphism rings, the bijection from these
characters to the constituents of the permutation character, and data on the orbital graphs,
e. g., the number of the connected components and their diameters.

Hereby, we have built upon earlier work of [Praeger-Soicher, 1997], [Ivanov-Linton-Lux-
Saxl-Soicher, 1995], [Norton, 1985], and other people. The database will be made public on
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the Aachen HomePage http://www.math.rwth-aachen.de/LDfM. The data will be provided
in human readable form as well as in GAP-readable form.

The techniques employed encompass a few of the modern powerful tools of computational
group and representation theory, e. g., the various condensation techniques. Besides their
own interest, one possible application of these data is in algebraic combinatorics. Indeed,
quite a few of these orbital graphs are so-called Ramanujan graphs.

Computing in groups of Lie type
S. MURRAY
(joint work with A. Cohen and D. Taylor)

The groups of Lie type are a vital part of modern mathematics. Examples include reductive
Lie groups, reductive algebraic groups and finite groups of Lie type. In this talk I describe
a new package within the Magma computer algebra system for computing within these
groups. This package uses the Steinberg presentation to represent elements, and uses the
Bruhat decomposition to compute a useful normal form for the elements.

I will demonstrate the use of this package for a couple of nontrivial problems. I will also
describe new algorithms for converting from a matrix representation for the group to the
Steinberg presentation — this algorithm is a generalisation of the LUP algorithm. T will
also discuss applications to matrix group recognition.

Orthogonal representations of finite groups
G. NEBE

Let G be a finite group and V' a QG-module. Then V' is uniquely determined by its char-
acter yy. On the other hand, given V', one can easily calculate the G-invariant quadratic
forms

F={F:V xV = Q| F symmetric, bilinear, and G-invariant}.
So in principle xy also determines F (V).

I present a character theoretic trick, that uses Clifford algebras to calculate rational
invariants of the elements in F (V).

To a pair ¢ = (V, F) with F' € F(V) non-degenerate, one can functorially attach a
central simple Q-algebra ¢(¢). Since G acts on @ as isometries, it acts on ¢(p) as Q-algebra
automorphisms. Therefore the simple ¢(¢)-module W becomes a projective QG-module of
which the character xyw = |/Xc(p) is a certain square root of the character ...

Each constituent of yy with odd multiplicity can be used to determine either the Hasse
invariant (i.e. the class of ¢(p) in Br(Q) of ¢ if n is odd, or the determinant of ¢ if n is
even).
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Statistical studies of standard structures
P. NEUMANN

The standard structures of this lecture were classical groups defined over a finite field
F; that is, groups G such that SL(n,q) < G < GL(n,q), SU(n,q) < G < GU(n,q),
Sp(2m, q) < G < GSp(2m,q), SO2m +1,q) < G < GO(2m + 1,q), or 0 (2m,q) < G <
GO*(2m, q). The study-worthy statistics were of the form Prob[X € G has property P],
where P was any of being eigenvalue-free (in the sense that there are no eigenvalues in the
field F'), having eigenvalue-free exterior square, being cyclic, having cyclic exterior square,
being regular, being semisimple. Here probability is simply the notion of frequency, that
is, the proportion of elements of the group with the given property. Many of the studies
of these statistics were originally motivated by applications to the design and analysis of
matrix-group algorithms.

Recent results by Neumann & Praeger [1996], G E Wall [2000], Fulman [2000], Fulman
& Neumann & Praeger [200x], Guralnick & Liibeck [2001], Brydon [200y], Britnell [200z]
were surveyed. Mention was made of the methods — some of the theorems were proved in
combinatorial /geometric ways, others by use of cycle indices and/or generating functions.

The lecture ended with two mysterious problems (which have little to do with compu-
tational group theory).

Problem 1. Define cg(00,q) := lim, . Prob[X € G is cyclic]. Are cy(o0,q),
csp(00, @), co(00,q), and cox (00, ¢) rational functions of ¢?

This is motivated by the remarkable observation made independently by Wall and Ful-
man that cqr (00, q) = (1 —¢7°)/(1+¢7?).

Problem 2. One of the Rogers-Ramanujan identities can be cast in the form

L+ IGLm, g = [ (=g

n=1 r=+1 (mod 5)

Are there analogous product expansions for
L+ |Um, )™, 1+ |Sp2m,q)|™"
n=1 m=1

and .
L+ (l0Y@m,q)[ " + 0 (2m, q)| )| ?
m=1

This is motivated by an observation of Fulman, who uses the quoted Rogers-Ramanujan
identity to prove a product formula for lim,, ,,, Prob[X € GL(n,¢) is semisimple].

Enumerating very large orbits
M. NEUNHOFFER

Let G be a finite group, F' a field, F'G the group algebra, K < G a subgroup such that
the characteristic of F' does not divide |K|, and e := 1/|K|->", _x k¥ € FG. Then e is an
idempotent. Therefore P — Pe is an exact functor from the category of right F'G-modules
to the category of right e 'Ge-modules. We call this fixed point condensation, because
Pe={z € P|zk=xVke K}.
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In the case where € is a transitive G-set and P := F(Q is the permutation module with
basis €2 one can describe the action of an element ege € eF'Ge on Pe explicitly in terms of
the numbers |wK Nw'Kg| for any two K-orbits wK and w'K in Q. Therefore we want to
enumerate very large orbits and count the elements in these intersections.

In this talk T present an idea of F. Liibeck and me ([1]) which helps to condense very
large permutation modules. J. Miiller, F. Rohr, R. Wilson and I for example used this for
an orbit €2 of the sporadic simple Lyons group which consists of 1,113,229,656 subspaces
of dimension 10 within a simple module of dimension 111 over GF(5) ([2]). In our case
the condensation group K had 362,880 elements and the condensed module had dimen-
sion 3,207. This computation was done on a workstation cluster in St. Andrews with 50
machines in 13 hours of wallclock time. The result was used to complete the information
in [3] on the Brauer trees for the Lyons group in characteristics 37 and 67.

References:

[1] Frank Liibeck and Max Neunhdéffer. Enumerating Large Orbits and Direct Conden-
sation. Ezperimental Mathematics, 10:2 (2001), p. 197-205.

[2] Jiirgen Miiller, Max Neunhoffer, Frank Rohr, and Robert Wilson. Completing the
Brauer Trees for the Sporadic Simple Lyons Group. Submitted.

[3] Gerhard Hif} and Klaus Lux. Brauer trees of Sporadic Groups. Clarendon Press,
Oxford, 1989.

Matrix representations for polycyclic groups
W. NICKEL

A well known theorem conjectured by P. Hall and proved by L. Auslander asserts that every
polycyclic group can be embedded into GL(n,Z) for some n. In the lecture, an algorithm
for the more special case of constructing such an embedding for a finitely generated torsion-
free nilpotent group H was explained. A computer implementation of this algorithm exists
in the GAP 4 package polycyclic.

The algorithm works upwards along a central poly-C'y, series of H. Each element of H
can be written as a normal word in a generating sequence arising from the series. The
exponents in the product of two normal words are polynomials in the exponents of the
two factors by a result of P. Hall’s. These polynomials are used to construct a faithful
Z H-submodule of ZH* of finite Z-rank consisting of polynomials.

The approach can be extended to the construction of faithful matrix representations
over Z for polycyclic nilpotent-by-free-abelian groups.

Recognising finite alternating and symmetric groups
A. NIEMEYER AND C. PRAEGER
(joint work with R. Beals, C. Leedham-Green and A. Seress)

Given a generating set X for a (black-box or matrix) group G’ we address the problem of

deciding whether G is isomorphic to A,, or S,,, and if it is, we further address the problem
of constructing an isomorphism for efficient computation in G. Polynomial-time Las Vegas
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algorithms were constructed for doing this by Beals and Babai (1993) and Morje in his
PhD thesis (1995; student of Kantor and Seress). A faster Las Vegas algorithm that runs
in time O(nlog® n(¢ + nu)) was given by Bratus and Pak in 2000. (Here ¢ is the cost of
one random element and 4 is the cost of one group operation.) However the Bratus/Pak
algorithm relies on the Extended Goldbach Conjecture or a variant of it.

A new Las Vegas algorithm was constructed by the speakers and colleagues for black-box
groups that runs in O(nlogn(&+pu)) time. It relies heavily on the statistical distribution of
certain elements of S,, to construct an n-cycle. We also explore algorithms for recognising
constructively A, and S, as matrix groups in their smallest dimensional faithful matrix
representation which avoid the construction of n-cycles and more quickly find a 3-cycle
in A,. The cost is reduced to O(n'/*logn(¢ + p)). This work was initiated by intense
discussions of the speakers and their colleagues at the Computational Groups Week at
Oberwolfach in 1997.

Matrix group recognition following Aschbacher
E. O’BRIEN

The matrix group “recognition” project was initially motivated by the desire to develop
useful algorithms to study the structure of matrix groups defined over finite fields.

One strand of it relies heavily on Aschbacher’s theorem about the (maximal) subgroup
structure of GL(d, q): either the group G has a normal subgroup N which reflects the
geometry of the group, or GG is almost simple modulo scalars.

In this talk I surveyed the status of recognition following Aschbacher. Considerable
progress has been made on the first 8 categories of Aschbacher. We are currently able to
“name” the composition factors of many groups in the final category. This ability relies
on work of Babai et al. and many others.

I also discussed the construction of a composition tree which allows us to obtain the
composition factors of a matrix group. It relies on the use of Schreier-Todd-Coxeter-Sims
to provide a useful description for the almost simple groups. This can later to be modified
to use other “constructive” or sporadic group recognition techniques.

I also discussed the construction of a finite presentation for the matrix group, which
allows confirmation of the composition tree.

Finally T highlighted the significant outstanding problem: constructive recognition for
groups of Lie type.

Conjugacy Graphs of Finite Coxeter Groups
G. PFEIFFER

Let W be a finite Coxeter group, generated by a set S C W of simple reflections, and
assume that W acts on a set X. Then this action gives rise to a graph with vertices
x,y € X and labeled edges = . y whenever x.s = y (s € S). Sometimes this graph
can be viewed in a natural way as a directed graph with respect to the length function
on W. In this talk I discussed the graph that arises from the action of W on itself by
conjugation, where the edges are chosen to point to the shorter of their end points. This
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graph plays an important role in the computation of character values for the Iwahori-Hecke
algebra associated to W. Results were presented for classes of involutions and cuspidal
classes (i.e., classes that don’t intersect with proper parabolic subgroups of W). Examples
of interesting graphs were displayed.

A graphical Reidemeister-Schreier method
S. REES

A graphical interpretation of the Todd-Coxeter algorithm has been described by John
Stallings. In a recent preprint, Jon McCammond and Dani Wise extend Stallings’ view-
point from graphs to 2-dimensional cell complexes and develop a theory which proves the
existence of finite presentations for some finitely generated subgroups of finitely presented
groups, and in special cases gives a terminating algorithm to construct them. My student
Oliver Payne is developing this theory into a procedure which can be applied to a wider
range of groups.

Some questions about the derived series of p-groups
C. SCHNEIDER

It was known already to Burnside that a non-abelian p-group has order at least p*, while
a non-metabelian group has order at least p®. Generally, however, we do not know what is
the smallest among the orders of finite p-groups with a given soluble length. This problem
has recently been settled for soluble length 4, but we still do not know the answer for
soluble length 5. A related problem is to find a sharp lower bound for the index of a term
of the derived series of a finite p-group in the preceding one. This problem is unsettled
even for the third derived subgroup.

I briefly discussed these problems pointing out the relevance of computational group
theory to their solution.

The Knuth-Bendix Procedure for Strings and Large Rewriting Systems
C. Sivs

The Knuth-Bendix procedure for strings is an important tool for studying finitely presented
groups. It has recently been used to reduce dramatically the upper bound on the number
of sixth powers needed to define the Burnside group B(2,6). The author has rewritten his
implementation of the Knuth-Bendix procedure to take advantage of large memory, both
internal and external. New index structures to facilitate the formation of overlaps of left
sides of rewriting rules have greatly improved the program’s efficiency.
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Soluble Radicals in Permutation and Matrix Groups
W. UNGER

A number of effective permutation group algorithms follow the plan: (1) find O (G) and
a representation of the quotient @@ = G/O4(G); (2) solve “the problem” in @Q; (3) extend
to all of G. In this talk I presented an algorithm to find O, (G) and @ for a permutation
group. This is based on the lemma: if f and g are two homomorphisms with domain G
and ker f N ker g is soluble then O, (G) = ¢7'(Ox(f ' (Ox(f(G))))). This lemma may
also be used to find the soluble radical of a low degree matrix group with a given base and
strong generating set.

Computing p-cores in black box groups
R. WiLsoON

Black box groups are a useful abstraction for investigating complexity of algorithms for
computing (especially) with finite groups of matrices. Many computations can be done
in Monte Carlo polynomial time, including recognising (i.e. naming) a simple group if
it is known in advance to be simple. The main obstruction to recognising simple groups
among all black box groups is the difficulty in distinguishing (in Monte Carlo polynomial
time) between a simple group S, of Lie type in characteristic p, and a non-simple group G
with G/O,(G) = S. In joint work with Chris Parker (in progress), we solve this problem
for p odd, by a recursive procedure involving computing involution centralizers. The case
p = 2 remains intractable, as there is no known Monte Carlo polynomial time algorithm
for finding an involution in a black box Lie type group over a large field of characteristic 2.

Edited by Csaba Schneider
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