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Die Tagung fand unter der Leitung von A. Beauville (Nie), F. Catanese (G

�

ottingen), E.

Looijenga (Utreht) und Ch. Okonek (Z

�

urih) statt.

Wie shon bei fr

�

uheren Tagungen

�

uber komplexe Geometrie in Oberwolfah haben auh

dieses Jahr viele bedeutende Mathematiker aus vershiedenen L

�

andern an der Tagung

teilgenommen. So �el es niht shwer, ein interessantes Tagungsprogramm zusammenzu-

stellen.

Viele Vortr

�

age bezogen sih auf wihtige komplex-geometrishe Themen wie z.B. Mo-

dulr

�

aume von Kurven und Vektorb

�

undeln, Hilbertshemata, Gromov-Witten Invarianten

und Quantenohomologie. Behandelt wurden auh moderne Entwiklungen und neue-

ste Resultate in der komplexen Geometrie, etwa: projektive Kontaktmannigfaltigkeiten,

komplex symplektishe Mannigfaltigkeiten, Calabi-Yau Variet

�

aten, Invarianz der Plurige-

shlehter. Dar

�

uber hinaus wurden auh Anwendungen von Methoden aus der Eihtheorie

und aus der symplektishen und fast komplexen Geometrie dargestellt.
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Abstrats

Estimated transversality in sympleti geometry and projetive maps

D. Auroux

If (X

2n

; !) is a ompat sympleti manifold, then it arries a ompatible almost-omplex

struture, but this almost-omplex struture is usually not integrable. Still, Donaldson has

shown that onstrutions from omplex geometry an be performed using setions that are

only approximately holomorphi: if L ! X is a line bundle with 

1

(L) =

1

2�

[!℄, then

L


k

has \many" approximately holomorphi setions, some of whih present estimated

transversality properties. In general, one has the following:

Theorem 1. Let S

k

be �nite strati�ations of the jet bundles J

m

(C

r+1


 L


k

) by approx-

imately holomorphi submanifolds (+ geometri bounds). Then for k >> 0 there exist

approximately holomorphi setions s

k

of C

r+1


 L


k

, suh that the m-jets j

m

s

k

are uni-

formly transverse to S

k

, i.e. 9� > 0 independent of k suh that j

m

s

k

either avoids strata by

a distane > � or intersets them transversally with angle > �. Moreover, this onstrution

is anonial up to isotopy for k large enough.

This makes it possible to onstrut in partiular projetive maps, i.e. to �nd s

k

=

(s

0

k

; : : : ; s

r

k

) suh that f = [s

0

k

; : : : ; s

r

k

℄ : X n base ! C P

r

behaves like a generi omplex

map, loally. In partiular for maps to C P

2

the only generi loal models near ritial

points are

(z

1

; : : : ; z

n

) 7�! (z

2

1

+ � � �+ z

2

n�1

; z

n

)

and

(z

1

; : : : ; z

n

) 7�! (z

3

1

+ z

1

z

n

+ z

2

2

+ � � �+ z

2

n�1

; z

n

):

In partiular, the branh urve D � C P

2

is a sympleti urve with only (omplex) usps,

and nodes (omplex or antiomplex), as singularities. So for a given sympleti manifold

we get invariants onsisting of a plane urve and a monodromy morphism (or rather a

sequene of suh data for k >> 0). Conversely, these data allow one to reonstrut (X;!)

up to sympletomorphism: these are omplete invariants.

When X is a sympleti 4-manifold, the monodromy data is just a homomorphism

� : �

1

(C P

2

nD)! S

N

, where N = deg(f); the interesting information is therefore enoded

in the isotopy lass of the urve D, up to reation or anellation of pairs of nodes. The

urve D an be investigated using a omplete invariant: its braid monodromy (studied in

detail in the algebrai ase by Moishezon and Teiher). On the other hand, a less omplete

but more manageable invariant in the omplex ase is �

1

(C P

2

nD). In the sympleti ase,

node anellations a�et this group by quotienting �

1

(C P

2

nD) by ertain ommutators;

the resulting quotient G

k

is a sympleti invariant for large enough k (joint result with

L. Katzarkov, M. Yotov and S. Donaldson). It is worth mentioning that, in all known

examples, for large enough k, one has G

k

�

=

�

1

(C P

2

nD) (stabilization does not a�et the

group). Also there exists an exat sequene 1 ! G

0

k

! G

k

! S

N

� Z

d

! Z

2

! 1, where

d = degD and the maps from G

k

to S

N

and Z

d

are respetively the monodromy and the

linking number.

In all known examples, G

0

k

is solvable, with [G

0

k

; G

0

k

℄ of order at most 4; Ab(G

0

k

) has been

thought to be a very powerful invariant, but it turns out that this is maybe not the ase;

in partiular, it annot distinguish the so-alled Horikawa surfaes, and there is evidene

suggesting that it may be a purely homologial invariant.
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Szpiro inequalities for hyperellipti penils

Bogomolov

(joint work with T. Pantev and L. Katzarkov)

Let X

g

be a sympleti family of urves over S

2

with double singular points only. We

assume that all the vanishing yles are nonseparating and the monodromy is a subgroup

of Map

hyp(g)

- the hyperellipti mapping lass group of genus g. This group oinides with

a entralizer of a hyperellipti involution in the mapping lass group Map(g).

Denote by N the total number of singular points in singular �bres and by D the number

of singular �bres.

Theorem 1. Under the above assumptions we have the inequality

N � (4g + 2)D:

For g = 1 we obtain the lassial Szpiro inequality and for g > 1 we obtain Lokhardt's

onjeture in the ase of projetive �brations.

The proof uses the monodromy onsiderations only.

BPS states of urves in Calabi-Yau 3-folds

J. Bryan

The Gopakumar-Vafa onjeture gives a reformulation of Gromov-Witten theory in terms

of (onjeturally) integer invariants obtained in physis by ounting BPS states. We give

an approah to the onjeture that involves studying the ontribution of isolated urves

to the Gromov-Witten invariants and the orresponding BPS states. We prove this \loal

version" of the Gopakumar-Vafa onjeture in a variety of ases.

In the last few minutes we desribe roughly how physis predits the BPS invarints are

de�ned. They are the multipliities of ertain representations of sl

2

on the ohomology of

a moduli spae of D-branes. The preise nature of the D-brane moduli spae and the sl

2

ation is not understood.

Multiple �bres and lassi�ation theory

F. Campana

X = projetive manifold =C f : X �! Y a �bration (i.e. onto onneted, smooth,

projetive Y )

De�ne �(f) :=

P

(1 �

1

m

i

)�

i

, where �

i

runs over all irreduible divisors of Y , and for

any �

i

, m

i

:= m(f;�

i

) := gd(m

ij

), where j runs over all irreduible omponents D

ij

of

f

�1

(�

i

) mapped onto �

i

by f , with f

�

(�

i

) = (

P

m

ij

D

ij

) + Rest. The pair Y;�(f)) is

the \preorbifold" struture on Y de�ned by f .

De�ne K

Y

+ �(f) (a Q -divisor) to be the anonial \bundle" of this struture (a funda-

mental group an be de�ned also).

De�ne �(Y; f) := inff�(Y

0

; K

Y

0

+ �(f

0

))g, where f

0

: X

0

! Y

0

runs over all �brations

whih are equivalent to f , equivalent means: 9u : X

0

! X and v : Y

0

! Y , bimeromor-

phi, suh that fu = vf

0

. (If �(Y ) � 0, this in�mum is not needed).

De�ne

1. f : X ! Y is a �bration of general type if �(Y; f) = dimY > 0.

2. X is speial if 6 9f ;X ! Y of general type. We note: X 2 S, then
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3. f : X ! Y is a speial �bration if so is its generi �bre.

Examples of speial manifolds: urves of genus 0,1; Rationally onneted manifolds; mani-

foldsX with �(X) = 0. Also by a generalization to our ontext of Kobayashi-Ohai's exten-

sion theorem, an X is speial if there exists a dominating meromorphi map � : C

n

! X,

and in partiular if the universal overing of X is

�

=

C

n

. Speial surfaes and threefolds

are lassi�ed, too.

Conjeture 1. X speial =) �

1

(X) is almost abelian.

This is true up to dimX = 3 (exept 2 speial ases), for rationally onneted X, and

also if �

1

(X) is either solvable torsion free or is linear (i.e. �

1

(X) � Gl(N; C )).

Conjeture 2. X speial () d

X

� 0 (where d

:

is the Kobayashi pseudometri).

This essentually should redue to the ase where �(X) = 0 (where one should prove

that d

X

� 0) and to the ase where X is of general type (where one should prove Lang's

onjeture). But the redution itself should be highly non-trivial (assume f : X ! Y is a

�bration suh that d

F

� 0 on the �bres; there are no multiple �bres, and d

Y

� 0. One has

to show that d

X

� 0).

We next onstrut a ore 

X

: X ! C(X) with general �bre speial and the largest

speial subvarieties sitting inside X.

Conjeture 3. The ore 

X

is a �bration of general type.

This is true up to dimension 3.

By onjeture 2, d

X

vanishes on the �bres of 

X

, There exists thus a pseudometri d

�

C(X)

on C(X) suh that d

X

= (

X

)

�

(d

�

C(X)

).

Conjeture 4. : d

�

C(X)

is a metri outside some proper algebrai subset A � C(X)

This generalizes Lang's onjeture, whih is the ase when �(X) = dimX, so that

C(X) = X.

A more preise version of Conjeture 4 an be given: d

�

C(X)

should be the Kobayashi

pseudometri of the preorbifold (C(X);�(

X

)), naturally de�ned. Suh a preorbifold of

general type has a Kobayashi pseudometri whih is a metri outside some A as above.

Finally let us say that if X is de�ned over a (�nitely generated over Q ) �eld K � C ,

then 

X

: X ! C(X) is de�ned over K. Mordell-Lang's Conjeture should then extend

and say:

The K-rational points of X lie over �nitely many of the K-rational points of C(X).

Numerial haraterization of the K�ahler one of a ompat K�ahler manifold

J.P. Demailly

(joint work with M. Paun)

The goal of this work is give a preise numerial desription of the K�ahler one of a

ompat K�ahler manifold. Our main result states that the K�ahler one depends only on

the intersetion form of the ohomology ring, the Hodge struture and the homology lasses

of analyti yles: if X is a ompat K�ahler manifold, the K�ahler one K of X is one of

the onneted omponents of the set P of real (1; 1) ohomology lasses f�g whih are

numerially positive on analyti yles, i.e.

R

Y

�

p

> 0 for every irreduible analyti set Y

in X, p = dimY . This result is new even in the ase of projetive manifolds, where it
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an be seen as a generalization of the well-known Nakai-Moishezon riterion, and it also

extends previous results by Campana-Peternell and Eyssidieux. The prinipal tehnial

step is to show that every nef lass f�g whih has positive highest self-intersetion number

R

X

�

n

> 0 ontains a K�ahler urrent; this is done by using the Calabi-Yau theorem and

a mass onentration tehnique for Monge-Amp�ere equations. The main result admits

a number of variants and orollaries, inluding a desription of the one of numerially

e�etive (1; 1) lasses and their dual one. As an appliation, D. Huybrehts reently

obtained a desription of the K�ahler one of a very general hyperk�ahler manifold; a slightly

more preise result by S. Bouksom states that the K�ahler one onsists preisely of the

(1; 1)-lasses in the positive quadrati one de�ned by the Beauville-Bogomolov quadrati

form, whih are positive on every rational urve (as there are no suh urves for a very

general hyperk�ahler manifold, the K�ahler one then just oinides with the quadrati one).

Another important onsequene is the fat that for an arbitrary deformation X ! S of

ompat K�ahler manifolds, the K�ahler one of a very general �ber X

t

is \independent"

of t, i.e. invariant by parallel transport under the (1; 1)-omponent of the Gauss-Manin

onnetion.

Published on arXiv as math.AG/0105176

Contat strutures and quaternioni geometry

J. Geiges

(joint work with J. Gonzalo)

A ontat irle on a (real!) 3-manifold M is apair of ontat forms (�

1

; �

2

) suh that

any nontrivial ombination �

1

�

1

+ �

2

�

2

with onstant oeÆients is again a ontat form.

We all (�

1

; �

2

) taut if the volume form (�

1

�

1

+ �

2

�

2

) ^ (�

1

d�

1

+ �

2

d�

2

) is the same for

all (�

1

; �

2

) 2 S

2

� R

2

. Similarly one de�nes a (taut) ontat sphere.

We have shown earlier that the losed 3-manifolds whih admit a taut ontat irle are

exatly those of the form M = � n G with G equal to SU(2),

~

SL

2

, or

~

E

2

(the universal

over of the symetry groups of the three 2-dimensional spae forms), and � � G disrete

and oompat. Taut ontat spheres exists exatly on left quotients � n SU(2).

In this talk I desribe how taut ontat irles and spheres relate to omplex and hy-

perk�ahler geometry. This is then used to desribe the moduli of these families of ontat

strutures. For instane, up to di�eomorphism and an obvious onformal equivalene, the

taut ontat spheres on S

3

� H are given in quaternioni notation by

i�

1

+ j�

2

+ k�

3

=

1

4

(dq � �q � q � d�q)�

�

2

d(qi�q)

with � 2 R

+

0

. The key to this lassi�ation is the result that a taut ontat sphere on a

losed manifoldM gives rise to a at hyperk�ahler metri onM�R (this is false, in general,

if M is not losed).

Families of rationally onneted varieties

T. Graber

(joint work with J. Harris and J. Starr)

If X is a smooth, projetive variety =C , we say X is rationally onneted if any 2 points

in X an be joined by a rational urve. We prove the following result:
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Theorem 1. Let � : X �! B be a morphism of smooth projetive varieties, where B is

an irreduible urve. If a general �ber of � is rationally onneted, then � has a setion.

Our proof is by studying the loal struture of the indued morphism

�

M

g

(X; �) !

�

M

g

(P

1

; d) of moduli spaes of stable maps together with some elementary properties of

spaes of branhed overs.

2 K�ahler manifolds and speial langrangien �brations

M. Grassi

In this talk we introdue s-K�ahler manifolds, whih are a generalization of K�ahler mani-

folds in whih s forms are involved. One way of de�ning them is as follows: You have s forms

!

1

; :::; !

s

of degree 2 on M , and a Riemanniann metri g so that all the forms !

j

are on-

stant. Moreover, over any p 2M you have an orthonormal oframe dx

1

; :::; dx

n

; dy

1

1

; :::; dy

s

n

so that (!

j

)

p

=

P

n

i=1

dx

i

^ dy

j

i

.

The easy way to build examples is with at tori, but the motivation for their introdution is

their onjetural relation with mirror symmetry for Calabi-Yau manifolds. Namely, in the

Strominger-Yau-Zaslow approah, the mirror partner of a CY 3-fold X is the moduli spae

of speial lagrangian tori in X endowed with a at onnetion. We show that the \uni-

versal" or total spae of suh a moduli spae is a 9-dimensional almost 2-k�ahler manifold,

away from the singular �bres. We onjeture that this spae admists a ompati�ationM

whih an be endowed with a globally de�ned 2-K�ahler struture, extending that oming

from X at the level of forms (but not neessarily at the metri level). Suh a struture

would indue a representation of the Lie algebra sl(3;R) on the real ohomology of M ,

and this representation in turn should shed light on the mirror phaenomenon, at least at

the ohomologial level. The existene of this representation guarantees also the existene

of a (Hard) Lefshetz theorem, whih an be also used to put ohomologial restritions

whih guarantee that some manifold annot be s-K�ahler.

Sympleti sums and relations in H

�

(

�

M

g;n

;Q )

E. Ionel

We show that any degree g monomial in desendant or tautologial lasses vanishes

on M

g;n

(where g > 0). This generalizes a result of Looijenga and proves a version of

Getzler's onjeture. The method we use is the sudy of relative Gromov-Witten invariants

of C P

1

relative to r points to give a orrespondene between

�

M

g;n

and

�

M

0;r

. Pulling

bak relations in H

�

(

�

M

0;r

) together with the degeneration formula for Gromov-Witten

invariants of sympleti sums proves the result stated at the beginning (The degeneration

formula for GW invariants is joint work with T. Parker from Mihigan State University).

Uniqueness of ontat strutures

S. Kebekus

A omplex manifold X of odd dimension 2n + 1 is said to be a \ontat manifold" if

there exists a sequene

0! F ! T

X

! L! 0
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where L is a line bundle on X, and where the skew-symmetri map

N : F 
 F ! L

whih is indued by the Lie-braket, is everywhere non-degenerate. It is onjetured that

a projetive ontat manifold whih satis�es b

2

(X) = 1, is homogeneous. In the present

talk, we prove a weaker statement whih was onjetured by LeBrun: If X is a projetive

manifold with b

2

(X) = 1 then either X

�

=

P

2n+1

, or the ontat struture is unique.

The proof is based on a result of Demailly, who has shown that X is neessarily Fano.

Using a reent haraterization of the projetive spae, it follows that either X

�

=

P

2n+1

, or

that X is overed by rational urves ` whih interset the line bundle L with multipliity

one. A detailed study of the deformations of these urves reveals that at a general point

x 2 X, the subspae F j

x

� T

X

j

x

is spanned by the tangent spaes of the minimal rational

urves whih ontain x. In partiular, F j

x

is anonially given and therefore the subbundle

F is unique.

Complete sets of relations for the ohomology of moduli spaes of bundles

over a ompat Riemann surfae

F. Kirwan

The ohomology of the moduli spae of stable bundles of rank 2 and odd degree d

over a ompat Riemann surfae is extremely well understood from the work of many

people; in partiular generators and a omplete set of relations (\Mumford relations")

among these generators are known. For bundles of rank n and degree d, where n and d

are oprime (so that the moduli spae is a nonsingular projetive variety) and n > 2, a set

of generators for the ohomology ring has been known for two deades or more, but the

obvious generalisation of the Mumford relations in rank 2 is not a omplete set when n > 2.

This talk desribes joint work with R. Earl, whih provides a modi�ed generalization of the

rank 2 Mumford relations, and skethes a proof that they form a omplete set of relations

for any n > 2.

Quantum ohomology without moduli spaes

A. Kresh

We disuss methods for omputing genus zero Gromov-Witten invariants of manifolds,

without using moduli spaes.

We outline A. Buh's simpli�ed proof of the quantum Giambelli formula for the Grass-

mannian G = G(k; n) = fV � C

n

j dimV = kg. Let f�

�

g, indexed by partitions

� � (n� k)

k

, denote the usual basis of Shubert lasses for H

�

(G). Buh establishes

Theorem 1. Given any two partitions �; � � (n � k)

k

, with the sum of the lengths of

� and � less than or equal to k, the quantum produt �

�

� �

�

in QH

�

(G) is equal to the

lassial produt �

�

[ �

�

.

The quantum Giambelli formula, whih was originally provd by Aaron Bertram and

whih states that Giambelli's determinant in speial Shubert lasses, evaluated inQH

�

(G),

is equal to �

�

is an immediate onsequene of this theorem. The proof uses the notion of

span of a map ' : P

1

�! G, t 7�! V

t

, de�ned as follows:

Span(') = SpanfV

t

jt 2 P

1

g:

7



We have

Proposition 2. The span of any degree d map ' : P

1

�! G has dimension � k + d.

A dimension-ounting argument, involving span of maps, establishes the theorem.

On the ohomology ring of Hilbert shemes of surfaes with K = 0

M. Lehn

Let X be a smooth projetive surfae =C . By a lassial result of Fogarty, for all n � 0,

the Hilbert sheme X

[n℄

= f� � X subsheme jdim� = 0; l(�) = ng is a smooth variety.

Its Betti numbers were omputed by G�ottshe, and Nakajima proved that

1

M

n=0

H

�

(X

[n℄

)t

�n

�

=

S

�

�

H

�

(X)
 t

�1

C [t

�1

℄

�

as representations over the Heisenberg Lie algebra

h = H

�

(X)
 C [t; t

�1

℄� C :

We report on joint work with Chr. Sorger to determine the ring struture of H

�

(X

[n℄

) in

terms of the ring struture of H

�

(X).

Let A =

L

d

i=�d

A

i

be a graded Frobenius algebra, d an even natural number. A ring

struture is de�ned on AfS

n

g :=

L

�2S

n

A


�nf1;::: ;ng

� in suh a way, that the subring of

invariants A

[n℄

:= AfS

n

g

S

n

with respet to the onjugation ation of S

n

is again a Frobenius

algebra. We apply this onstrution to the ase A = H

�

(X)[2℄.

Theorem 1. If X is a smooth projetive surfae with K

X

� 0,

(H

�

(X)[2℄)

[n℄

�

=

H

�

(X

[n℄

)[2n℄:

The proof is based on alulations in Nakajima's vertex algebra struture on H =

L

1

n=0

H

�

(X

[n℄

) and geometri results relating this struture with multipliation opera-

tors m(�) : H ! H , where m(�)j

H

�

(X

[n℄

)

= �

[n℄

[ �, and �

[n℄

= p

�

(hO

�


 q

�

(� � td X)),

� � X

[n℄

�X denoting the universal family.

A degeneration of the moduli of stable morphisms

J. Li

We study the following problem: Let � : W ! C be a projetive family of shemes.

We assume that for t 6= 0 2 C W

t

are smooth and that the speial �ber W

0

onsists

of two smooth omponents interseting transversally along a smooth divisor D. Here we

assume the total spae W to be smooth. Let (g; n) be a pair of integers and � the degree

of the stable morphisms to be studied, also �xed. Then it is well understood that the

GW-invariants of W

t

, t 6= 0, are onstruted based on

1.) The moduli of stable morphismsM

g;n

(W

t

; �);

2.) The virtual moduli yle [M

g;n

(W

t

; �)℄

virt

and

3.) GW (W

t

)(�) =

R

[M

g;n

(W

t

;�)℄

virt

� .
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The goal of this projet is to de�ne the GW-invariants of W

0

, de�ne the relative GW-

invariants of the two omponents Y

1

and Y

2

of W

0

, and then establish a degeneration

formula of the form

GW (W

t

) = GW (W

0

)

(�) = an expression in f rel �GW (Y

1

; D), rel �GW (Y

2

; D) g

The main ingredient of this projet is to introdue a new set of stable morphisms to

W [n℄

0

and introdue

M

g;n

(W; �) =M

g;n

(W nW

0

; �)

aa

n�0

M

g;n

(W [n℄

0

; �)

st

=(C

�

)

n

We then prove that

Theorem 1. M

g;n

(W; �) is naturally a separated proper Deligne-Mumford stak with per-

fet obstrution theory.

The part of the projet, that was not mentioned in the leture, but ompleted, inludes

the following steps: onstrut the moduli spae of relative stable morphisms; onstrut their

perfet obstrution theories and de�ne two relative GW invariants; prove a degeneration

formula of the form (�).

A generalization of the Grauert Mumford riterion for semismall maps

L. Migliorini

(joint work with M. de Cataldo)

Let X be a nonsingular omplex variety. A map f : X ! Y is said to be semismall if for

every subvariety S � X 2dim(S)�dim f(S) � dimX. The main soure of semismall map

is given by ontration of holomorphi sympleti varieties. Suppose X projetive. A line

bundle L is said to be LEF if some multiple is globally generated and the map it de�nes is

semismall. LEF line bundles behave in many ways just as ample line bundles. For instane,

the Kodaira Akizuki Nakano theorem holds for LEF bundles; a related statement is that

the Hard Lefshetz theorem holds for a LEF bundle: 

1

(L) : H

n�k

(X) �! H

n+k

(X) is an

isomorphism for all k = 0; : : : ; n.

This result has some interesting onsequenes for the topology of semismall maps. The

�rst orollary is the following: let Y

i

be a strati�ation of Y suh that f

�1

(Y

i

) ! Y

i

is a

topologially loally trivial �bration. Suppose 2dimf

�1

(Y

i

) � dimY

i

= dimX. Let y 2 Y

i

and D be a loal transversal slie to Y

i

. The intersetion form de�ned by the irreduible

omponents of f

�1

(y) (omputed in f

�1

(D)) is de�nite ((�1)

dimD

2

-de�nite). This is a

generalization of the Grauert Mumford riterion for ontratibility of urves on a surfae. A

orollary of this statement is the following statement: Rf

�

Q

X

[n℄ =

L

JH

�

Y

i

(L

i

), whih is a

speial ase of the deomposition theorem of BeilinsonBernsteinDeligne. Here JH

�

Y

i

(L

i

) is

the intersetion ohomology omplex of the loal system L

i

on Y

i

de�ned by the monodromy

of the irreduible omponents of the �bres of f j

f

�1

(Y

i

)

. The statement about nondegeneray

of intersetion forms allows also the de�nition of a projetor P 2 A

n

(X �X)

Q

suh that

(X;P ) is the motive of intersetion ohomology of Y . This is onsistent with the reent

mostly onjetural theory of motivi deomposition given by Corti-Hanamura.
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Homology of moduli spaes of sheaves on a K3 surfae

H. Nakajima

Let (X;H) be a polarized K3 surfae =C . Let (H

�

(X;Z); h; i) be the Mukai lattie, i.e.

hx; yi = hx

1

[y

1

�x

0

[y

2

�x

2

[y

0

; [X℄i where x

i

; y

i

are theH

2i

(X;Z)-omponents of x; y. For

a oherent sheaf E on X, let us de�ne the Mukai vetor v(E) by h(E)

p

tdX 2 H

�

(X;Z).

LetM

H

(v) be the moduli spae ofH-stable sheaves E onX with v(E) = v. If v is primitive

and H is generi, it is known thatM

H

(v) is a nonsingular projetive variety with a natural

sympleti struture (Mukai). Harvey-Moore proposed the following

Problem 1. Study the struture of

L

v

H

�

(M

H

(v)). Relate it to the representation the-

ory of an 1-dimensional Lie algebra, a kind of a generalized Ka-Moody Lie algebra

(Borherds).

The struture should ome fom the following subvariety in the triple produt:

Closf(E

1

; E

2

; E

3

)j0! E

1

! E

2

! E

3

! 0)g �M

H

(v

1

)�M

H

(v

2

)�M

H

(v

3

):

We are intersted in a speial ase when M

H

(v

1

) or M

H

(v

2

) is a point, in other words, the

orresponding sheaf is a rigid sheaf. When E

2

= i

�

O

C

(d) where C is a (-2)-urve, I have

proved that the above operator gives a representation of

^

sl

2

, an aÆne lie algebra of sl

2

.

By a philosophy oming from the duality in the string theory, we should expet the

whole onstrution has a symmetry under O(H

�

(X;Z)). It implies, that we ould have a

similar onstrution for any rigid sheaf.

Based on a work of Yoshioka and Markman, we an onstrut a representation of sl

2

(�nite dimensional!) by the above orrespondene with a rigid sheaf E

1

. Her we must put

a ertain tehnial onditon on H and v

2

, v

3

.

Examples of irreduible sympleti varieties

K. O'Grady

We desribe two new examples of irreduible sympleti varieties (of dimension 6 and

10). These manifols are not not deformation equivalent to the other known irreduible

sympleti manifolds (Hilbert shemes of points on a K3 surfae and generalized Kummer

varieties). First one onstruts a sympleti ompati�ation of M

st

, the moduli spae of

rank-2 stable torsion-free sheaves with 

1

= 0 and 

2

= 2k on a projetive surfae S with

K

s

� 0, where k = 2 if S is a K3, and k = 1 if S is an abelian surfae. The moduli spae

M

st

is an open subset of the singular moduli spaeM of semistable sheaves (with the same

rank and Chern lasses): one blows upM twie and then one ontrats an extremal ray to

get the sympleti desingularization

~

M. If S is a K3 then

~

M is a new sympleti variety

of dimension 10: it is \new" beause b

2

(

~

M) � 24, and all known examples have b

2

� 23.

If S is an abelian surfae, let

~

M

0

be the �bre over (0;

^

0) of the �bration

~

M! S�

^

S whih

maps the point [F ℄ to (Alb(

2

(F )); detF ) (stritly speaking we �rst map

~

M to M, and

then apply this map). Then dim

~

M

0

= 6, b

2

(

~

M

0

) = 8, and

~

M

0

is irreduible sympleti;

sine b

2

= 7 or b

2

= 23 for all other 6-dimensional examples,

~

M

0

is a \new" irreduible

sympleti manifold. The topologial omputations needed to prove that

~

M and

~

M

0

are

irreduible sympleti and that b

2

(

~

M

0

) = 8 (b

2

(

~

M) � 24 is easy) are done by applying

Goreski-MaPherson's LHT to a high power of the determinant line bundle over

~

M (or

~

M

0

).
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The Rozansky-Witten topologial quantum �eld theory

J. Sawon

(joint work with J. Roberts and S. Willerton)

About �ve years ago Rozansky and Witten wrote a paper in whih they desribed a

topologial sigma model based on a path integral over the spae of all maps from a 3-

manifold to a hyperk�ahler manifold X. The topologial output of this theory is twofold:

1. Fixing the hyperk�ahler manifold, the partition funtion of the theory is a topologial

invariant of the 3-manifold. For example, if X is the Atiyah-Hithin manifold (a

ertain monopole moduli spae), the 3-fold invariant is the Casson invariant.

2. A Feynman diagram expansion of the partition funtion gives oeÆients whih de-

pend on the hyperk�ahler manifold (and on a Feynman diagram). These are a kind

of a generalized "Chern numbers", and are onstant under deformations of the hy-

perk�ahler struture.

In my talk I investigated the assoiated 3-dimensional TQFT.

In fat, instead of the usual TQFT, we look at the extended TFT. This involves extending

the ategory of 3-bordisms to a 2-ategory (objets are 1-manifolds, morphisms are 2-

bordisms, 2-funtors are 3-bordisms with orners). Then an ETFT is a 2-funtor from this

2-ategory. In other words, it takes 1-manifolds to ategories, 2-bordisms to funtors, and

3-bordisms to natural transformations.

In our onstrution the images of 1-manifolds are derived ategories D(pt), D(X), D(X�

X), et. and the funtors are integral transforms onstruted from the kernels O

diagonal

�

X � � � � � X. Only at the 3-bordism level do we need X to be hyperk�ahler (instead

of just a omplex manifold). Then the natural transformations are onstruted using a

generalization of the oeÆzients from 2) above. This gives us a ompletely ombinatorial

desription of the (extended) TQFT.

Quasi-projetivity of moduli spaes of polarized projetive varieties

G. Shumaher

Theorem 1 (H. Tsuji-G. Shumaher). Any oarse moduli spae of polarized, (smoth) pro-

jetive varieties is quasi-projetive.

Corollary 2. Moduli spaes of polarized non-uniruled varieties are quasi-projetive.

Known was the quasi-projetivity for moduli spaes of polarized varieties suh that anm-

anonial bundle is globally generated (E. Viehweg 89/90), inluding the ase of anonially

polarized varieties.

We onstrut a line bundle on the ompati�ed moduli spae with a positive hermitian

metri where Lelong numbers vanish suh that the urvature is stritly positive in the

interior, as a urrent. The method is based upon the urvature formula for the Quillen

metris on determinant line bundles (Bismut-Gillet-Soul�e), GriÆth's theory about period

mappings, and moduli of framed manifolds. In a seond step, an embedding theorem is

proved.
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Deformational invariane of plurigenera

Y.T. Siu

Let X be a holomorphi family of ompat omplex projetive algebrai manifolds with

�bers X

t

over the open unit 1-disk �. Let K

X

t

and K

X

be respetively the anonial line

bundles of X

t

and X. We prove that, if L is a holomorphi line bundle over X with a

(possibly singular) metri e

�'

of semipositive urvature urrent on X suh that e

�'

j

X

0

is

loally integrable onX

0

, then for any positive integerm, any s 2 �(mK

X

0

+L) with jsj

2

e

�'

loally bounded on X

0

an be extended to an element of �(X;mK

X

+ L). In partiular,

dim�(X

t

; mK

X

t

+ L) is independent of t for ' smooth. The ase of trivial L gives the

deformational invariane of the plurigenera. The method of proof uses an appropriately

formulated e�etive version, with estimates, of the argument in the speaker's earlier paper

on the invariane of plurigenera for general type. A deliate point of the estimates involves

the use of metris as singular as possible for pK

X

0

+a

p

L on X

0

to make the the dimension

of the spae of L

2

holomorphi setions over X

0

bounded independently of p, where a

p

is

the smallest integer �

p�1

m

. These metries are onstruted from s. More onventional

metries, independent of s, suh as generalized Bergman kernels, are not singular enough

for the estimates.

Gauge theoretial equivariant Gromov-Witten invariants

A. Teleman

(joint work with Ch. Okonek)

Let (F; !; J) be an almost K�ahler manifold, � :

^

K � F �! F an ation of

^

K whih lets

J invariant and K a losed subgroup of

^

K, whih lets ! invariant (

^

K is a ompat Lie

group).

We introdue, using gauge theoretial methods, Gromov-Witten type invariants for suh

triples (F; �;

^

K). The adiabati limit onjeture states that these invariants an be related

to the (twisted) Gromov-Witen invariants of the orresponding sympleti quotient of F

with respet to K.

We state a "universal" Kobayashi-Hithin orrespondene (generalizing previous results

by Mundet i Riera) whih gives a omplex geometri interpretation of the moduli spaes

assoiated with any triple (F; !; J) with F K�ahler. Using this Kobayashi-Hithin orre-

spondene, we desribe expliitely the moduli spaes assoiated with triples of the form

1. (Hom(C

r

; C

r

0

); �

an

; U(r)), where �

an

is the natural ation of U(r)� U(r

0

).

2. (C

r

; �

an

; K

w

), where �

an

is the natural ation of [S

1

℄

r

on C

r

and K

w

= ker(w),

where w is an epimorphism w : [S

1

℄

r

�! [S

1

℄

m

.

An expliit formula for the invariants for the �rst ase (when r = 1) and appliations are

disussed.

Vanishing omjetures for the moduli spae of urves

R. Vakil

(joint work with T. Graber)

There are many \vanishing" onjetures and theorems on the moduli spae

�

M

g;n

of

(genus g, n-pointed) urves, whih roughly state, that ertain ohomology lasses vanish
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on some large open subset. I will motivate a new onjeture, Conjeture � (dimension i

lasses vanish away from the lous of urves with at least 2g�2+n�i rational omponents;

odimension j lasses vanish away from the lous of urves with at least j � g+1 rational

omponents), from whih the other vanishing onjetures and theorems, and more, easily

follows.

In some sense, one should think, that the fundamental geometrial fat is Conjeture �,

and that the other vanishing results are ombinatorial onsequenes. This onjeture also

suggests that the oarse strati�ation of

�

M

g;n

by number of genus 0 omponents is useful.

In the last few minutes, I will sketh a proof of at least part of of the onjeture, giving

most of the desired onsequenes. The key idea is to onsider \Hurwitz lasses", and use

both degeneration and virtual loalization arguments on J. Li's (algebrai) moduli spae

of relative stable maps (see p. 8)

Sympleti Hilbert shemes and a onjeture of Ruan

C. Voisin

If X is a omplex surfae, it is known by Fogarty that the puntual Hilbert sheme

Hilb

k

(X) is smooth. By the Hilbert-Chow morphism  : Hilb

k

(X)! X

(k)

, it is a desingu-

larization of the symmetri produt. We �rst explain the onstrution of a similar desin-

gularization  : Hilb

k

(X)! X

(k)

, when X is now an almost omplex fourfold. The map 

is ontinuous, is a di�eomorphism over X

(k)

0

, the open set parametrizing k-uples of distint

points, and its �bers are isomorphi to the �bers of the Hilbert-Chow morphism in the om-

plex ase. We show also that if (X; J) is ompat sympleti , that is J is an almost omplex

struture ompatible with !, Hilb

k

(X) is also sympleti. Following G�ottshe-Siergel, we

explain the omputation of the ohomoloy of Hilb

k

(X) in the omplex ase. We also show

it is still valid in our sympleti situation. It follows from this that H

�

(Hilb

k

(X)) is anon-

ially isomorphi to the orbifold ohomology H

�

orb

(X

(k)

) de�ned by Ruan-Chen. Chen and

Ruan have a onstrution of a ring struture on orbifold ohomology. Ruan onjetures

that under the additive isomorphism above, the produt on H

�

(Hilb

k

(X)) is dedued from

the produt on orbifold ohomology, modi�ed by quantum orretion assoiated to the

Gromov-Witten invariants �

A;0;n

, where A 2 ker(H

2

(Hilb

k

(X);Z)



�

! H

2

(X

(k)

;Z))

�

=

Z.

Small ontrations of omplex sympleti 4-folds

J. Wisniewski

(joint work with J. Wierzba)

Let ' : X ! Y be a loal ontration in the sense of M & P: Assume that ' is

birational and ontrats the exeptional lous lous E to an isolated point y 2 Y . We

asssume moreover that X admits a sympleti (holomorphi) form (hene ' is a repant

ontration).

This talk reports on an approah to prove

Theorem 1 (Wierzba-). In the above situation, if dimX = 4, then ' is analytially equiv-

alent to ontrating the zero setion in the otangent bundle of the projetive plane.

Edited by Markus D�urr
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