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The Topology conference covered a wide variety of topics from algebraic topology and re-
lated fields ranging from low dimensional topology to homotopy theoretic questions. There
were for example talks on orbifold cohomology, hyperbolic 3-manifolds, group actions, mo-
tivic cohomology, L?-cohomology, knot theory and spaces of embeddings. A highlight was
a series of three talks by P. Shalen with the title “Character varieties, 3-manifolds with cy-
clic m; and smallish knots”, where among other things a program for proving the Poincaré
conjecture was outlined.

The conference had about 50 participants from Europe, America and Australia. It was
organized by Cameron Gordon (Austin), Wolfgang Liick (Miinster) and Bob Oliver (Paris).
There were roughly four one-hour talks per day to leave enough room for discussions and
research. As always the staff of the institute did everything possible in order to help the
participants concentrate on mathematics. Although this was harder than usual due to the
cruel events on the 11th of September.
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Abstracts

Aspects of Orbifold Cohomology and K-theory
ALEJANDRO ADEM

In this lecture we provide the basic definitions and properties of orbifold K-theory and
orbifold cohomology. Using equivariant methods we exhibit a decomposition for K-theory
and apply it to examples. We also describe how to generalize the string-theoretic Euler
characteristic from global quotients to arbitrary reduced orbifolds. We also introduce a
notion of twisted equivariant K-theory, using discrete torsion and calculate it in some
cases. We apply this to the case of twisted symmetric products. We also discuss resolutions
of orbifolds and how in some cases their ordinary K-theory should agree with the orbifold
K-theory of the orbifold. This is joint work with Y.Ruan.

Dehn fillings of large hyperbolic 3-manifold
STEVEN BOYER

In this talk I describe joint work with Cameron Gordon and Xingru Zhang on exceptional
filling slopes of a compact, connected, orientable hyperbolic 3-manifold M with one cusp.
In this context, an exceptional Dehn filling slope is one for which the associated closed
manifold is non-hyperbolic. It has been conjectured by Gordon that the distance (i.e.
geometric intersection number) between two such slopes is at most 5 when the manifold
is large, that is, when the manifold contains an essential closed surface. We verify this
conjecture in various situations, for instance when the first Betti number of M is at least
2. In order to do this we sharpen an inequality of Albert Fathi by showing that given a
pseudo-Anosov mapping class f of a closed, connected, orientable surface S and an essential
simple closed curve v in S, then the set of integers n for which the composition T7' f is not
pseudo-Anosov has diameter at most 5 (here T, denotes a Dehn twist along ).

For large manifolds M of first Betti number 1 we obtain partial results. Let S be a closed
essential surface in M and set

C(S) = { slopes r | ker(m(S) — m (M)) # {1}}.
A singular slope for S is a slope ry € C(S) such that any other slope in C(S) is at most
distance 1 from rq. According to a result of Wu, singular slopes exist as long as C(S) # 0.
We prove that the distance between two exceptional filling slopes is at most 5 if either

- there is a closed essential surface S in M with C(S) finite.
- there are singular slopes r; # ro for closed essential surfaces Si, Se in M.

The homotopy theory of fusion systems
CARLES BROTO
(joint work with Ran Levi and Bob Oliver)

A fusion system over a finite p-group S is a category whose objects are the subgroups
of S and whose morphisms are monomorphisms of groups which include those induced
by conjugation in S. A fusion system is saturated if it satisfies certain additional axioms
formulated by Lluis Puig, and motivated by the properties of fusion within the subgroups
of a given Sylow p-subgroup S of a finite group G. A fusion system F over S is rigidified by



a centric linking system which consists of a category £ and a functor 7: £ — F which is
injective on objects and surjective on morphisms. It also satisfies certain axioms motivated
by the case of finite groups.

We define a p-local finite group as a triple (S,F, L), where S is a finite p-group, F is
a saturated fusion system over S, and L is a centric linking system associated to F. Its
classifying space is defined as the p-completion of the nerve of L.

We show that the classifying space ||} of a p-local finite group (S, F, L) has many of
the same properties of the p-completed classifying space of a finite group. For example,
m1(|£]}) is a finite p-group and mapping spaces map(BQ, |£[})), for finite p-groups @, can
be described in terms of homomorphisms from ) to S and of centralizers of their images.
Also, H*(|£]};Ty,) is isomorphic to the subring of H*(BS;F,) of elements stable under
fusion of F.

Finally, we characterize the class of classifying spaces of p-local finite groups in the ho-
motopy category of spaces. This class contains all p-completed classifying spaces of finite
groups but it also contains exotic examples; that is, examples which do not come from a
finite group.

Constructing finite group actions
B. BROWDER

Let GG be a finite p-group, U it’s universal space. Let Y be a free G-space, S an n-dimensional
G-space, and f: S x U — Y a G-map.

Problem: Can one add free G-cells of dimension less or equal to m (m > n) to get an
m-dimensional G-space X together with a map F': X x U — Y such that

(i) F induces isomorphism from 7, (X x U) — m(Y) for k < m, and
(ii) F.: Hn((X xU)/G; F,) - H,(Y/G; F,) is an isomorphism?

Theorem: Suppose S, Y above 1-connected, n > 2. One can find X, F' as above if and only
if the projection map

Hpi (Y, X X U Fy) = Hp1 (Y/G, (X X U)/G; Fy)

is onto. One way to apply this, would be to construct ¥ as an m-th stage Postnikov system,
and try to find an m-dimensional X. The case where S is empty leads to exotic actions of
elementary abelian groups on spaces of the homotopy type of products of spheres.

One may also apply this to construct actions on familiar spaces with less familiar fixed
point sets, or homotopy types.

One may apply this method to study the following question:

Problem: Given a free action of G on Y, where Y has the homotopy type of a finite complex,
when is there a finite dimensional G space X, and a map F': X x U — Y which is a mod
p homology equivalence.

The work of Grodal and Smith gives an affirmative answer to this question in case Y
has the homotopy type of the sphere. We can show that the question is equivalent to the
question of whether the Borel-Quillen localization theorem hold for homotopy fixed points
for subgroups, with certain restrictions on the isotropy subgroups.



Hopf invariants, duality and periodic orbits of hamiltonian flows
OcTAv CORNEA

Assume that (M,w) is a fixed symplectic manifold. Suppose also that we fix a smooth
function H : M — R. We can then associate to H its hamiltonian vector field Xz which
is defined by requiring the equality w(Xg,Y) = dH(Y') to hold for all vector fields Y.

A classical problem in non-linear analysis and geometry is to detect periodic orbits of the
flow induced by Xpg. Indeed, the origins of this problem can be traced back to Kepler and
the two-body problem and after that to the work of Poincaré. More recentely, by work of
Rabinowitz, Weinstein, Moser, Floer, Zehnder, Hofer and many other authors, this problem
has been at the center of the development of symplectic topology. The standard, approach
to this problem is via analysis on the free loop space of M. The homotopical properties of
M play little role in this approach as only the homology of M actually appears. Essentially,
all effective results take place in the case when M is compact.

The purpose of this work' is to show that, in fact, homotopical properties related to the
pair (M, H) do have an important impact on the recurrence properties of X. This is best
seen when M is non-compact. Notice that in this case the existence of bounded orbits of
M is a first non-trivial step. Moreover, once bounded orbits are found by the C'-closing
lemma of Pugh and Robinson a generic perturbation will create periodic ones.

We therefore focus on the problem of existence of bounded orbits and we show that the
non-vanishing of certain Hopf invariants associated to a gradient flow of H leads to such
existence results. This is proven by first identifying these Hopf invariants with certain
bordism classes of connecting manifolds via Morse theory.

This approach is part of a more general program whose purpose is to understand and
explicit the homotopical properties of flows. Other related results that fit in this more
genral setting allow the detection of some non-smoothable Poincaré duality spaces and
also provide obstructions to the existence of thickenings of certain C'W-complexes in low
codimension R™’s.

The /?-cohomology of Artin groups
MICHAEL DAVIS
(joint work with Ian Leary)

For each Artin group A we compute the reduced ¢2-cohomology of the universal cover X of
the “Salvetti complex”, X. This is a CW-complex which is conjectured to be a model for
the classifying space of the Artin group. In the many cases when this conjecture is known
to hold our calculation describes the reduced ¢2-cohomology of the Artin group. If L is the
nerve of the associated Coxeter group and C'L denotes the cone on L, then the answer is
that the reduced ¢*-cohomology of X is H*(C'L, L) ® (*(A).

! Preprints: Homotopical Dynamics LILIILIV at:
http://www-gat.univ-lillel.fr/ ~cornea/octav.html
I - Erg. Th.& Dyn. Syst. 2 (2000), III - Duke Math. J. 209 (2001)



Pushing manifolds together
STEVEN C. FERRY
(joint work with A.N. Dranishnikov)

Definitions.

(i.) If X and Y are compact subsets of a metric space Z, we say that dz(X,Y) < e if
every e-neighborhood of X in Z contains Y and every e-neighborhood of Y contains X.
This defines the Hausdorff metric on compact subset of 7.

(ii.) If X and Y are compact metric spaces, we define dgy(X,Y) < € if there is a metric
space Z containing isometric copies of X and Y so that Dz(X,Y) < e. This defines the
Gromov-Hausdorff metric on isometry classes of compact metric spaces. We will denote
this metric space by GH.

(iii.) If C is a subset of GH, a continuous, monotone function p : [0, R) — [0,00) is a
contractibility function for C if for every X € C and x € X, and ¢ € [0, R), the ball By(x)
contracts to a point in B,).

It is not hard to see that if p : [0, R) — [0, 00) is a contractibility function, then there is an
e > 0 so that if M and N are n-manifolds with contractibility function p and deg (M, N) <
€, then M and N are homotopy equivalent. This leads to notions of deformation and rigidity
in a class C C GH.

Definitions.
(iv.) A deformation of a manifold M in C is a map « : (0,1] — C so that «(t) € C for
t >0, a(l) = M, and so that lim;_,o a(t) exists.

(v.) We will say that M deforms to N in C if there are deformations «w and 3 of M and N so
that lim;_,o «(t) = lim;_,¢ 5(¢). Notice that o and (3 give a preferred homotopy equivalence
M — N. We will say that such a homotopy equivalence is realized by a deformation in C.

Theorem.

Let n > 7. There is a map H, 1 (M?, M;L) — S(M) so that [f] € S(M) is realized by
a deformation if and only if [f] lifts to an odd torsion element in H,_,(M?, M;L). Here,
M is the second stage of the Postnikov tower of M and S(M) is a group (the structure
set of M?) whose elements are equivalence classes of homotopy equivalences from closed
n-manifolds to M.

Definition. We say that M is rigid if every homotopy equivalence f : N — M which is
realized by a deformation is homotopic to a homeomorphism.

Corollary. Closed aspherical manifolds and complex projective spaces are rigid, while
if L is a lens space with odd order fundamental group and f : L' — L is a homotopy
equivalence, then f x id : L' x S**' — [ x S?**! is realized by a deformation, provided
that the dimension of L x S?*! is at least 7.



Some examples of groups of type VF
IaN J. LEARY
(joint work with Brita Nucinkis)

Let G be a discrete group. A model for EG is a G-CW-complex such that all cell stabilizers
are finite, and such that the fixed point subcomplex for any finite subgroup is contractible.
A group H is of type F if there is a finite model for FH, and a group G is of type VF if it
contains a finite-index subgroup of type F. We construct groups G of type VF having any
of the following properties:

(1) There is no finite-type model for EG;

(2) The minimal dimension of a model for EG is strictly greater than the virtual cohomo-
logical dimension of G,

(3) G contains infinitely many conjugacy classes of elements of finite order.

For a finite flag complex L, the right-angled Artin group A; has generators the vertices of
L subject only to the relations that the ends of each edge commute. The group By, is the
kernel of the homomorphism from A; to Z that sends each generator to 1. M. Bestvina
and N. Brady showed that By, is of type F if and only if L is contractible.

Our groups are constructed as semi-direct products By, : ), where (@ is a group of automor-
phisms of the flag complex L. Property (1) holds for this group whenever L is contractible
but not @Q-equivariantly contractible. Property (2) holds whenever L is contractible, and
contains a top-dimensional simplex in a free ()-orbit whose boundary consists of simplices in
non-free Q-orbits. The construction of examples having property (3) is more complicated,
and involves infinite flag complexes.

Construction of maps between spectra via elliptic curves
MARK MAHOWALD

This talk was a report on an aspect of a joint project with Paul Goerss, Hans-Werner Henn
and Charles Rezk. (Part of the work was done in a RIP at Oberwolfach last year.) The
object of the project is to construct a resolution of spectra which gives a presentation of the
K (2) local sphere. The basis of the resolution is a resolution of the Morava stabilizer group
by modules extended from finite subgroups. The talk concentrated on the construction of
the first map which can be viewed as coming from an isogeny between two ellptic curves
of degree 3 (at the prime 2).

Cohomology operations in motivic cohomology
GEOFFREY M.L. POWELL

Motivic cohomology with Z/2-coefficients is a bigraded cohomology theory which is de-
fined on the Morel-Voevodsky A'-local homotopy category with respect to the Nisnevich
topology on the category of smooth schemes over a field & of characteristic zero.

Steenrod squaring operations, Sq, for motivic cohomology were constructed by Voevodsky
using a version of the quadratic construction. The programme to prove that the motivic
Steenrod algebra of bistable cohomology operations is generated as an algebra over the co-
efficient ring by the Sq' is presented, based on calculating the (stable) motivic cohomology
of the representing motivic Eilenberg-MacLane spaces.



The Suslin-Voevodsky algebraic Dold-Thom theorem and the Al-local version of group
completion relate the motivic Eilenberg-MacLane spaces to symmetric products of certain
schemes; two technical points arise: the ‘sphere’ S?™" is not represented by a scheme but
by the quotient sheaf P"/P"~! and the symmetric products are in general not smooth.
The programme involves the calculation of the motivic cohomology with compact supports
of symmetric products of affine space A™. Transfers are used to reduce to (products of) ite-
rates of the symmetric square functor. The calculation is carried out by adapting techniques
of Totaro for considering a Borel-Moore cohomology theory of a symmetric square.

The Smale conjecture for lens spaces
J. RUBINSTEIN

Hatcher in 1983 proved that the space of diffeomorphisms of the 3-sphere is homotopy
equivalent to the orthogonal group O(4), as conjectured by Smale in 1959. A method is
outlined to show a similar result for all lens spaces other than S or RP3, namely Dif f is
homotopy equivalent to Isom, the finite Lie group of isometries. The main idea is to use
the methods of Scharlemann and the author to compare any two height functions on a lens
space and to show then that a finite parametrised family of such height functions can be
homotoped into either a fixed height function or a fixed family of vertical height functions,
in a similar manner to work of McCullough and the author.

There are no unexpected tunnel number one knots of genus one
MARTIN SCHARLEMANN

We show that the only knots that are tunnel number one and genus one are those that are
already known: 2-bridge knots obtained by plumbing together two unknotted annuli and
the satellite examples classified by Eudave-Munoz and by Morimoto-Sakuma.

The principal new tools are a useful way of defining width for a 3-valent graph in S® and
a controlled way of loading the knot onto a neighborhood of such a graph. We analyze
how the knot loading allows the graph to be thinnned and show that eventually either
the graph contains an unknot or the knot tunnel can be pushed onto the Seifert surface.
In either of these circumstances the result (known as the Goda-Teragaito Conjecture) was
already known.

Title: Character varieties, 3-manifolds with cyclic 7, and smallish knots, Part
I—III

P. SHALEN

Joint work of mine with Marc Culler, based on the study of SLs-character varieties of
hyperbolic knot and link groups, shows that if ¥ is a closed 3-manifold with cyclic funda-
mental group, there are restrictions on the set of essential surfaces in the exterior of a knot
in ¥ that do not hold for knots in an arbitrary closed 3-manifold. This leads to a program
for proving the Poincaré Conjecture, or more generally the conjecture that 3-manifolds
with finite cyclic m; are lens spaces, which involves showing that general non-Haken closed
3-manifolds contain knots with certain restrictions on the set of essential surfaces in their
exteriors. One aspect of this program concerns the existence of knots that are “smallish”
in the sense that their exteriors contain no bounded essential surfaces whose boundary



curves are meridians. An ongoing joint project of mine with Culler, Nathan Dunfield and
William Jaco is devoted to the question of existence of smallish knots. The approach is
based on the idea of looking for an edge in a one-vertex triangulation—more precisely,
a O-efficient triangulation in the sense of Jaco and Rubinstein—which defines a smallish
knot. We have shown that when a self-adjacent edge e in such a triangulation defines a
non-smallish knot, one can associate with e a certain kind of polyhedron in the manifold,
called a veeblefetzer, which can be “crushed” in a way similar to the way in which Jaco
and Rubinstein crushed 2-sphere in producing 0-efficient triangulations. We hope that by
iterating the crushing process we will be able to find either a smallish knot or a triangula-
tion with no self-adjacent edge. We would also like to generalize this in order to show that
in any non-Haken manifold one can find either a smallish knot or a triangulation satisfying
certain local restrictions which might imply that 7 is infinite.

Feynman diagrams and 3-dimensional gropes
PETER TEICHNER

We explain the notion of a grope cobordism between two knots in a 3-manifold. Each grope
cobordism has a type that can be described by a rooted unitrivalent tree. By filtering
these trees in different ways, we show how the Goussarov-Habiro approach to finite type
invariants of knots is closely related to our notion of grope cobordism. Thus our results
can be viewed as a geometric interpretation of finite type invariants.

An interesting refinement we study are knots modulo symmetric grope cobordism in 3-
space. On one hand this theory maps onto the usual Vassiliev theory and on the other
hand it maps onto the Cochran-Orr-Teichner filtration of the knot concordance group,
via symmetric grope cobordism in 4-space. In particular, the graded theory contains in-
formation on finite type invariants (with degree h terms mapping to Vassiliev degree 2"),
Blanchfield forms or S-equivalence at h = 2, Casson-Gordon invariants at h = 3, and for
h = 4 one has the new von Neumann signatures of a knot.

Homotopy types of spaces of smooth embeddings
MicHAEL WEISS
(joint work with Tom Goodwillie and John Klein)

Let M™ and N™ be smooth manifolds, without boundary for simplicity, n—m > 3. Drawing
inspiration from an old result due to Haefliger, we describe the homotopy type of the space
of smooth embeddings emb(M, N) in terms of spaces of equivariant and stratified smooth
maps from powers of M to powers of N.

Definition. Let R C S be finite sets. A smooth map f: M — NF is weakly stratified if,
for every equivalence relation n on R we have

N = M,
and stratified if both f and Tf: (TM)% — (T N)® are weakly stratified. (Note that N®/7
N and M5/ c M%) Denote the space of these maps by
strat(M°, Nf).
The construction strat(M*®, N®) is contravariantly functorial in R: an inclusion R’ — R

induces a projection N — N which can be composed with stratified maps from M?* to
NZ. The construction strat(M*®, N®) is covariantly functorial in S: an inclusion S — S’



induces a projection M5 to M* which can be composed with stratified maps from M?® to
NE

Let ©(M, N) be the space of fixed points of the obvious action of ¥; on the homotopy
limit of the functor (R,S) + strat(M*®, N%) where R and S run through the subsets of
{1,2,3,...,k} and R C S. Assume k > 2. Since every smooth embedding e: M — N
determines stratified maps M* — NF for all S and R C S by coordinate-wise application
of e, we have a comparison map

emb(M,N) — ©(M, N).

Theorem. This map is (1 —m + (k + 1)(n — m — 2)—connected (and since we are assuming
n —m — 2 > 0, the connectivity tends to co as k — 00).

The special case k£ = 2 is a mild reformulation of a result due to Haefliger (1961/62) and Dax
(1973). The homotopy limit in the theorem has the following very explicit description: It is
the space of natural transformations from (R, S) + [0, 1]%\F to (R, S) + strat(MS, NT),
where R C S C {1,2,...,k} as before. Here we identify [0, 1]\ with the space of maps
from {1,2,3,...,k} to [0,1] which take R to 0 and the complement of S to 1.

The proof of the theorem is fairly straightforward from the main results of embedding cal-
culus, but of course these results rely on difficult multiple disjunction theorems (beginning
with Morlet disjunction, then Goodwillie’s thesis, and more recent work by Goodwillie and
Goodwillie—Klein). The paper will appear in “Topology”.

Bases for cooperations in K-theory
Sarah Whitehouse
(joint work with Francis Clarke and Martin Crossley)

Gaussian polynomials are used to define bases with good multiplicative properties for
the algebra K, (K) of cooperations in complex K-theory and for the invariants under
conjugation.

The strategy is to first work p-locally and then globalise to integral results. For example,
here is the p-local result for odd p.

Theorem Let p be an odd prime and choose ¢ primitive modulo p?. Let the polynomials
fn(w) € Q[w] be given by

fulw) = [[ 2=

o 1" 4
1=0
Then {w="2 f,(w) : n > 0} is a basis for Ko(K),).

The bases can be used to obtain a more explicit form of a theorem of Keith Johnson which
characterises operations in K-theory in terms of their action on the coefficient groups.
We have similar results for the Adams summand, for KO for p = 2 and for connective
versions of the various theories. The duals of our basis elements are K-theory operations
which we can describe explicitly in terms of Adams operations. We hope to use our results
to obtain new insight into the ring structure of the operations.

Edited by Holger Reich
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