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The Topology 
onferen
e 
overed a wide variety of topi
s from algebrai
 topology and re-

lated �elds ranging from low dimensional topology to homotopy theoreti
 questions. There

were for example talks on orbifold 
ohomology, hyperboli
 3-manifolds, group a
tions, mo-

tivi
 
ohomology, L

2

-
ohomology, knot theory and spa
es of embeddings. A highlight was

a series of three talks by P. Shalen with the title \Chara
ter varieties, 3-manifolds with 
y-


li
 �

1

and smallish knots", where among other things a program for proving the Poin
ar�e


onje
ture was outlined.

The 
onferen
e had about 50 parti
ipants from Europe, Ameri
a and Australia. It was

organized by Cameron Gordon (Austin), Wolfgang L

�

u
k (M

�

unster) and Bob Oliver (Paris).

There were roughly four one-hour talks per day to leave enough room for dis
ussions and

resear
h. As always the sta� of the institute did everything possible in order to help the

parti
ipants 
on
entrate on mathemati
s. Although this was harder than usual due to the


ruel events on the 11th of September.
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S
hedule

Monday

9:30 - 10.30 P. Shalen Chara
ter varieties, 3-manifolds with 
y
li


�

1

, and smallish knots { Part I

11:00 - 12:00 C. Broto The homotopy theory of fusion systems

16:00 - 17:00 O. Cornea Hopf invariants, duality and periodi
 orbits

of Hamiltonian 
ows

17:15 - 18:15 M. Weiss Homotopy types of spa
es of smooth embed-

dings

Tuesday

9:30 - 10.30 P. Tei
hner Feynman diagrams and 3-dimensional gropes

11:00 - 12:00 M. Davis l

2

-
ohomology of Artin groups

16.00 - 17.00 G. Powell Cohomology operations in motivi
 
ohomo-

logy

17.15 - 18.15 S. Boyer Surgery on hyperboli
 knots

Wednesday

9:30 - 10.30 Shalen, P. Chara
ter varieties, 3-manifolds with 
y
li


�

1

, and smallish knots { Part II

11:00: - 12:00 A. Adem Aspe
ts of orbifold 
ohomology and K-

theory

13.30 Ex
ursion

Thursday

9:30 - 10.30 Rubinstein, J. The Smale 
onje
ture for lens spa
es

11:00 - 12:00 S
harlemann, M. Knots of tunnel one and genus one

15.45 - 16:30 Calegari, D. Hyperboli
 3-manifolds and groups of ho-

meomorphisms of S

1

16.40 - 17:25 Leary, I. Examples of groups of type VF

17.35 - 18:20 Whitehouse, S. Bases for 
ooperations in K-theory

Friday

9:30 - 10.30 Shalen, P. Chara
ter varieties, 3-manifolds with 
y
li


�

1

, and smallish knots { Part III

11:00 - 12:00 Mahowald, M. Constru
tion of maps between spe
tra via el-

lipti
 
urves

16:00 - 17:00 Ferry, S. Pushing manifolds together

17:15 - 18:15 Browder, B. Constru
ting �nite group a
tions
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Abstra
ts

Aspe
ts of Orbifold Cohomology and K-theory

Alejandro Adem

In this le
ture we provide the basi
 de�nitions and properties of orbifold K-theory and

orbifold 
ohomology. Using equivariant methods we exhibit a de
omposition for K-theory

and apply it to examples. We also des
ribe how to generalize the string-theoreti
 Euler


hara
teristi
 from global quotients to arbitrary redu
ed orbifolds. We also introdu
e a

notion of twisted equivariant K-theory, using dis
rete torsion and 
al
ulate it in some


ases. We apply this to the 
ase of twisted symmetri
 produ
ts. We also dis
uss resolutions

of orbifolds and how in some 
ases their ordinary K-theory should agree with the orbifold

K-theory of the orbifold. This is joint work with Y.Ruan.

Dehn �llings of large hyperboli
 3-manifold

Steven Boyer

In this talk I des
ribe joint work with Cameron Gordon and Xingru Zhang on ex
eptional

�lling slopes of a 
ompa
t, 
onne
ted, orientable hyperboli
 3-manifold M with one 
usp.

In this 
ontext, an ex
eptional Dehn �lling slope is one for whi
h the asso
iated 
losed

manifold is non-hyperboli
. It has been 
onje
tured by Gordon that the distan
e (i.e.

geometri
 interse
tion number) between two su
h slopes is at most 5 when the manifold

is large, that is, when the manifold 
ontains an essential 
losed surfa
e. We verify this


onje
ture in various situations, for instan
e when the �rst Betti number of M is at least

2. In order to do this we sharpen an inequality of Albert Fathi by showing that given a

pseudo-Anosov mapping 
lass f of a 
losed, 
onne
ted, orientable surfa
e S and an essential

simple 
losed 
urve 
 in S, then the set of integers n for whi
h the 
omposition T

n




f is not

pseudo-Anosov has diameter at most 5 (here T




denotes a Dehn twist along 
).

For large manifolds M of �rst Betti number 1 we obtain partial results. Let S be a 
losed

essential surfa
e in M and set

C(S) = f slopes r j ker(�

1

(S)! �

1

(M)) 6= f1gg:

A singular slope for S is a slope r

0

2 C(S) su
h that any other slope in C(S) is at most

distan
e 1 from r

0

. A

ording to a result of Wu, singular slopes exist as long as C(S) 6= ;.

We prove that the distan
e between two ex
eptional �lling slopes is at most 5 if either

- there is a 
losed essential surfa
e S in M with C(S) �nite.

- there are singular slopes r

1

6= r

2

for 
losed essential surfa
es S

1

; S

2

in M .

The homotopy theory of fusion systems

Carles Broto

(joint work with Ran Levi and Bob Oliver)

A fusion system over a �nite p-group S is a 
ategory whose obje
ts are the subgroups

of S and whose morphisms are monomorphisms of groups whi
h in
lude those indu
ed

by 
onjugation in S. A fusion system is saturated if it satis�es 
ertain additional axioms

formulated by Llu

�

is Puig, and motivated by the properties of fusion within the subgroups

of a given Sylow p-subgroup S of a �nite group G. A fusion system F over S is rigidi�ed by
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a 
entri
 linking system whi
h 
onsists of a 
ategory L and a fun
tor � : L ! F whi
h is

inje
tive on obje
ts and surje
tive on morphisms. It also satis�es 
ertain axioms motivated

by the 
ase of �nite groups.

We de�ne a p-lo
al �nite group as a triple (S;F ;L), where S is a �nite p-group, F is

a saturated fusion system over S, and L is a 
entri
 linking system asso
iated to F . Its


lassifying spa
e is de�ned as the p-
ompletion of the nerve of L.

We show that the 
lassifying spa
e jLj

^

p

of a p-lo
al �nite group (S;F ;L) has many of

the same properties of the p-
ompleted 
lassifying spa
e of a �nite group. For example,

�

1

(jLj

^

p

) is a �nite p-group and mapping spa
es map(BQ; jLj

^

p

), for �nite p-groups Q, 
an

be des
ribed in terms of homomorphisms from Q to S and of 
entralizers of their images.

Also, H

�

(jLj

^

p

; F

p

) is isomorphi
 to the subring of H

�

(BS; F

p

) of elements stable under

fusion of F .

Finally, we 
hara
terize the 
lass of 
lassifying spa
es of p-lo
al �nite groups in the ho-

motopy 
ategory of spa
es. This 
lass 
ontains all p-
ompleted 
lassifying spa
es of �nite

groups but it also 
ontains exoti
 examples; that is, examples whi
h do not 
ome from a

�nite group.

Constru
ting �nite group a
tions

B. Browder

LetG be a �nite p-group, U it's universal spa
e. Let Y be a freeG-spa
e, S an n-dimensional

G-spa
e, and f : S � U ! Y a G-map.

Problem: Can one add free G-
ells of dimension less or equal to m (m > n) to get an

m-dimensional G-spa
e X together with a map F : X � U ! Y su
h that

(i) F indu
es isomorphism from �

k

(X � U)! �

k

(Y ) for k < m, and

(ii) F

�

: H

m

((X � U)=G;F

p

)! H

m

(Y=G;F

p

) is an isomorphism?

Theorem: Suppose S, Y above 1-
onne
ted, n > 2. One 
an �nd X, F as above if and only

if the proje
tion map

H

m+1

(Y;X � U ;F

p

)! H

m+1

(Y=G; (X � U)=G;F

p

)

is onto. One way to apply this, would be to 
onstru
t Y as an m-th stage Postnikov system,

and try to �nd an m-dimensional X. The 
ase where S is empty leads to exoti
 a
tions of

elementary abelian groups on spa
es of the homotopy type of produ
ts of spheres.

One may also apply this to 
onstru
t a
tions on familiar spa
es with less familiar �xed

point sets, or homotopy types.

One may apply this method to study the following question:

Problem: Given a free a
tion ofG on Y , where Y has the homotopy type of a �nite 
omplex,

when is there a �nite dimensional G spa
e X, and a map F : X � U ! Y whi
h is a mod

p homology equivalen
e.

The work of Grodal and Smith gives an aÆrmative answer to this question in 
ase Y

has the homotopy type of the sphere. We 
an show that the question is equivalent to the

question of whether the Borel-Quillen lo
alization theorem hold for homotopy �xed points

for subgroups, with 
ertain restri
tions on the isotropy subgroups.
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Hopf invariants, duality and periodi
 orbits of hamiltonian 
ows

O
tav Cornea

Assume that (M;!) is a �xed symple
ti
 manifold. Suppose also that we �x a smooth

fun
tion H : M ! R. We 
an then asso
iate to H its hamiltonian ve
tor �eld X

H

whi
h

is de�ned by requiring the equality !(X

H

; Y ) = dH(Y ) to hold for all ve
tor �elds Y .

A 
lassi
al problem in non-linear analysis and geometry is to dete
t periodi
 orbits of the


ow indu
ed by X

H

. Indeed, the origins of this problem 
an be tra
ed ba
k to Kepler and

the two-body problem and after that to the work of Poin
ar�e. More re
entely, by work of

Rabinowitz, Weinstein, Moser, Floer, Zehnder, Hofer and many other authors, this problem

has been at the 
enter of the development of symple
ti
 topology. The standard, approa
h

to this problem is via analysis on the free loop spa
e of M . The homotopi
al properties of

M play little role in this approa
h as only the homology ofM a
tually appears. Essentially,

all e�e
tive results take pla
e in the 
ase when M is 
ompa
t.

The purpose of this work

1

is to show that, in fa
t, homotopi
al properties related to the

pair (M;H) do have an important impa
t on the re
urren
e properties of X

H

. This is best

seen when M is non-
ompa
t. Noti
e that in this 
ase the existen
e of bounded orbits of

M is a �rst non-trivial step. Moreover, on
e bounded orbits are found by the C

1

-
losing

lemma of Pugh and Robinson a generi
 perturbation will 
reate periodi
 ones.

We therefore fo
us on the problem of existen
e of bounded orbits and we show that the

non-vanishing of 
ertain Hopf invariants asso
iated to a gradient 
ow of H leads to su
h

existen
e results. This is proven by �rst identifying these Hopf invariants with 
ertain

bordism 
lasses of 
onne
ting manifolds via Morse theory.

This approa
h is part of a more general program whose purpose is to understand and

expli
it the homotopi
al properties of 
ows. Other related results that �t in this more

genral setting allow the dete
tion of some non-smoothable Poin
ar�e duality spa
es and

also provide obstru
tions to the existen
e of thi
kenings of 
ertain CW -
omplexes in low


odimension R

n

's.

The `

2

-
ohomology of Artin groups

Mi
hael Davis

(joint work with Ian Leary)

For ea
h Artin group A we 
ompute the redu
ed `

2

-
ohomology of the universal 
over

e

X of

the \Salvetti 
omplex", X. This is a CW-
omplex whi
h is 
onje
tured to be a model for

the 
lassifying spa
e of the Artin group. In the many 
ases when this 
onje
ture is known

to hold our 
al
ulation des
ribes the redu
ed `

2

-
ohomology of the Artin group. If L is the

nerve of the asso
iated Coxeter group and CL denotes the 
one on L, then the answer is

that the redu
ed `

2

-
ohomology of

e

X is H

�

(CL;L)
 `

2

(A).

1

Preprints: Homotopi
al Dynami
s I,II,III,IV at:

http://www-gat.univ-lille1.fr/~
ornea/o
tav.html

I - Erg. Th.& Dyn. Syst. 2 (2000), III - Duke Math. J. 209 (2001)
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Pushing manifolds together

Steven C. Ferry

(joint work with A.N. Dranishnikov)

De�nitions.

( i.) If X and Y are 
ompa
t subsets of a metri
 spa
e Z, we say that d

Z

(X; Y ) < � if

every �-neighborhood of X in Z 
ontains Y and every �-neighborhood of Y 
ontains X.

This de�nes the Hausdor� metri
 on 
ompa
t subset of Z.

( ii.) If X and Y are 
ompa
t metri
 spa
es, we de�ne d

GH

(X; Y ) < � if there is a metri


spa
e Z 
ontaining isometri
 
opies of X and Y so that D

Z

(X; Y ) < �. This de�nes the

Gromov-Hausdor� metri
 on isometry 
lasses of 
ompa
t metri
 spa
es. We will denote

this metri
 spa
e by GH.

( iii.) If C is a subset of GH, a 
ontinuous, monotone fun
tion � : [0; R) ! [0;1) is a


ontra
tibility fun
tion for C if for every X 2 C and x 2 X, and t 2 [0; R), the ball B

t

(x)


ontra
ts to a point in B

�(t)

.

It is not hard to see that if � : [0; R)! [0;1) is a 
ontra
tibility fun
tion, then there is an

� > 0 so that ifM and N are n-manifolds with 
ontra
tibility fun
tion � and d

GH

(M;N) <

�, thenM and N are homotopy equivalent. This leads to notions of deformation and rigidity

in a 
lass C � GH.

De�nitions.

( iv.) A deformation of a manifold M in C is a map � : (0; 1℄ ! C so that �(t) 2 C for

t > 0, �(1) =M , and so that lim

t!0

�(t) exists.

( v.) We will say thatM deforms to N in C if there are deformations � and � ofM and N so

that lim

t!0

�(t) = lim

t!0

�(t). Noti
e that � and � give a preferred homotopy equivalen
e

M ! N . We will say that su
h a homotopy equivalen
e is realized by a deformation in C.

Theorem.

Let n � 7. There is a map H

n+1

(M

[2℄

;M ; L) ! S(M) so that [f ℄ 2 S(M) is realized by

a deformation if and only if [f ℄ lifts to an odd torsion element in H

n+1

(M

[2℄

;M ; L). Here,

M

[2℄

is the se
ond stage of the Postnikov tower of M and S(M) is a group (the stru
ture

set of M?) whose elements are equivalen
e 
lasses of homotopy equivalen
es from 
losed

n-manifolds to M .

De�nition. We say that M is rigid if every homotopy equivalen
e f : N ! M whi
h is

realized by a deformation is homotopi
 to a homeomorphism.

Corollary. Closed aspheri
al manifolds and 
omplex proje
tive spa
es are rigid, while

if L is a lens spa
e with odd order fundamental group and f : L

0

! L is a homotopy

equivalen
e, then f � id : L

0

� S

2`+1

! L � S

2`+1

is realized by a deformation, provided

that the dimension of L� S

2`+1

is at least 7.
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Some examples of groups of type VF

Ian J. Leary

(joint work with Brita Nu
inkis)

Let G be a dis
rete group. A model for EG is a G-CW-
omplex su
h that all 
ell stabilizers

are �nite, and su
h that the �xed point sub
omplex for any �nite subgroup is 
ontra
tible.

A group H is of type F if there is a �nite model for EH, and a group G is of type VF if it


ontains a �nite-index subgroup of type F. We 
onstru
t groups G of type VF having any

of the following properties:

(1) There is no �nite-type model for EG;

(2) The minimal dimension of a model for EG is stri
tly greater than the virtual 
ohomo-

logi
al dimension of G;

(3) G 
ontains in�nitely many 
onjuga
y 
lasses of elements of �nite order.

For a �nite 
ag 
omplex L, the right-angled Artin group A

L

has generators the verti
es of

L subje
t only to the relations that the ends of ea
h edge 
ommute. The group B

L

is the

kernel of the homomorphism from A

L

to Z that sends ea
h generator to 1. M. Bestvina

and N. Brady showed that B

L

is of type F if and only if L is 
ontra
tible.

Our groups are 
onstru
ted as semi-dire
t produ
ts B

L

: Q, where Q is a group of automor-

phisms of the 
ag 
omplex L. Property (1) holds for this group whenever L is 
ontra
tible

but not Q-equivariantly 
ontra
tible. Property (2) holds whenever L is 
ontra
tible, and


ontains a top-dimensional simplex in a freeQ-orbit whose boundary 
onsists of simpli
es in

non-free Q-orbits. The 
onstru
tion of examples having property (3) is more 
ompli
ated,

and involves in�nite 
ag 
omplexes.

Constru
tion of maps between spe
tra via ellipti
 
urves

Mark Mahowald

This talk was a report on an aspe
t of a joint proje
t with Paul Goerss, Hans-Werner Henn

and Charles Rezk. (Part of the work was done in a RIP at Oberwolfa
h last year.) The

obje
t of the proje
t is to 
onstru
t a resolution of spe
tra whi
h gives a presentation of the

K(2) lo
al sphere. The basis of the resolution is a resolution of the Morava stabilizer group

by modules extended from �nite subgroups. The talk 
on
entrated on the 
onstru
tion of

the �rst map whi
h 
an be viewed as 
oming from an isogeny between two ellpti
 
urves

of degree 3 (at the prime 2).

Cohomology operations in motivi
 
ohomology

Geoffrey M.L. Powell

Motivi
 
ohomology with Z=2-
oeÆ
ients is a bigraded 
ohomology theory whi
h is de-

�ned on the Morel-Voevodsky A

1

-lo
al homotopy 
ategory with respe
t to the Nisnevi
h

topology on the 
ategory of smooth s
hemes over a �eld k of 
hara
teristi
 zero.

Steenrod squaring operations, Sq

i

, for motivi
 
ohomology were 
onstru
ted by Voevodsky

using a version of the quadrati
 
onstru
tion. The programme to prove that the motivi


Steenrod algebra of bistable 
ohomology operations is generated as an algebra over the 
o-

eÆ
ient ring by the Sq

i

is presented, based on 
al
ulating the (stable) motivi
 
ohomology

of the representing motivi
 Eilenberg-Ma
Lane spa
es.
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The Suslin-Voevodsky algebrai
 Dold-Thom theorem and the A

1

-lo
al version of group


ompletion relate the motivi
 Eilenberg-Ma
Lane spa
es to symmetri
 produ
ts of 
ertain

s
hemes; two te
hni
al points arise: the `sphere' S

2n;n

is not represented by a s
heme but

by the quotient sheaf P

n

=P

n�1

and the symmetri
 produ
ts are in general not smooth.

The programme involves the 
al
ulation of the motivi
 
ohomology with 
ompa
t supports

of symmetri
 produ
ts of aÆne spa
e A

n

. Transfers are used to redu
e to (produ
ts of) ite-

rates of the symmetri
 square fun
tor. The 
al
ulation is 
arried out by adapting te
hniques

of Totaro for 
onsidering a Borel-Moore 
ohomology theory of a symmetri
 square.

The Smale 
onje
ture for lens spa
es

J. Rubinstein

Hat
her in 1983 proved that the spa
e of di�eomorphisms of the 3-sphere is homotopy

equivalent to the orthogonal group O(4), as 
onje
tured by Smale in 1959. A method is

outlined to show a similar result for all lens spa
es other than S

3

or RP

3

, namely Diff is

homotopy equivalent to Isom, the �nite Lie group of isometries. The main idea is to use

the methods of S
harlemann and the author to 
ompare any two height fun
tions on a lens

spa
e and to show then that a �nite parametrised family of su
h height fun
tions 
an be

homotoped into either a �xed height fun
tion or a �xed family of verti
al height fun
tions,

in a similar manner to work of M
Cullough and the author.

There are no unexpe
ted tunnel number one knots of genus one

Martin S
harlemann

We show that the only knots that are tunnel number one and genus one are those that are

already known: 2-bridge knots obtained by plumbing together two unknotted annuli and

the satellite examples 
lassi�ed by Eudave-Munoz and by Morimoto-Sakuma.

The prin
ipal new tools are a useful way of de�ning width for a 3-valent graph in S

3

and

a 
ontrolled way of loading the knot onto a neighborhood of su
h a graph. We analyze

how the knot loading allows the graph to be thinnned and show that eventually either

the graph 
ontains an unknot or the knot tunnel 
an be pushed onto the Seifert surfa
e.

In either of these 
ir
umstan
es the result (known as the Goda-Teragaito Conje
ture) was

already known.

Title: Chara
ter varieties, 3-manifolds with 
y
li
 �

1

, and smallish knots, Part

I|III

P. Shalen

Joint work of mine with Mar
 Culler, based on the study of SL

2

-
hara
ter varieties of

hyperboli
 knot and link groups, shows that if � is a 
losed 3-manifold with 
y
li
 funda-

mental group, there are restri
tions on the set of essential surfa
es in the exterior of a knot

in � that do not hold for knots in an arbitrary 
losed 3-manifold. This leads to a program

for proving the Poin
ar�e Conje
ture, or more generally the 
onje
ture that 3-manifolds

with �nite 
y
li
 �

1

are lens spa
es, whi
h involves showing that general non-Haken 
losed

3-manifolds 
ontain knots with 
ertain restri
tions on the set of essential surfa
es in their

exteriors. One aspe
t of this program 
on
erns the existen
e of knots that are \smallish"

in the sense that their exteriors 
ontain no bounded essential surfa
es whose boundary

8




urves are meridians. An ongoing joint proje
t of mine with Culler, Nathan Dun�eld and

William Ja
o is devoted to the question of existen
e of smallish knots. The approa
h is

based on the idea of looking for an edge in a one-vertex triangulation|more pre
isely,

a 0-eÆ
ient triangulation in the sense of Ja
o and Rubinstein|whi
h de�nes a smallish

knot. We have shown that when a self-adja
ent edge e in su
h a triangulation de�nes a

non-smallish knot, one 
an asso
iate with e a 
ertain kind of polyhedron in the manifold,


alled a veeblefetzer, whi
h 
an be \
rushed" in a way similar to the way in whi
h Ja
o

and Rubinstein 
rushed 2-sphere in produ
ing 0-eÆ
ient triangulations. We hope that by

iterating the 
rushing pro
ess we will be able to �nd either a smallish knot or a triangula-

tion with no self-adja
ent edge. We would also like to generalize this in order to show that

in any non-Haken manifold one 
an �nd either a smallish knot or a triangulation satisfying


ertain lo
al restri
tions whi
h might imply that �

1

is in�nite.

Feynman diagrams and 3-dimensional gropes

Peter Tei
hner

We explain the notion of a grope 
obordism between two knots in a 3-manifold. Ea
h grope


obordism has a type that 
an be des
ribed by a rooted unitrivalent tree. By �ltering

these trees in di�erent ways, we show how the Goussarov-Habiro approa
h to �nite type

invariants of knots is 
losely related to our notion of grope 
obordism. Thus our results


an be viewed as a geometri
 interpretation of �nite type invariants.

An interesting re�nement we study are knots modulo symmetri
 grope 
obordism in 3-

spa
e. On one hand this theory maps onto the usual Vassiliev theory and on the other

hand it maps onto the Co
hran-Orr-Tei
hner �ltration of the knot 
on
ordan
e group,

via symmetri
 grope 
obordism in 4-spa
e. In parti
ular, the graded theory 
ontains in-

formation on �nite type invariants (with degree h terms mapping to Vassiliev degree 2

h

),

Blan
h�eld forms or S-equivalen
e at h = 2, Casson-Gordon invariants at h = 3, and for

h = 4 one has the new von Neumann signatures of a knot.

Homotopy types of spa
es of smooth embeddings

Mi
hael Weiss

(joint work with Tom Goodwillie and John Klein)

LetM

m

and N

n

be smooth manifolds, without boundary for simpli
ity, n�m � 3. Drawing

inspiration from an old result due to Hae
iger, we des
ribe the homotopy type of the spa
e

of smooth embeddings emb(M;N) in terms of spa
es of equivariant and strati�ed smooth

maps from powers of M to powers of N .

De�nition. Let R � S be �nite sets. A smooth map f : M

S

! N

R

is weakly strati�ed if,

for every equivalen
e relation � on R we have

f

�1

(N

R=�

) =M

S=�

;

and strati�ed if both f and Tf : (TM)

S

! (TN)

R

are weakly strati�ed. (Note that N

R=�

�

N

R

and M

S=�

�M

S

.) Denote the spa
e of these maps by

strat(M

S

; N

R

):

The 
onstru
tion strat(M

S

; N

R

) is 
ontravariantly fun
torial in R: an in
lusion R

0

! R

indu
es a proje
tion N

R

! N

R

0

whi
h 
an be 
omposed with strati�ed maps from M

S

to

N

R

. The 
onstru
tion strat(M

S

; N

R

) is 
ovariantly fun
torial in S: an in
lusion S ! S

0

9



indu
es a proje
tion M

S

0

to M

S

whi
h 
an be 
omposed with strati�ed maps from M

S

to

N

R

.

Let �

k

(M;N) be the spa
e of �xed points of the obvious a
tion of �

k

on the homotopy

limit of the fun
tor (R; S) 7! strat(M

S

; N

R

) where R and S run through the subsets of

f1; 2; 3; : : : ; kg and R � S. Assume k � 2. Sin
e every smooth embedding e : M ! N

determines strati�ed maps M

S

! N

R

for all S and R � S by 
oordinate{wise appli
ation

of e, we have a 
omparison map

emb(M;N)! �

k

(M;N):

Theorem. This map is (1�m+ (k + 1)(n�m� 2){
onne
ted (and sin
e we are assuming

n�m� 2 > 0, the 
onne
tivity tends to 1 as k !1).

The spe
ial 
ase k = 2 is a mild reformulation of a result due to Hae
iger (1961/62) and Dax

(1973). The homotopy limit in the theorem has the following very expli
it des
ription: It is

the spa
e of natural transformations from (R; S) 7! [0; 1℄

SnR

to (R; S) 7! strat(M

S

; N

R

),

where R � S � f1; 2; : : : ; kg as before. Here we identify [0; 1℄

SnR

with the spa
e of maps

from f1; 2; 3; : : : ; kg to [0; 1℄ whi
h take R to 0 and the 
omplement of S to 1.

The proof of the theorem is fairly straightforward from the main results of embedding 
al-


ulus, but of 
ourse these results rely on diÆ
ult multiple disjun
tion theorems (beginning

with Morlet disjun
tion, then Goodwillie's thesis, and more re
ent work by Goodwillie and

Goodwillie{Klein). The paper will appear in \Topology".

Bases for 
ooperations in K-theory

Sarah Whitehouse

(joint work with Fran
is Clarke and Martin Crossley)

Gaussian polynomials are used to de�ne bases with good multipli
ative properties for

the algebra K

�

(K) of 
ooperations in 
omplex K-theory and for the invariants under


onjugation.

The strategy is to �rst work p-lo
ally and then globalise to integral results. For example,

here is the p-lo
al result for odd p.

Theorem Let p be an odd prime and 
hoose q primitive modulo p

2

. Let the polynomials

f

n

(w) 2 Q [w℄ be given by

f

n

(w) =

n�1

Y

i=0

w � q

i

q

n

� q

i

:

Then fw

�bn=2


f

n

(w) : n � 0g is a basis for K

0

(K)

(p)

.

The bases 
an be used to obtain a more expli
it form of a theorem of Keith Johnson whi
h


hara
terises operations in K-theory in terms of their a
tion on the 
oeÆ
ient groups.

We have similar results for the Adams summand, for KO for p = 2 and for 
onne
tive

versions of the various theories. The duals of our basis elements are K-theory operations

whi
h we 
an des
ribe expli
itly in terms of Adams operations. We hope to use our results

to obtain new insight into the ring stru
ture of the operations.

Edited by Holger Rei
h
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