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This meeting was the fourth on Computational Group Theory held at the Mathematis-


hes Fors
hungsinstitut. The meeting was attended by 49 parti
ipants. There was a good

mix of nationalities, age-groups, and resear
h 
ommunities { su
h as matrix group re
ogni-

tion, representation theory, �nitely-presented groups. There were 9 people for whom this

was their �rst meeting. (The gender balan
e re
e
ted that of the 
ommunity.)

We made a strong e�ort to provide a balan
e between time in the le
ture room and

more informal dis
ussion { quite a bit at the terminals in the basement. We were very

pleased to see the 
ontinuing progress with this fa
ility. (Some of us re
all the �rst meeting

in 1988 when a signi�
ant e�ort had to be put into transporting equipment from Aa
hen

and setting it up.) This enabled people to test ideas from dis
ussions in familiar (and

sometimes extensive) 
omputing environments at other lo
ations. Posters were used to

good e�e
t (they in
luded a report on an asso
iated meeting on Finitely-presented groups:

questions and algorithms held in Trento, Italy, the week before). There were several invited

survey talks. We also had a formal dis
ussion on the theme: Support for software. All the

new
omers were given the opportunity to make a formal presentation.

It is perhaps a sign of the in
reasing maturity of the �eld that there was more emphasis

on theoreti
al developments { though of 
ourse these would not have been possible without

signi�
ant implementational developements.

The abstra
ts whi
h follow give a good indi
ation of the range of topi
s that are a
tive

in the �eld. The matrix group re
ognition proje
t 
ontinues to re
eive a lot of attention.

There were surveys by O'Brien and Kantor. Other surveys were by Sims on the Knuth-

Bendix pro
edure, Hi� on Representation Theory and Holt on automati
 and hyperboli


groups.

The abstra
t of Leedham-Green's 
losing talk gives an indi
ation of the very positive

intera
tions whi
h were made possible by a fa
e-to-fa
e meeting. This underlines that

even in an era of \qui
k" 
ommuni
ation a 
ommunity needs to meet fa
e-to-fa
e from

time-to-time.

The organisers: G. Hi�, D. Holt, M. Newman, H. Pahlings.
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Abstra
ts

Groups a
ting on trees

L. Bartholdi

The 
lass of \�nite-state groups" seems to 
ombine the best qualities of many worlds: they

are des
ribable by �nite data yet 
an be in�nite; they are simple to 
ompute with yet 
an

possess exoti
 properties; they served as a sour
e of examples and 
ounter-examples in

group theory for the last 20 years.

Given an isometry g of the d-regular tree T , it de
omposes as a permutation �

g

2 S

d

of the top d bran
hes, and isometries (g

1

; : : : ; g

d

) of the d subtrees, ea
h isomorphi
 to T .

These g

i


an in turn be de
omposed, and the set of all g

i

; g

ij

; : : : obtained in this way is

the states of g. A group G is �nite-state if it is generated by isometries with �nite set of

states; equivalently, if all elements of G have a �nite set of states.

As examples, all �nite groups and 
ountable abelian groups admit �nite-state represen-

tations; this 
lass is 
losed under wreathing with a �nite group and taking dire
t produ
ts;

and 
ontains examples like the Grigor
huk group G, whi
h is a �nitely generated, in�nite,

torsion, re
ursively presented 2-group of �nite width and intermediate growth.

I will explain how 
omputations 
an be performed on su
h groups; they have a solv-

able word problem, and admit a natural family of approximating quotients obtained by

restri
ting the a
tion to some level of the tree T .

Its latti
e of normal subgroups, and its tower of automorphism groups, have re
ently

been determined. I hope to dis
uss su
h 
omputations, and outline their generalization to

the whole 
lass of �nite-state groups.

Extra
ting Generators and Relations for Matrix Algebras

J. Carlson

This is a report of work in progress. For some time I have been talking to John Cannon

about methods to redesign the stru
tures for �nite dimensional algebras in magma. At the

present time there are numerous \algebra" types in magma, ea
h optimized for a parti
ular

type of tasks. But there is no 
ommuni
ation between the types. One 
an not, for example,

de�ne a module over a matrix algebra or a stru
ture 
onstant algebra. The best way to

solve this problem it would seem, is to introdu
e generators and relations for algebras in

general. Then a basis for the algebra 
ould be 
omputed as elements in a polynomial ring

with non-
ommuting variables and Groebner basis methods 
ould resolve su
h questions

as dimensions of the algebra.

The 
enter post of su
h a system then would be a type of free algebra and a program for


omputing non-
ommutative Groebner bases. Some of this has been written for magma

though it is not yet available in any oÆ
ial release. In order to make the system work it will

be ne
essary to have the 
apability of obtaining generators and relations for the various

types of algebras. The most diÆ
ult and also most general of the types is the matrix

algebra. Currently we are working on the development of algorithms for this purpose

and we have some implementations. In addition the programs being written 
ould have

numerous other uses.
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Parallelizing Coset Enumeration

G. Cooperman

Coset enumeration for group presentations, like Groebner bases, is well known to be a


hallenging problem to parallelize. Re
ently, a new parallel 
oset enumerator was developed

jointly with Vi
tor Grinberg, whi
h is believed to have a
hieved the greatest degree of

parallelism (32 CPU's on an SGI Origin 2000 with an eight times speedup) to date among

parallel enumerators. The method is based on a new strategy (
louds) for de�ning many


osets at on
e. In a traditional 
omputer program (even a sequential one), the quality

of the enumeration with respe
t to both CPU time and memory depends strongly on the

ability to pro
ess 
oin
iden
es and make dedu
tions as soon as possible after they are

dis
overed. We present a 
lass of what we 
all bulk de�nition strategies, whi
h avoid this

restri
tion.

This leads to an interesting strategy for parallelization. STEP 1: Find a bulk de�nition

strategy su
h that the sequential algorithm does not degrade ex
essively when using the

strategy. STEP 2: Parallelize it. (Parallelize the relator tra
ing.)

We will observe that STEP 2 exhibits a nearly linear speedup over the modi�ed sequential

algorithm of STEP 1.

We also des
ribe a sequential \pres
an strategy", whi
h is surprisingly e�e
tive during

the se
ond half of an enumeration (speeding up the sequential enumeration by a fa
tor of

about three on Lyons' group). The \pres
an strategy" su�ers from not maintaining Fels
h


onsisten
y. Hen
e, the �nal table must be veri�ed, but this is usually fast.

TOP-C (Task Oriented Parallel C/C++, www.

s.neu.edu/home/gene/top
.html) was

used for the parallel implementation. This allowed us to parallelize a 3,200 line sequential

program by adding approximately 250 lines of parallel-spe
i�
 
ode.

The orbit-stabiliser problem for poly
y
li
 groups

B. Ei
k

(joint work with G. Ostheimer)

The general problem 
onsidered in this talk is the development of pra
ti
al algorithms

for (possibly in�nite) poly
y
li
 groups. A useful general approa
h to su
h methods is by

indu
tion over a normal series with elementary or free abelian fa
tors. In the indu
tive

step, an elementary or free abelian normal subgroup A of a group G is 
onsidered. There

are two fundamental problems whi
h often arise this setting.

� The orbit-stabilizer problem:

(1) Given b; 
 2 A, determine Stab

G

(b) and an element g 2 G with b

g

= 
 (if g exists).

(2) Given B;C � A, determine Stab

G

(B) and an element g 2 G with B

g

= C (if g

exists).

� The extension problem: Determine H

1

(G=A;A) and H

2

(G=A;A).

For elementary abelian groups A, pra
ti
al solutions to these problems are well-known.

For free abelian groups A, pra
ti
al methods to solve these problems have been developed

re
ently. The resulting approa
h to solve the orbit-stabilizer problem for elements (1) is

des
ribed in this talk.
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Solutions to these and related problems have further been used to obtain a variety of

pra
ti
al algorithms for poly
y
li
 groups. These in
lude the following.

� Determine C

G

(g), N

G

(U) and U \ V for g 2 G and U; V � G.

� Compute the torsion subgroup T (G) (if it exists) or the normal torsion subgroup

TN(G).

� Cal
ulate the 
onjuga
y 
lasses of �nite subgroups.

� Constru
t the subgroups of low index in G.

� Cal
ulate Fit(G), Z(G) or the FC-
entre FC(G).

� Exhibit the nilpotent-by-abelian-by-�nite stru
ture of G.

Implementations for most of these methods are available in the Poly
y
li
 pa
kage (joint

work with W. Ni
kel). This pa
kage is based on GAP and Kant.

Bounds on the degree of 
ommutativity of a p-group of maximal 
lass

M. Gar


�

�a-S

�

an
hez

(joint work with A. Vera-L�opez, J. Arregi, F. Vera-L�opez, R. Esteban-Romero)

A group G of order p

m

is said to be a p-group of maximal 
lass if Y

m�1

6= 1, where Y

0

= G,

Y

i

= [

i

z }| {

G; : : : ; G℄ for every i � 2 and Y

1

su
h that Y

1

=Y

4

= C

G=Y

4

(Y

2

=Y

4

).

One of the main invariants of a p-group of maximal 
lass is its degree of 
ommutativity 
.

Another important invariant asso
iated to su
h a group is de�ned by v = v(G) = minfk 2

[2; m�
�2℄ j [Y

1

; Y

k

℄ = Y

1+k+


g: It is proved that v = v(G) is an even number 2l satisfying

v = 2l � p� 1 and if v + 2 = 2l + 2 � m� 
� 1, then 1 � l � (p� 3)=2.

We have designed an algorithm that gives us a lower bound for the degree of 
ommuta-

tivity of a p-group of maximal 
lass of order p

m

. Running this algorithm for primes p � 43,

we have 
onje
tured the existen
e of a fun
tion g(p; l; 


0

) su
h that 2
 � m � g(p; l; 


0

),

where 


0

is the residue 
lass of 
 modulo p � 1, for all p-group of maximal 
lass with the

invariants l and 


0

. In fa
t, we have proved the validity of g(p; l; 


0

) for the six regions.

The union of these six regions 
overs almost all possible (l; 


0

). Besides, the given bound

is exa
t in three of the six regions.

Experiments in GAP and spe
ial pie
es in unipotent varieties

M. Ge
k

(joint work with G. Malle)

This is a report on a joint work with G�unter Malle whi
h appeared in Experimental Math-

emati
s 8 (1999), 281{290. It is the result of experiments performed using 
omputer

programs written in the GAP language. We des
ribe an algorithm whi
h 
omputes a set

of rational fun
tions atta
hed to a �nite Coxeter group W . Conje
turally, these rational

fun
tions should be polynomials whi
h have the following meaning.

Assume thatW is the Weyl group of a Chevalley group G de�ned over the �nite �eld F

q

.

We 
onsider the 
onjuga
y 
lasses of G 
onsisting of unipotent elements. It is known that

there are only �nitely many su
h 
lasses and that they 
an be 
lassi�ed in a uniform way
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if the 
hara
teristi
 is large enough; the 
lassi�
ation in small 
hara
teristi
s is di�erent,

however.

Now, following Lusztig and Spaltenstein, one 
an de�ne a partition of the variety of

unipotent elements of G into so-
alled spe
ial pie
es. These spe
ial pie
es are unions of

unipotent 
lasses and they are 
lassi�ed in terms of 
ertain irredu
ible 
hara
ters of the

�nite group W (and, hen
e, independently of the 
hara
teristi
). Lusztig showed (by an

extremely elaborated 
ounting argument) that the number of F

q

-rational points in a spe
ial

pie
e is given by a well-de�ned polynomial in q. Our 
onje
ture is that these polynomials

are pre
isely the ones produ
ed by our algorithm.

The algorithm is a variant of a known algorithm (due to Shoji and Lusztig) for 
omputing

the Green fun
tions in the 
hara
ter theory of �nite groups of Lie type. It even works for


omplex re
e
tion groups. We give a number of examples whi
h show, in parti
ular, that

our 
onje
ture is true for all types ex
ept possibly B

n

and D

n

.

Computing Canoni
al Bases of quantum groups

W. de Graaf

Let U

�

be the negative part of the quantized universal enveloping algebra of a semisimple

Lie algebra. Kashiwara and Lusztig have independently 
onstru
ted a basis of U

�

with

very favourable properties. This basis is 
alled the 
anoni
al basis. In this talk I sket
h

an algorithm for 
omputing the elements of the 
anoni
al basis of a given weight. This

algorithm is based on the following two fa
ts. Firstly, the matrix giving the base 
hange

from the 
anoni
al basis to a basis 
onsisting of standard monomials is upper triangular

with 1's on the diagonal. Se
ondly, the same holds for the matrix of the base 
hange from

the 
anoni
al basis to a basis of PBW-type. The algorithm based on this 
omputes the

elements of the 
anoni
al basis as linear 
ombinations of elements of a PBW-type basis.

ACME, an Andrews-Curtis move enumerator

G. Havas

Andrews and Curtis have 
onje
tured that every balan
ed presentation of the trivial group


an be transformed into the standard presentation by a �nite sequen
e of elementary

transformations. Previous 
omputational work on this problem has been based on geneti


algorithms. We show that a 
omputational atta
k based on a breadth-�rst sear
h of the tree

of equivalent presentations is also viable, and seems to outperform that based on geneti


algorithms. It allows us to extra
t shorter proofs (in some 
ases, provably shortest) and

to 
onsider the length thirteen 
ase for two generators. We prove that, up to equivalen
e,

there is a unique minimum potential 
ounterexample.
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Computational Representation Theory

G. Hi�

In this survey talk I dis
ussed three topi
s:

1. The Modular Atlas,

2. Minimal Degrees,

3. Symmetri
 Groups.

Ad 1. Here I summarized some re
ent results, in parti
ular the 
ompletion of the Brauer trees

of the Lyons simple group, a

omplished by M�uller, Neunh�o�er, R�ohr and Wilson.

I also dis
ussed the work that still needs to be done, giving some more details for

three of the sporadi
 groups, the Fis
her group Fi

22

, the Thompson group Th and the

Harada-Norton group HN.

Ad 2. Here I shortly dis
ussed the knowledge on the smallest degrees of representations of

the �nite simple groups and their 
overing groups. More details were given in the talk

by Frank L�ube
k.

Ad 3. Here I presented some re
ent results on the representation theory of symmetri
 and

alternating groups, as well as their 
overing groups. There exist GAP-programs for


omputing the ordinary 
hara
ter tables of 2:A

n

and 2:S

n

, implemented by M�uller

and Noeske. The modular tables for the symmetri
 groups S

n

are 
ompletely known

for all n � 17. In S

18

, only one bit of information is missing in 
hara
teristi
 2. Also,

the Brauer trees for 2:A

n

and 2:S

n

are now known for all n by the work of M�uller

and Noeske. Finally I mentioned the programs by Frank L�ube
k for 
omputing the

Jantzen �ltration of Spe
ht modules.

Colle
tion in poly
y
li
 groups

B. H

�

ofling

Given a �nite poly
y
li
 presentation hg

1

; : : : ; g

n

j g

e

i

i

= w

i;i

; g

g

i

j

= w

i;j

; i < ji, multipli-


ation of redu
ed words is performed by 
olle
ting, i. e., by redu
ing the word obtained

by 
on
atenation of the original words. Colle
tion is usually done from the left, that is,


hoosing the leftmost o

urren
e of a left hand side of a rewriting rule. While this works

well in pra
ti
e, theoreti
al bounds on the 
omplexity are extremely bad, usually O(N

n+1

),

where N is the input length, or O(N




), where 
 is the p-
lass of the p-group G.

Using a poly
y
li
 presentation obtained from the derived series of G in a natural way, I


ould show that a 
olle
tion 
an be 
arried out in O(N

3d

) steps. This assumes that 
ertain

powers (g

a

j

)

g

b

i

are pre-
omputed. But even this bound (whi
h is sub-exponential in N)

apparently is far from reality.

A reason for this might be that most intermediate 
olle
tion steps a
tually take pla
e

in small exhibited subgroups H of G. These are subgroups of the form H = fg

a

1

1

: : : g

a

n

n

j

0 � a

i

< e

i

, a

i

= 0 if i =2 Ig, where I is a subset of f1; : : : ; ng. Using this observation, one

obtains upper bounds and estimates for the average 
ost of a 
olle
tion. The estimates

thus obtained generally agree with experimental data to within an order of magnitude.

As a 
onsequen
e, it seems to be advisable to 
hoose generators fg

1

; : : : ; g

n

g su
h that

G = HG

i

, where G

i

is a small normal subgroup of G and H is exhibited, and then to

re
ursively de
ompose H in the same way. There is an algorithm for obtaining su
h a

poly
y
li
 presentation from one re�ning a normal series with nilpotent fa
tors.
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Computation in automati
 and hyperboli
 groups

D. Holt

This was a survey talk, summarising re
ent progress in the art of 
omputing eÆ
iently in

automati
 and hyperboli
 groups.

The de�nition of an automati
 group is due to Thurston and dates from about 1985.

Roughly speaking, a (�nitely generated) group is automati
 if there is a �nite state au-

tomaton (FSA) re
ognising a unique word in the generators for ea
h group element, and

other automata that read two words in the generators simultaneously and syn
hronously,

and a

ept the pair if both are in normal form and one is equal in the group to the other

multiplied on the right by a group generator.

On
e these FSA have been 
omputed for a spe
i�
 group, the word problem in that

group 
an be solved in quadrati
 time by redu
ing the word to its normal form. The

growth fun
tion (whi
h is ne
essarily rational) and orders of elements 
an also be 
omputed.

Re
ently these programs have been used to prove that various groups are in�nite that have

resisted other methods of proof. For example, the Heineken group

H = hx; y; z j [x; [x; y℄℄ = z; [y; [y; z℄℄ = x; [z; [z; x℄℄ = yi

is automati
 (indeed, it is hyperboli
), and in�nite.

Hyperboli
 groups form an important sub
lass of the automati
 groups in whi
h more

problems are solvable eÆ
iently. Presentations of 
ertain subgroups, known as quasi
onvex

subgroups, 
an be 
omputed, and the generalized word problem 
an be solved for these

subgroups. Re
ently, my student Joe Marshall has implemented algorithms for testing

elements of in�nite order for 
onjuga
y, and for testing quasi
onvex subgroups for malnor-

mality in hyperboli
 groups. For example, the subgroup h[x; y℄; [y; z℄; [x; z℄i of the group

H de�ned above is free of rank three and is malnormal in H.

Algorithms for �nite linear groups

W. Kantor and

�

A. Seress

In the �rst half of the talk, we survey re
ognition algorithms for �nite simple groups. Given

any quasisimple matrix representation of a �nite simple group G, there is a Monte Carlo

algorithm whi
h, in time polynomial in the input length, determines the standard name

of G. In slightly more time, namely polynomial in the input length and in the size q of

the underlying �eld of de�nition of G if G is of Lie type, it is also possible to identify G

with a standard 
opy C of its isomorphism type 
onstru
tively. This means that there is

an isomorphism � : G! C su
h that for any g 2 G we 
an 
ompute �(g) 2 C, and for any


 2 C we 
an 
ompute �

�1

(
). Moreover, we 
an express any g 2 G in polynomial time as

a fun
tion of some �xed generating set X of G.

In the se
ond part, we outline an algorithm whi
h redu
es the basi
 handling of arbitrary

matrix groups G to the 
onstru
tive re
ognition of its 
omposition fa
tors. The algorithm

is based on stru
tural properties of G, instead of trying to exploit the geometri
 properties

of the a
tion of G in the input representation. The latter approa
h is des
ribed in Eamonn

O'Brien's talk.
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A modular version of Molien's formula

G. Kemper

(joint work with I. Hughes)

Molien's formula is one of the most remarkable tools in invariant theory of �nite groups. It

allows the 
omputation of the Hilbert series of an invariant ring without tou
hing a single

invariant. Unfortunately, Molien's formula breaks down in the modular 
ase, i.e., when

the 
hara
teristi
 p of the ground �eld divides the group order jGj.

In this work we obtain a formula for 
omputing the Hilbert series in the \mildly" modular


ase, i.e., when p divides jGj but p

2

does not. The main ingredients we use are:

- spe
ies and linear 
ombinations thereof,

- symmetrization and the lambda-stru
ture of representation rings,

- a periodi
ity property of symmetri
 powers

An extension of our formula also allows the easy 
omputation of the depth of a mildly

modular invariant ring.

Isometry 
lasses of linear 
odes

A. Kerber

A brief review was given on our (i.e. mainly A. Betten, A.K., A. Kohnert and R. Laue's) a
-

tivities in the �eld of 
onstru
tive theory of �nite stru
tures. We are mainly after existen
e

proofs (via 
onstru
tion) of stru
tures for given sets of parameters (e.g. of t � (v; k; �)-

designs for given v; t; k) as well as after the development and the implementation of algo-

rithms for the systemati
 and exhaustive 
onstru
tion of 
omplete 
atalogs.

Our generator MOLGEN for mole
ular graphs 
orresponding to a given 
hemi
al formula

and (optional) further 
onditions was mentioned and it was shown in whi
h situation in

mole
ular stru
ture elu
idation the fast generation of 
omplete 
atalogs is ne
essary. It

was also pointed to the pa
kage DISCRETA that is devoted to the systemati
 
onstru
tion

of designs with a pres
ribed group of automorphisms.

Then it was des
ribed what we did for the systemati
 evaluation of representatives of

isometry 
lasses of linear 
odes. Isometry 
lasses were introdu
ed and it was shown how

the 
al
ulation of transversals of su
h 
lasses amounts to a 
onsideration of orbit sets of

the following form:

GL

k

(q)nn

�

S

n

nnP

k�1

(q)

n

�

;

where P

k�1

(q) means a proje
tive geometry. (This shows perfe
tly why there is su
h a 
lose


onne
tion between proje
tive geometry and the theory of linear 
odes!) Numeri
al results

on the number of (inde
omposable) isometry 
lasses were shown, and it was mentioned that

the 
orresponding generator matri
es are available and that the 
orresponding minimal

distan
es are known. Details 
an be found in the book A. Betten, H. Fripertinger, A.

Kerber, A. Wasserman, K.-H. Zimmermann: Codierungstheorie, Springer-Verlag 1998.
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Matrix groups re
ognition: The seven last transparen
ies

C. Leedham-Green

My le
ture was a post-s
ript to O'Brien's le
ture. His le
ture (at the start of the 
onfer-

en
e) showed how, after many years work, and with the 
ollaboration of a large proportion

of the parti
ipants at the 
onferen
e, the matrix re
ognition proje
t was beginning to 
ome

to fruition. This provoked a 
olle
tion of 
hallenge problems, 
onstru
ted by Parker and

Wilson, and I mentioned at the end of my le
ture that the �rst �ve had already been

solved, whi
h provoked a supply of some `harder' problems by M�uller and L�ube
k.

Small degree proje
tive irredu
ible representations of �nite simple groups

F. L

�

ube
k

Let G be a �nite simple group and F =

�

F an algebrai
ally 
losed �eld of 
hara
teristi
 l.

In my talk I 
onsidered the following two problems:

(a) What are the (few) smallest degrees d > 1 of irredu
ible proje
tive representations of

G over F ?

(b) Given F and (a reasonably small) d: Whi
h simple G have a proje
tive irredu
ible

representation of degree d over F ?

Su
h questions arise in various 
lassi�
ation and identi�
ation problems. For example

it is of relevan
e in the matrix re
ognition proje
t whi
h was a major topi
 during this

meeting.

In my talk I gave an overview on �ve papers 
on
erning these questions. I tried to give

an idea how the results look like (using some transparen
ies) and about the methods used

to obtain the results.

In some more detail:

1. Land�azuri-Seitz-Zalesskii (1974/93): gave lower bounds for the smallest degree d for

G = G(q); q = p

f

of Lie type and l 6= p. These are given as `polynomial in q'.

2. Tiep-Zalesskii (1996): Considered the 
ase l = 0 and G = G(q) a 
lassi
al group of

Lie type. Gave the smallest d (in some 
ases also the se
ond and third smallest) and

its multipli
ity.

3. L�ube
k (2001): Considered the 
ase l = 0 and G = G(q) an ex
eptional group of Lie

type. Gave the seven smallest degrees and their multipli
ities. Also the (few) known

results for these G and primes l 6= p are 
olle
ted.

4. Hi�-Malle (2001): Considered l a prime and d � 250. Determined all G whi
h o

ur,

ex
ept the G = G(q) groups of Lie type in de�ning 
hara
teristi
 l = p.

5. L�ube
k (2001): G = G(q), q = p

f

group of Lie type and l = p: Gave for r =

rank(G) � 12 all representations of degree � r

3

=8 for type A

r

and of degree � r

3

for

the other types of 
lassi
al groups. Furthermore for r < 12 there are longer lists of

all su
h representations of degree smaller some bound, whi
h depends on the type.

9



The 5-modular 
hara
ter table of the sporadi
 simple Harada-Norton group

K. Lux

I report on joint work with R. Bor
herds, UC Berkeley, and A. Ryba, Queen's College,

New York. We have determined all but two of the 5-modular irredu
ible 
hara
ters for the

Harada-Norton group using theoreti
al and 
omputational methods. From our results it

follows that the degrees of the �rst 14 Brauer 
hara
ters, b

1

; : : : ; b

14

in the prin
ipal blo
k

are

1 133 626 2451 6326 8152 9271 54473 69255 84798 131747

145275 170258 335293:

For the last two irredu
ible Brauer 
hara
ters in the prin
ipal blo
k we get the following

expli
it bounds, where a

15

= 638571 and a

16

= 784379,

a

15

� b

15

� a

15

+ b

7

+ b

8

and

a

16

� b

16

� a

16

+ 2b

2

+ b

3

+ 2b

7

+ b

8

:

Our method of proof uses the following te
hniques.

1) Modular 
hara
ter theory.

2) Vertex operator algebras.

3) Condensations of symmetrized powers and dire
t 
ondensations.

For 3) we used a pa
kage for determining 
ondensations of symmetrized powers developed

by A. Ryba and a pa
kage for 
al
ulating dire
t 
ondensations by F. L�ube
k and M.

Neunh�o�er, both at Lehrstuhl D f�ur Mathematik, RWTH Aa
hen. We are parti
ularly

thankful to M. Neunh�o�er, who 
onstru
ted two dire
t 
ondensations using the St.Andrews


luster of PCs. For other relevant 
omputations we also relied upon the following software

pa
kages: GAP 3 and 4, the C-Meataxe 2.4, and MOC.

Computations arising from Monstrous Moonshine

J. M
Kay

The obje
ts of interest are the monstrous moonshine fun
tions, ffg and their dis
rete

invarian
e groups, G

f

. There is a fas
inating interplay between the fun
tions, their groups,

analysis, and number theory.

P1 and P2 ea
h 
hara
terize the ellipti
 modular fun
tion, j(z), with invarian
e group

G

j

= PSL(2; Z), and monstrous normalization

j(z) = 1=q + 0 +

X




k

q

k

; k > 0;

with q = e

2�iz

, =(z) > 0, (z 2 H, the upper 1=2-plane).

Repli
able fun
tions generalise the j-fun
tion:

P1. Under the He
ke operator:

8n � 1; n� T

n

(j) =

X

j((az + b)=d) = F

n;j

(j);

10



where F

n

is the Faber polynomial of degree n with 
oeÆ
ients dependent on its argument,

thus F

2;j

(j) = j

2

� 2


1

, with 


1

= 196884. We 
hara
terize the Faber polynomial, and

de�ne the Grunsky 
oeÆ
ients, fh

m;n

g, by

F

n;f

(f) = 1=q

n

+

X

h

m;n

q

m

; m � 1:

P1 generalizes to repli
able fun
tions (Norton) by requiring that h

m;n

= h

r;s

if

g
d(m;n) = g
d(r; s) and l
m(m;n) = l
m(r; s). (This is equivalent to the introdu
tion of

repli
ation power maps into the He
ke sum.)

P2. Under the S
hwarzian (Dedekind 1878):

fz; jg = R(j) = N(j)=(D(j))

2

; with R(j) = (36j

2

� 41j + 32)=36(j(j � 1))

2

where Dedekind uses the analyti
 normalization for j: 1728j(z) = 1=q+744+196884q+� � � ,

for whi
h j takes the values s

1

= 1, s

!

= 0, s

i

= 1 at its 
riti
al points (j

0

(z

i

) = 0,

j(z

i

) = s

i

), ! = e(�i=3).

The partial fra
tion expansion of R(j) makes its 
hoi
e more apparent. This S
hwarzian

equation is available for all Hauptmodules. The He
ke and the S
hwarzian approa
h are

related.

It is 
onje
tured that repli
able fun
tions are either

a) modular fun
tions f(z) = 1=q + 
q (in
luding exp, 
os, sin) or

b) Normalized Hauptmodules, f , with �

0

(N) < G

f

, with �

0

(N) = upper-triangular

matri
es mod N .

We have: M
Kay-Sebbar (Math. Annalen 2000):

ff; zg=(4�

2

) = 1 + 12

X

m � n � h

m;n

q

m+n

; m; n � 1:

When is ff; zg holomorphi
? Just when G

f

has no ellipti
 �xed points whi
h is when

G

f

is free and of �nite index in PSL(2; Z). Su
h free, �nite index, genus zero, 
ongruen
e

subgroups have been 
lassi�ed (M
Kay-Sebbar):

There are 33 of these, ea
h des
ribed by a dessin d'enfant (whi
h is a 
oset graph of

PSL(2; Z) over G

f

).

Referen
es: URL: http://www-
i
ma.
on
ordia.
a/ and follow \Moonshine".

Multipli
ity-free permutation representations of the sporadi
 groups

J. M

�

uller

(joint work with T. Breuer, I. H�ohler and M. Neunh�o�er)

For the sporadi
 �nite simple groups and their automorphism groups, there are 253 multi-

pli
ity-free transitive permutation representations [Breuer-Lux, 1996℄. For 249 of them,

i. e., 
urrently 4 are missing, we have 
ompiled a database 
ontaining: the 
ollapsed adja-


en
y matri
es, the 
hara
ter tables of their endomorphism rings, the bije
tion from these


hara
ters to the 
onstituents of the permutation 
hara
ter, and data on the orbital graphs,

e. g., the number of the 
onne
ted 
omponents and their diameters.

Hereby, we have built upon earlier work of [Praeger-Soi
her, 1997℄, [Ivanov-Linton-Lux-

Saxl-Soi
her, 1995℄, [Norton, 1985℄, and other people. The database will be made publi
 on
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the Aa
hen HomePage http://www.math.rwth-aa
hen.de/LDfM. The data will be provided

in human readable form as well as in GAP-readable form.

The te
hniques employed en
ompass a few of the modern powerful tools of 
omputational

group and representation theory, e. g., the various 
ondensation te
hniques. Besides their

own interest, one possible appli
ation of these data is in algebrai
 
ombinatori
s. Indeed,

quite a few of these orbital graphs are so-
alled Ramanujan graphs.

Computing in groups of Lie type

S. Murray

(joint work with A. Cohen and D. Taylor)

The groups of Lie type are a vital part of modern mathemati
s. Examples in
lude redu
tive

Lie groups, redu
tive algebrai
 groups and �nite groups of Lie type. In this talk I des
ribe

a new pa
kage within the Magma 
omputer algebra system for 
omputing within these

groups. This pa
kage uses the Steinberg presentation to represent elements, and uses the

Bruhat de
omposition to 
ompute a useful normal form for the elements.

I will demonstrate the use of this pa
kage for a 
ouple of nontrivial problems. I will also

des
ribe new algorithms for 
onverting from a matrix representation for the group to the

Steinberg presentation { this algorithm is a generalisation of the LUP algorithm. I will

also dis
uss appli
ations to matrix group re
ognition.

Orthogonal representations of �nite groups

G. Nebe

Let G be a �nite group and V a QG-module. Then V is uniquely determined by its 
har-

a
ter �

V

. On the other hand, given V , one 
an easily 
al
ulate the G-invariant quadrati


forms

F = fF : V � V ! Q j F symmetri
, bilinear, and G-invariantg:

So in prin
iple �

V

also determines F(V ).

I present a 
hara
ter theoreti
 tri
k, that uses Cli�ord algebras to 
al
ulate rational

invariants of the elements in F(V ).

To a pair ' = (V; F ) with F 2 F(V ) non-degenerate, one 
an fun
torially atta
h a


entral simple Q -algebra 
('). Sin
e G a
ts on ' as isometries, it a
ts on 
(') as Q -algebra

automorphisms. Therefore the simple 
(')-moduleW be
omes a proje
tive QG-module of

whi
h the 
hara
ter �

W

=

p

�


(')

is a 
ertain square root of the 
hara
ter �


(')

.

Ea
h 
onstituent of �

W

with odd multipli
ity 
an be used to determine either the Hasse

invariant (i.e. the 
lass of 
(') in Br(Q) of ' if n is odd, or the determinant of ' if n is

even).

12



Statisti
al studies of standard stru
tures

P. Neumann

The standard stru
tures of this le
ture were 
lassi
al groups de�ned over a �nite �eld

F ; that is, groups G su
h that SL(n; q) � G � GL(n; q), SU(n; q) � G � GU(n; q),

Sp(2m; q) � G � GSp(2m; q), SO(2m + 1; q) � G � GO(2m + 1; q), or 


�

(2m; q) � G �

GO

�

(2m; q). The study-worthy statisti
s were of the form Prob[X 2 G has property P℄,

where P was any of being eigenvalue-free (in the sense that there are no eigenvalues in the

�eld F ), having eigenvalue-free exterior square, being 
y
li
, having 
y
li
 exterior square,

being regular, being semisimple. Here probability is simply the notion of frequen
y, that

is, the proportion of elements of the group with the given property. Many of the studies

of these statisti
s were originally motivated by appli
ations to the design and analysis of

matrix-group algorithms.

Re
ent results by Neumann & Praeger [1996℄, G E Wall [2000℄, Fulman [2000℄, Fulman

& Neumann & Praeger [200x℄, Guralni
k & L�ube
k [2001℄, Brydon [200y℄, Britnell [200z℄

were surveyed. Mention was made of the methods { some of the theorems were proved in


ombinatorial/geometri
 ways, others by use of 
y
le indi
es and/or generating fun
tions.

The le
ture ended with two mysterious problems (whi
h have little to do with 
ompu-

tational group theory).

Problem 1. De�ne 


G

(1; q) := lim

n!1

Prob[X 2 G is 
y
li
℄. Are 


U

(1; q),




Sp

(1; q), 


O

(1; q), and 


O

�

(1; q) rational fun
tions of q?

This is motivated by the remarkable observation made independently by Wall and Ful-

man that 


GL

(1; q) = (1� q

�5

)=(1 + q

�3

).

Problem 2. One of the Rogers-Ramanujan identities 
an be 
ast in the form

1 +

1

X

n=1

jGL(n; q)j

�1

=

Y

r��1 (mod 5)

(1� q

�r

)

�1

:

Are there analogous produ
t expansions for

1 +

1

X

n=1

jU(n; q)j

�1

; 1 +

1

X

m=1

jSp(2m; q)j

�1

and

1 +

1

X

m=1

(jO

+

(2m; q)j

�1

+ jO

�

(2m; q)j

�1

)j ?

This is motivated by an observation of Fulman, who uses the quoted Rogers-Ramanujan

identity to prove a produ
t formula for lim

n!1

Prob[X 2 GL(n; q) is semisimple℄.

Enumerating very large orbits

M. Neunh

�

offer

Let G be a �nite group, F a �eld, FG the group algebra, K < G a subgroup su
h that

the 
hara
teristi
 of F does not divide jKj, and e := 1=jKj �

P

k2K

k 2 FG. Then e is an

idempotent. Therefore P 7! Pe is an exa
t fun
tor from the 
ategory of right FG-modules

to the 
ategory of right eFGe-modules. We 
all this �xed point 
ondensation, be
ause

Pe = fx 2 P j xk = x 8k 2 Kg.
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In the 
ase where 
 is a transitive G-set and P := F
 is the permutation module with

basis 
 one 
an des
ribe the a
tion of an element ege 2 eFGe on Pe expli
itly in terms of

the numbers j!K \ !

0

Kgj for any two K-orbits !K and !

0

K in 
. Therefore we want to

enumerate very large orbits and 
ount the elements in these interse
tions.

In this talk I present an idea of F. L�ube
k and me ([1℄) whi
h helps to 
ondense very

large permutation modules. J. M�uller, F. R�ohr, R. Wilson and I for example used this for

an orbit 
 of the sporadi
 simple Lyons group whi
h 
onsists of 1,113,229,656 subspa
es

of dimension 10 within a simple module of dimension 111 over GF (5) ([2℄). In our 
ase

the 
ondensation group K had 362,880 elements and the 
ondensed module had dimen-

sion 3,207. This 
omputation was done on a workstation 
luster in St. Andrews with 50

ma
hines in 13 hours of wall
lo
k time. The result was used to 
omplete the information

in [3℄ on the Brauer trees for the Lyons group in 
hara
teristi
s 37 and 67.

Referen
es:

[1℄ Frank L�ube
k and Max Neunh�o�er. Enumerating Large Orbits and Dire
t Conden-

sation. Experimental Mathemati
s, 10:2 (2001), p. 197{205.

[2℄ J�urgen M�uller, Max Neunh�o�er, Frank R�ohr, and Robert Wilson. Completing the

Brauer Trees for the Sporadi
 Simple Lyons Group. Submitted.

[3℄ Gerhard Hi� and Klaus Lux. Brauer trees of Sporadi
 Groups. Clarendon Press,

Oxford, 1989.

Matrix representations for poly
y
li
 groups

W. Ni
kel

A well known theorem 
onje
tured by P. Hall and proved by L. Auslander asserts that every

poly
y
li
 group 
an be embedded into GL(n;Z) for some n: In the le
ture, an algorithm

for the more spe
ial 
ase of 
onstru
ting su
h an embedding for a �nitely generated torsion-

free nilpotent group H was explained. A 
omputer implementation of this algorithm exists

in the GAP 4 pa
kage poly
y
li
.

The algorithm works upwards along a 
entral poly-C

1

series of H: Ea
h element of H


an be written as a normal word in a generating sequen
e arising from the series. The

exponents in the produ
t of two normal words are polynomials in the exponents of the

two fa
tors by a result of P. Hall's. These polynomials are used to 
onstru
t a faithful

ZH-submodule of ZH

�

of �nite Z-rank 
onsisting of polynomials.

The approa
h 
an be extended to the 
onstru
tion of faithful matrix representations

over Z for poly
y
li
 nilpotent-by-free-abelian groups.

Re
ognising �nite alternating and symmetri
 groups

A. Niemeyer and C. Praeger

(joint work with R. Beals, C. Leedham-Green and

�

A. Seress)

Given a generating set X for a (bla
k-box or matrix) group G we address the problem of

de
iding whether G is isomorphi
 to A

n

or S

n

, and if it is, we further address the problem

of 
onstru
ting an isomorphism for eÆ
ient 
omputation in G. Polynomial-time Las Vegas
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algorithms were 
onstru
ted for doing this by Beals and Babai (1993) and Morje in his

PhD thesis (1995; student of Kantor and Seress). A faster Las Vegas algorithm that runs

in time O(n log

2

n(� + n�)) was given by Bratus and Pak in 2000. (Here � is the 
ost of

one random element and � is the 
ost of one group operation.) However the Bratus/Pak

algorithm relies on the Extended Goldba
h Conje
ture or a variant of it.

A new Las Vegas algorithm was 
onstru
ted by the speakers and 
olleagues for bla
k-box

groups that runs in O(n logn(�+�)) time. It relies heavily on the statisti
al distribution of


ertain elements of S

n

to 
onstru
t an n-
y
le. We also explore algorithms for re
ognising


onstru
tively A

n

and S

n

as matrix groups in their smallest dimensional faithful matrix

representation whi
h avoid the 
onstru
tion of n-
y
les and more qui
kly �nd a 3-
y
le

in A

n

. The 
ost is redu
ed to O(n

1=3

logn(� + �)). This work was initiated by intense

dis
ussions of the speakers and their 
olleagues at the Computational Groups Week at

Oberwolfa
h in 1997.

Matrix group re
ognition following As
hba
her

E. O'Brien

The matrix group \re
ognition" proje
t was initially motivated by the desire to develop

useful algorithms to study the stru
ture of matrix groups de�ned over �nite �elds.

One strand of it relies heavily on As
hba
her's theorem about the (maximal) subgroup

stru
ture of GL(d; q): either the group G has a normal subgroup N whi
h re
e
ts the

geometry of the group, or G is almost simple modulo s
alars.

In this talk I surveyed the status of re
ognition following As
hba
her. Considerable

progress has been made on the �rst 8 
ategories of As
hba
her. We are 
urrently able to

\name" the 
omposition fa
tors of many groups in the �nal 
ategory. This ability relies

on work of Babai et al. and many others.

I also dis
ussed the 
onstru
tion of a 
omposition tree whi
h allows us to obtain the


omposition fa
tors of a matrix group. It relies on the use of S
hreier-Todd-Coxeter-Sims

to provide a useful des
ription for the almost simple groups. This 
an later to be modi�ed

to use other \
onstru
tive" or sporadi
 group re
ognition te
hniques.

I also dis
ussed the 
onstru
tion of a �nite presentation for the matrix group, whi
h

allows 
on�rmation of the 
omposition tree.

Finally I highlighted the signi�
ant outstanding problem: 
onstru
tive re
ognition for

groups of Lie type.

Conjuga
y Graphs of Finite Coxeter Groups

G. Pfeiffer

Let W be a �nite Coxeter group, generated by a set S � W of simple re
e
tions, and

assume that W a
ts on a set X. Then this a
tion gives rise to a graph with verti
es

x; y 2 X and labeled edges x

s

| y whenever x:s = y (s 2 S). Sometimes this graph


an be viewed in a natural way as a dire
ted graph with respe
t to the length fun
tion

on W . In this talk I dis
ussed the graph that arises from the a
tion of W on itself by


onjugation, where the edges are 
hosen to point to the shorter of their end points. This

15



graph plays an important role in the 
omputation of 
hara
ter values for the Iwahori-He
ke

algebra asso
iated to W . Results were presented for 
lasses of involutions and 
uspidal


lasses (i.e., 
lasses that don't interse
t with proper paraboli
 subgroups of W ). Examples

of interesting graphs were displayed.

A graphi
al Reidemeister-S
hreier method

S. Rees

A graphi
al interpretation of the Todd-Coxeter algorithm has been des
ribed by John

Stallings. In a re
ent preprint, Jon M
Cammond and Dani Wise extend Stallings' view-

point from graphs to 2-dimensional 
ell 
omplexes and develop a theory whi
h proves the

existen
e of �nite presentations for some �nitely generated subgroups of �nitely presented

groups, and in spe
ial 
ases gives a terminating algorithm to 
onstru
t them. My student

Oliver Payne is developing this theory into a pro
edure whi
h 
an be applied to a wider

range of groups.

Some questions about the derived series of p-groups

C. S
hneider

It was known already to Burnside that a non-abelian p-group has order at least p

3

, while

a non-metabelian group has order at least p

6

. Generally, however, we do not know what is

the smallest among the orders of �nite p-groups with a given soluble length. This problem

has re
ently been settled for soluble length 4, but we still do not know the answer for

soluble length 5. A related problem is to �nd a sharp lower bound for the index of a term

of the derived series of a �nite p-group in the pre
eding one. This problem is unsettled

even for the third derived subgroup.

I brie
y dis
ussed these problems pointing out the relevan
e of 
omputational group

theory to their solution.

The Knuth-Bendix Pro
edure for Strings and Large Rewriting Systems

C. Sims

The Knuth-Bendix pro
edure for strings is an important tool for studying �nitely presented

groups. It has re
ently been used to redu
e dramati
ally the upper bound on the number

of sixth powers needed to de�ne the Burnside group B(2; 6). The author has rewritten his

implementation of the Knuth-Bendix pro
edure to take advantage of large memory, both

internal and external. New index stru
tures to fa
ilitate the formation of overlaps of left

sides of rewriting rules have greatly improved the program's eÆ
ien
y.
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Soluble Radi
als in Permutation and Matrix Groups

W. Unger

A number of e�e
tive permutation group algorithms follow the plan: (1) �nd O

1

(G) and

a representation of the quotient Q = G=O

1

(G); (2) solve \the problem" in Q; (3) extend

to all of G. In this talk I presented an algorithm to �nd O

1

(G) and Q for a permutation

group. This is based on the lemma: if f and g are two homomorphisms with domain G

and ker f \ ker g is soluble then O

1

(G) = g

�1

(O

1

(f

�1

(O

1

(f(G))))). This lemma may

also be used to �nd the soluble radi
al of a low degree matrix group with a given base and

strong generating set.

Computing p-
ores in bla
k box groups

R. Wilson

Bla
k box groups are a useful abstra
tion for investigating 
omplexity of algorithms for


omputing (espe
ially) with �nite groups of matri
es. Many 
omputations 
an be done

in Monte Carlo polynomial time, in
luding re
ognising (i.e. naming) a simple group if

it is known in advan
e to be simple. The main obstru
tion to re
ognising simple groups

among all bla
k box groups is the diÆ
ulty in distinguishing (in Monte Carlo polynomial

time) between a simple group S, of Lie type in 
hara
teristi
 p, and a non-simple group G

with G=O

p

(G)

�

=

S. In joint work with Chris Parker (in progress), we solve this problem

for p odd, by a re
ursive pro
edure involving 
omputing involution 
entralizers. The 
ase

p = 2 remains intra
table, as there is no known Monte Carlo polynomial time algorithm

for �nding an involution in a bla
k box Lie type group over a large �eld of 
hara
teristi
 2.

Edited by Csaba S
hneider
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