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Abstracts

A Summation Formula on SL;(Z) and the Fourth Power Moment of the
Riemann Zeta-Function

JOHAN ANDERSSON, STOCKHOLM

We discuss a new summation formula

> F0) =22 0i(m) oj(n) F(n,m, k)
YESL 2(Z) j=1 m=1n=1
+ terms coming from Eisenstein series and holomorphic cusp forms

for the full modular group, and how it relates to Motohashi’s formula for the fourth power
moment. The main idea is to expand a sum over the big cell as
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and then using the double Poisson summation on f.. Kloosterman sums appear and the

Kuznetsov sum formula can be applied. The same trick can be used to get a simple proof
for the fourth power moment.

Some Determinants Connected with RH
MICHEL BALAZARD
(joint work with Luis Béez-Duarte, Bernard Landreau and Eric Saias)

Let H be the Hilbert space Ly (0, +o00;t72dt) , let e4(t) = {t/a} and x = X(1,00) - Then e,
and y arein H , and we are interested in the distance d,, = distancey (X, Vect(eq, . .. ,en)) .
It is well-known that RH follows from d,, = o(1), but the converse is unknown. This is
related to the Nyman-Beurling equivalent form for RH. Numerical experiments support
the conjecture:
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Burnol proved recently that
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Let us try to compute d,, by the Gram formula
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n

Gram (e, ... ,€n,X)
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" Gram (eq, ... ,e,)

One is led to study the multiplicative self-correlation of the fractional part function

= / {1t} 2 dt .
0
The local behavior of A near each rational can be accurately described. In particular

Alp/a+1) = Alp/a) ~ 5 ltlloglt] (£ 0),



and A has a strict local maximum at each rational point. One can deduce from that, that
putting fr, = (k+ 1)exy1 — keg is a first step in the orthogonalization of the ey, and one
gets some insight into the structure of the Gram matrix of the f; .

As a first result about the asymptotic behavior of G,, := Gram (ey,... ,e,), we obtain
the following

PROPOSITION. There exists an absolute positive constant ¢ such that

exp (cy/n (log n)Y*loglog n) < nl*G, < exp (nloglogn + O(n/logn)).

We conjecture that
n!?G, =exp (n*tW).

On the Class Number 1 Problem for Special Real Quadratic Number Fields
ANDRAS BIRO, BUDAPEST

For an odd positive integer p where p? +4 is squarefree, we consider the quadratic field
K = Q(y/p?>+4). H.Yokoi conjectured that h(K) > 1 if p > 17. This is a real analogue
of the famous problem of determining explicitly the imaginary quadratic fields with class
number 1, since for our K the fundamental unit is small. So Siegel’s Theorem implies the
finiteness of such fields K with A(K) =1, but this result is ineffective.

We give an effective upper bound for p if h(K) = 1, hence we prove Yokoi’s conjecture.
The proof applies ideas of a paper of J. Beck together with new ingredients. It is very likely
that the same method applies to the similar conjecture of Chowla.

A Variational Approach to Weil’s Explicit Formula
ENRICO BOMBIERI, PRINCETON

We owe to André Weil the formulation of the Riemann Hypothesis (RH) as a statement
about the positivity of a certain quadratic or hermitian functional, representing a far
reaching extension of Riemann’s celebrated formula for the number of primes up to a
given bound. It is natural to study this problem as that of minimizing this functional
in the unit sphere of a suitable Hilbert space, naturally associated to the problem. In
this lecture it is shown that a minimum is attained, and we obtain some properties of
the associated extremal. The associated kernel is highly singular and its regularization
leads to the study of high order iterated kernels. It is shown that the pointwise positivity
of iterates of sufficiently large order implies RH, together with some heuristic arguments
suggesting that this may be the case. The lecture concludes with a reduction, based on
heuristic arguments, of the problem to the study of a certain random walk on the real line,
although no definite conclusion has been reached yet about the possible implications of
these considerations for an attack to RH.

Primes Representable as Sums of k-th Powers
JORG BRUDERN, STUTTGART
(joint work with K. Kawada and T. Wooley)

Let P(k) denote the smallest s such that infinitely many primes are the sum of s k-th
powers of natural numbers. We prove



THEOREM 1. Assume GRH. Then P(k) < %k

Unconditionally one only knows that P(k) < (1/2+40(1)) klogk although it is very likely
P(k) <3 for all k. Similar results can be obtained unconditionally when the primes are
replaced by other related sequences. For example, when s > 2k, there are infinitely many
numbers with at most two prime factors in the numbers of the type z%+...+2%. We also
have

THEOREM 2. If s > (1/2+41log2) k, then there are infinitely many sums of two squares
that are the sum of s k-th powers.

Automorphic Forms and the Zeta-Function
RoELOF W. BRUGGEMAN, UTRECHT

The explicit formula of Y.Motohashi (see §4.7, Spectral Theory of the Riemann zeta-
function, Cambridge Univ. Press, 1997) gives an explicit expression for

oo
/ ¢ +it)|"g(t) dt
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where ¢ is a suitable test function in terms of automorphic forms for I' = SL,(R):
holomorphic cusp forms, Maass cusp forms, and Eisenstein series. In the proof of the
explicit formula, this relation between the Riemann zeta-function and modular forms arises
from the use of the sum formula of Kuznetsov (Mat. Sb. 111, 1980). In the lecture various
points of view of this fomula were discussed. The original approach of Kuznetsov is based
on the spectral theory L*(I'\'H), where H denotes the upper half plane. But Petersson’s
formula for Fourier coefficients of holomorphic Poincaré series implies that a more natural
formulation of the sum formula should involve holomorphic cusp forms as well. This leads
to the spectral decomposition in other even weights. A limit procedure gives the full
sum formula. But this formulation is also a consequence of a representational approach,
indicated by J. Cogdell and I. Pyatetskii-Shapiro. The last point of view should lead to a
more direct relation between the zeta-function and automorphic forms, bypassing the sum
formula of Kuznetsov.

Modular Forms, Fractal Sets and Differentiability Properties
FERNANDO CHAMIZO, MADRID

Given an elliptic curve with Hasse-Weil L-function ) a,n~®, we consider the Fourier

series A,(x) =Y a,n~*cos2mnz and B, (z) =) a,n~*sin 2rnx . We prove that

(a) For 3/2 < a < 2 the functions A, and B, are differentiable at = = xg, if
and only if z is rational.

(b) For 1 < o < 2 the graphs of A, and B, are fractal sets with Minkowski
dimensions 3 — .

In fact we state a more general theorem which applies to fractional integrals of modular
forms.



A Conjecture for the 2k-th Moment of the Riemann Zeta-Function
BRriAN CONREY
(joint work with D. Farmer, J. Keating, M. Rubinstein and N. Snaith)

Let -
Ii(g) = / g(t) |4 + i) dt

where ¢ is a reasonable test function. We have in mind g(t) = xo,71(t) or g(t) =e /7.
It may be conjectured that

I(g) ~ /Ooog(t) sz(logi)dt

where P> is a polynomial of degree k%. Such formulas are known for ¥ =1 and k = 2
(Hardy and Littlewood, Ingham, Atkinson, Heath-Brown, Motohashi). The leading term
of Py, if it exists, seems to have the form

t \k?
) (log%)
9k Ak 7(!@2)!
with

(b1’ Bl N2

a = [[0-3) Z<j>p]

p J=
and where g, =1 and ¢g» = 2. It was conjectured by Conrey and Ghosh and by Con-
rey and Gonek that g, = 24024. These conjectures were based on Dirichlet polynomial
considerations. Recently, Keating and Snaith used Random Matrix Theory to suggest that
k—1 il
= (EH)! — .

=0

It was unclear how a; and g; would mix in lower order terms. Combining number theoretic
and random matrix theoretic techniques we are led to the following

CONJECTURE.

(-)F 1 / /G(zl,...,z%) A(21yeeey Zhy = Zhg1yeey —22F)2 o3 2w
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=) = G G EiE e e
|2i|=¢e
where
kok ko k
G(Z) = H H<(1+ZZ+Z]) . H H H (1 _p—l—z,—z])
i=1 j=1 p =1 j=1
1 k
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and A(wy, ... ,wr) =[] i, (Wi —wj) is the Vandermode.

We give numerical evidence for the conjecture.



Mean Value of Automorphic L-Functions and the Selberg Kernel Function
SHIGEKI EGAMI, TOYAMA

Let A(z) be a holomorphic cusp form of weight k (k > 12 an even integer) for the full
modular group, and let H,(s) be the automorphic Hecke L-function associated to A
via Mellin transformation. In 1994 Y.Motohashi obtained the spectral resolution of the
weighted mean square of H4(1/2 +it), i.e

/ T HA( it g(t) dt |

o
which is an analogue of his famous (*-formula. In this talk I explain my attempt to
give an alternative proof by using the Selberg kernel function and the Parseval identity
for the Mellin transformation (see my paper in: Number Theory and its Applications by
S. Kanemitsu and K. Gyory, 101-110). Our method of the proof is to calculate

/ v Ke(iy, w) [A(w)]? Iy w dw dy
0 r\x

in two ways: first unfolding, second spectral resolution. In this talk I also described my
recent attempt to generalize to the Hilbert modular case. After the talk R.Bruggeman
suggested that there are infinitely many such identities if we apply the Maass operator
repeatedly to A(z).

Low-lying Zeros of Class Group L-Functions
ETIENNE FOUVRY, ORSAY
(joint work with H.Iwaniec)

We assume the Generalized Riemann Hypothesis. Let D be a squarefree integer, D > 3,
D =3(mod4), K =Q(/—D), v a character on the class group of ideals of O, and
let L(s, ) be the attached L-function.

We investigate the distribution of the zeros 7, of L(s,1) near the point 1/2 and prove
the following theorems.

THEOREM 1. Let ¢: R — R even, smooth, such that suppgg C (=1,1). Then for
D — oo we have

Yo [ loglog D
i D Z Zqﬁ( logD = /_Oo¢>(x)W(Sp)(x) de + O <W
YeCUK) T
where W (Sp)(x) 1is the symplectic measure W (Sp)(z) = 1 — sin 27z /(27x) .
The question is to prove Theorem 1 for functions ¢ with largerA compact support of ¢

(Density Conjecture). This is achieved, on average only, for supp ¢ C (—4/3,4/3). More
precisely, we prove

THEOREM 2.  Suppose ¢ : R — R even, smooth, such that supp$ C (—6,0) with
0<60<4/3. Let A>3 and D be any set of squarefree numbers D = 3 (mod 4), with
A < D < 2A, of cardinality |D| > A?~'/3 . Then for D — oo, we have

D15 i & 20 (e ) - [ swismimar = o, (FEEY)

wecz y T



The proof of Theorem 2 requires a study (on average over D) of primes p of the form
m? 4+ Dn? = 4p, so called Euler primes, satisfying p < A?.

The Subconvexity Problem for Artin L-Functions
JOHN B. FRIEDLANDER
(joint work with W.Duke and H. Iwaniec)

Let k> 0 be an integer, x a primitive character modulo D satisfying x(—1) = (=1)*,
u;(z) a Hecke-Maass cusp form of weight & for the congruence group I'y(D) with neben-
typus x, and Laplace eigenvalue 1/4 + t;. The attached L-function satisfies a func-
tional equation which leads to the convexity bound L;(s) < |D|'/4*¢ on the critical line
s = 1/2, where the implied constant depends on k, t; and s. We succeeded to prove a
subconvexity bound in the D-aspect

10 _
Li(s) < (|tj] + |o|) DY+

where now the implied constant depends only on & (which could also have been done in
the previous bound) and # = 1/23042. In particular we deduce the bound

L(s, 0) < |s["* DY+

for Rs = 1/2 for those degree 2 Artin L-functions over Q which we know to be entire (i.e.
all those not of icosahedral type) where D is the modulus of the primitive determinantal
character. These in turn include the L-functions associated to the class-group of the real
or imaginary quadratic field Q(v/d ) where D =|d|.

From the latter we obtain as corollary the existence of ideals having small norm in every
coset of quotients of sufficiently small index of the class group. In the special case of
the genus group only Dirichlet characters are required and A.Baker and A.Schinzel had
derived such a result (quantitatively stronger) using the Burgess bound. Another corollary
gives the existence of a generator of small norm in every cyclic subgroup of the class group.

Technical Improvements in the Bombieri-Iwaniec Method for Exponential
Sums

MARTIN N. HUXLEY, CARDIFF

The method uses the short interval structure of the sums

(1) Y e(f(m))
(2) > D ehf'(m)
(3) > D e(fm+h)—f(m—h))

which depends on rational approximation to f”(z). Means of short interval sums using
the large sieve require estimates of the number of coincident pairs in each of two sets of
four-dimensional vectors, the two spacing problems.

Watt has seen that the first spacing problem in (3) can be regarded as a perturbation
of the corresponding problems for both (1) and (2) in different ranges. This work will
lead to better bounds.



The second spacing problem is the same for all three sums given in (1), (2) and (3).
A coincident pair corresponds to an integer-preserving affine map taking one region of the
graph of y = f'(x) to another. Affine maps with the same matrix part correspond rather
precisely to integer points close to a “resonance curve” in a two-dimensional space dual to
the space of (z, f(x)). The inclusion map in our space acts functorially as an affine map
of resonance curves in the dual space. Swinnerton-Dyer’s approach to integer points close
to curves leads to slightly better estimates for the sums given above.

Table of exponents in the classical problems*

Old New Limit of method Target
(1) Size of ((1/2+it) | 89/570 | 32/205 3/20 0
(2)  Divisor problem 23/73 131/416 5/16 1/4
(2) Circle problem 46/73 131/208 5/8 1/2
* (up to ¢)

On Some Conjectures and Results for the Riemann Zeta-Function
and Hecke Series
ALEKSANDAR IVI¢, BELGRADE

The lecture covered three related topics:
1. Mean values of |((5 + it)].

2. The Mellin transform zeta-function
Zuls)i= [ lo(b+im)a de,
1

where k € N, Rs > c(k) > 1.

3. Some conjectures on Zi(s) and the Hecke series H,(s).

The asymptotic formula
T

(1) / (C(L+it) P dt = T Pa(logT) + Ex(T) |
0

k € N, was extensively discussed with the accent on known results and conjectures for
Ei(T). The function Zj(s), which is a natural tool for investigating the integral in (1),
was studied. Recent results by M. Jutila, Y. Motohashi and the author were presented as
well as some conjectures of the author on Z;(s) and H;(s). For example if the conjectured
bound, the analogue of the Lindel6f Hypothesis for Zs(s),

Zy(o +it) <. |t
holds for all € > 0 and o > 1/2 fixed, then

T
/|<<%+z’t>|8dt < TV B(T) <. TV
0

which is (up to ) best possible.



The Class Number Problem and Spacing of Zeros of Hecke L-Functions
HENRYK [WANIEC, NEW BRUNSWICK
(joint work with Brian Conrey)

Let K = Q(y/—¢) be the imaginary quadratic field of discriminant —q with ¢ > 4. Let
Y € CL(K) be a class group character and

L(s,¥) = Y 1(a) (Na)*,

where a runs over the non-zero integral ideals, the corresponding L-function. We proved
that if the gap between consecutive zeros of L(s, 1) on the critical line is somewhat smaller
than the average for sufficiently many pairs, note that no Riemann Hypothesis is required,
then the class number of K satisfies h > /g (logq)™", where A is an absolute constant
and the implied constant is effectively computable. In particular for the trivial character
¢ =1 we have L(s,¢) = (x(s) = ((s) L(s, xq) , and restricting our choice to the zeros of
((s) we obtain the following theorem.

THEOREM. Let o =1/2+1ivy be the zeros of ((s) on the critical line and o' = 1/2+iv'
be the nearest zero to o on the critical line, o' = o if o is a multiple zero. Suppose

#{Q: 0<y<T, |[y=91< )}>>T(logT)4/5
for any T > 2001. Then we have
—90
L(1,x4) > (logq)

where the implied constant is effectively computable.

s ( 1
1 —
logy Viogy

REMARKS. The condition of the theorem requires gaps between consecutive zeros of ((s)
to be only slightly smaller than the half of the average gaps. This condition follows from
the Pair Correlation Conjecture.

Spectral Averages and Estimates for L-Functions Attached to Maass Wave
Forms

MATTI JUTILA, TURKU
(joint work with Y. Motohashi)

Let .
Hy(s) = Y t;(mn™ (0> 1)

be the L-function attached to the Maass wave form corresponding to the eigenvalue \; =
1/4+ 5 of the hyperbolic Laplacian. The functional equation of Hj(s) and the convexity
principle imply the bound

H;(1/2 +it) < (t+ &) /2T for t>1.
The estimates

H;(1/2 +it) < t1/3+¢ for fixed k; and t>1

by T.Meurman 1987 and

H;(1/2) < k}/*Te

by A.Ivi¢ 1999, suggest the following



CONJECTURE.
Hi(1/2 4 it) < (|t] + k) /37e.

2/3—¢

In recent joint work with Y. Motohashi, this was verified for |#| < & as an imme-

diate corollary of the following
THEOREM. Let a; = |pj(1)|?/ cosh(mk;) with oj(n) the Fourier coefficients of the j-th
Maass wave form. Then for |t| < K?3~¢ we have uniformly

S i |H 12+t < KYATE
|kj— K| K1/3

The main ingredients of the proof are:

- An approximate functional equation for H7(1/2 + it)
- Kuznetsov’s trace formula

- Voronoi’s sum formula with additive characters

- Motohashi’s identity for the additive divisor problem
- The saddle point method

- The spectral large sieve

On the Structure of the Selberg Class
JERZY KACZOROWSKI, POZNAN
(joint work with A. Perelli)

We prove the following theorem.

THEOREM.  Let Sf denote the set of all L-functions of the extended Selberg class of
degree d. Then S¥ =0 if 1 <d <5/3.

The proof depends on the theory of the hypergeometric Fox functions. To deal with
bilinear forms of the form

SO 3" atmatn) el (m,n,1))
where a(n) are the coefficients of F' € Sf , we apply the saddle point method and estimates

of sums
> an)P

K<n<K+H

over short intervals (H > K?7'/(¢=1) To this end we develop an analytic theory of the
Rankin-Selberg convolution.

Quantum Ergodicity for Arithmetic 3-Manifolds
SHIN-YA KOYAMA, YOKOHAMA

Three topics were presented in the generalization of the quantum chaos theory developed
by Sarnak, Luo and other people.
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(1) The quantum ergodicity of Eisenstein series is valid for Bianchii manifolds.
Namely,

lim i (A) _ vol(A)
t=o0 1y (B)  vol(B)

for any compact Jordan measurable subsets A, B of the Bianchii manifold,
where p; = |E(v,1 +it)|>dV with E(v,s) being the Eisenstein series, and
dV is the volume element.

(2) An improvement of the prime geodesic theorem is possible, if we assume
the mean Lindelof Hypothesis in the A-aspect for automorphic L-functions.
Precisely,

mr(z) = li(2?) + O(zY7+¢)
with I' being the Picard group.

(3) A new estimate of the first eigenvalue will be obtained by using the recent
results of Kim-Sarnak and the theorem of Kim.

A Limit Theorem for the Riemann Zeta-Function in the Space of Continuous
Functions

ANTANAS LAURINCIKAS

We consider the value distribution of the Riemann zeta-function in the sense of the weak
convergence of probability measures. Denote by B(S) the class of Borel sets of the space
S. Let v be the unit circle on the complex plane and Q = [ v,, where v = v, for
each prime p. On (Q,B(Q)) there exists the probability Haar measure mz, and we
have a probability space (Q,B(Q),mH). Let w(p) be the projection of w € Q to ~,,
and w(m) = [[,a,, w*(p). Moreover, let C'(R) denote the space of continuous functions

on R with the topology of uniform convergence on compact sets. Let d,(m) be the
coefficients of the Dirichlet series for (%(s) in the half plane 0 > 1 (s =0 +it), and let
or =1/24 60 loglog®?T/logT, 6 > \/2/2 fixed, kr = (1/2loglogT)~ /2. Then

dyr w(m)
Z mUT+it

m<T

converges uniformly in ¢ on compact subsets of R for almost all w € {2 to some function
B(t,w) as T tends to infinity. Therefore, 5(t,w) isa C(R)-valued random element defined
on (€, B(),myg) . Denote by Ps the distribution of 3(¢,w), and let meas A denote the
Lebesgue measure of the set A.

THEOREM. Under RH the probability measure

1
T meas {re€[0,T]: ¢""(or +it+ir) € A}

where A € B(C(R)) converges weakly to Pg for T — oo.
The latter theorem continues the work of Bohr, Jessen, Wintner, Selberg, Joyner, Mat-
sumoto, Montgomery, the author and others.

11



The Additive Divisor Problem
ToMm MEURMAN, TURKU

Let d(n) denote the divisor function, and let

D(N; f) = Y dn)d(n+f).
n<N
We announce a new estimate for the mean square of the error term in the asymptotic
formula of D(N; f).

The Subconvexity Problem for Rankin-Selberg L-Functions
PaiLiPPE MICHEL, PARIS

We consider the subconvexity problem for the rank 4 Rankin-Selberg L-functions L(s, f®
g), where ¢ is a fixed holomorphic or Maass cusp form, and f is a cusp form with level
g — oo and nebentypus x(¢). Two years ago, Kowalski, the speaker and Vanderkam
proved
L(s, f®g) <. ¢/ 180+ for Rs=1/2

for holomorphic cusp forms f of weight larger than 1 and such that the conductor ¢* of
x; satisfies ¢* < ¢® for some 8 < 1/2.

In this talk we explain how to remove these two assumptions on f and how to prove
the bound

L(s,f®g) < q1/2—1/300

under the only hypothesis that x} # xj where x* is the underlying primitive character
of x. Note that this hypothesis can be removed as well with more computations and that
our method applies also when ¢ is an Eisenstein series.

The key point is to estimate non-trivially shifted convolution sums

S Gy (hie) 3 A(m)Ag(n) W(m.n)

h#0 Im—n=h
when m,n,c =~ ¢, and in particular to incorporate the oscillations of the Gauss sums
Gy, (h;c) as h varies. We treat the shifted sums, where fm —n = h, using a method
of Sarnak based on spectral methods which allows us to reduce the problem to the sub-
convexity problem for twisted L-functions L(s,¢; ® x) in the ¢ aspect, where ¢; ranges
over a basis of Maass forms for I'y(¢), a problem which was solved by Duke, Friedlander
and Iwaniec more than a year ago.

We describe applications of our bound to the equidistribution problem of Heegner points

on Shimura curves.

Upper bounds near s = 1 for an Axiomatic Class of L-Functions
GIUSEPPE MOLTENI

Estimates of the form LW (s, A) <. ; R in the range |s—1| < 1/log R4 for general
L-functions, where R, is a parameter related to the functional equation of L(s, A),
can be quite easily obtained if the Ramanujan Hypothesis is assumed. We prove the
same estimates when the L-functions have an Euler product of polynomial type and the
Ramanujan Hypothesis is replaced by a much weaker assumption about the growth of
certain elementary symmetrical functions. As a consequence, we obtain an upper bound
of this type for every L(s,m), where 7 is an automorphic cusp form on GL(n,Ax). We

12



employ these results to obtain Siegel-type lower bounds for twists by Dirichlet characters
of the third symmetric power of a Maass form.

Beyond Pair Correlation
HuGH L. MONTGOMERY, ANN ARBOR
(joint work with S. Gonek and U. Vorhauer; K. Soundararajan)

Let
T 1 .
S ia(y—7") A
F(a,T) = (27TlogT> N TR0y — o)
0<y<T
0<y'<T
where w(u) =4/(4 +u?). If r(t) = [ F(a)e(te) da then

logT T R
> (-2 )w(v—v’) — 5187 [ Fla,T)7(a)do.
0<y<T R
0<y'<T

Assuming RH, the asymptotic size of F' was determined in 1972 for —1 < a < 1. Thus
the left hand side above can be estimated when supp7 C [—1,1]. In joint work with
S. Gonek and U. Vorhauer, wider classes of kernels are allowed in which the sign of 7(«)
is specified when |a| > 1. Since F(a,T) > 0 for all «, this yields useful inequalities.

In joint work with K.Soundararajan, the prime k-tuple Conjecture is used to generate
a heuristic argument that suggests that

X/ b(x+h) —p(x) — b de = (cp +0(1)) (hlog X/h)""

when X¢ < h < X'=¢. Here the case k = 2 is equivalent assuming RH to the Pair
Correlation Conjecture. The numbers ¢, are the moments of the normalized normal
distribution, so we are led to expect that t(x + h) — ¢(x) is approximately normally
distributed with mean h and variance ~ hlog X/h.

Trying to embed ((s) into L*(I'\G)
YoIicHI MOTOHASHI, TOKYO

It is discussed how to directly prove the spectral decomposition of the fourth moment of
((s). Here directly means that it is wished to dispense with Kloostermania. To achieve
this aim, it is suggested to use two main tools, which are well-known in the theory of
the representation of Lie groups: A) the Kirillov model and B) the Bessel function of a
representation.

Here we investigate the case L*(I'\G) with I' = PSL4(Z) and G = PSL,(R) . The use
of A), especially its unitaricity, is given, e.g. in the book by J. W. Cogdell, I.I. Pyatetskii-
Shapiro: The Arithmetic and Spectral Analysis of Poincaré Series, Perspectives in Math-
ematics, 13, Academic Press, San Diego, California, 1990. We prove, however, the most
essential point in their work with an alternative and elementary argument pertaining to
an orthogonality among the relevant family of Whittaker functions.

B) is a concept due to Gel'fand and Formin. But we use it in the formulation due to
Vilenkin-Klimyk (1991), which we prove, alternatively, as the Mellin inversion of the local
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functional equation attached to an irreducible representation, in the sense of Jacquet and
Langlands. The functional equation itself is proved in an elementary and quick way.

An extension to the complex case e.g. the fourth moment of the Dedekind zeta—function
of the Gaussian number field is also given. Here I' = PSLy(Z[i]) and G = PSL5(C) . The
tools A) and B) are extended to this setting of L?(I'\G) too. This part is a joint work
with R. W. Bruggeman.

Further, a suggestion was made about the unified treatment of mean values of zeta, L-
and Hecke L-functions. This is related to a joint project with M. Jutila.

Distribution Property of Residual Orders
LEO MURATA, TOKYO
(joint work with K. Chinen)

Let a be a positive integer which is not a perfect k-th power with k& > 2, and Q,(z;4, ()
be the set of primes p < x such that the residual order of a(mod p) in Z/pZ* is congruent
to ¢ modulo 4. When ¢ = 0,2, it is known that calculations of # Q,(z;4,¢) are simple,
and we can get these natural densities unconditionally. On the contrary, when ¢ = 1,3, the
distribution properties of Q,(z;4,¢) are rather complicated. Here, under the assumption of
the Generalized Riemann Hypothesis (GRH) we determine completely the natural densities
of #Qu(x;4,0) for £ =0,1,2,3. For example we proved the following result.

THEOREM. Let ay be the squarefree part of a. If a; =1 or 3 (mod 4) then
1/3  if £ =0 or 2 (unconditionally)

the natural density of # Qu(x;4,0) = { 1/6 if (=1 or 3 (under GRH)

If a1 =2 then #Qu(7;4,0) =5/12
o(2;4,1) =7/48 — C/8
the natural density of # Qa(w ) / /
#Qa(x;4,2) =7/24
#Qa(x; 4, 3) = 7/48 + C/S
where
€= 1— 22 ) ~0.64365.
P_3](;1[od 4) (p” +1)(p—1))
p prime

Experiments in Analytic Number Theory
SAMUEL J. PATTERSON, GOTTINGEN

One problem that often arises is the following: Let a, be an arithmetic function for which
one knows or suspects that an asymptotic law of the type >  _. a, ~ ¢X7 holds. We
shall suppose that v is known but one wishes to determine c. It is often necessary to do
this as accurately as possible for reasons of numerology. One case of particular interest is
a, = S(f(x),n) where f € Z[z] is a polynomial, for simplicity of degree 3. Here

S(f(z),n) = Z exp(ZWi@).
j (mod n)

14



In this case one suspects, and in some cases one can prove, that v =4/3. By comparison
with classical examples, and also from statistical considerations it appears that in general
one can find no decent estimate for c¢ substantially better than XY _. a, for the

largest value of X available. Tt is, in general, unrealistic to expect more than a rough
estimate for ¢ by this method.

On an Asymptotic Formula of Srinivas Ramanujan
AYYADURAI SANKARANARAYANAN, MUMBAI
(joint work with K. Ramachandra)

Let d(n) denote the Dirichlet divisor function and let
ZdQ — xPs(log x)

n<z

where P is a polynomial of degree three. We discussed upper bounds and §2 -results for
E(z) unconditionally and proposed a conjecture.

Mean Square of the Central Values of Automorphic L-Functions
KAi-MAN TsanG, HonGg KonG
(joint work with Yuk-Kam Lau)

Let x be a real primitive character of conductor D. Any modular form
Z Ap(n) n* D2 e(nz),

A¢(1) =1, can be twisted by x:

Fe(2) =) M) x(n) n® D72 e(nz)
n=1
The associated L-function is
Lis,fox) = S Al x(m)n™  (Rs>1).
n=1

We investigate the mean square
> wpL(1/2, f®X)
fEF

where Fj is the Hecke basis in the space of holomorphic cusp forms of weight k£ with
respect to SLy(Z) and wy = I'(k—1)(47)"7*|| |2 where ||f|| is the Petersson norm. We
prove that

waLQ(l/Q,f(X)X) =2(1+4 x(-1)¢ )(10g¥+ +Zlogp

feFk p\D 1
+O(D?) +O(D"/?E~1 ey

as k tends to infinity, k£ even.
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COROLLARY. We have

k
#{f € Fir L(1/2, f@x) >0} > Tog i

Greedy Sums of Distinct Squares
ULRIKE M. A. VORHAUER, KENT
(joint work with Hugh L. Montgomery)

When a positive integer is expressed as a sum of squares, with each successive summand
as large as possible, the summands decrease rapidly in size until the very end, where one
may find two 4’s, or several 1’s. We find that the set of integers for which the summands
are distinct, we call them greedy sums of distinct squares, does not have a natural density,
but that the counting function oscillates in a predictable way. Let A(v) be the number of
greedy sums of distinct squares less than v, then

. A(4exp (2HT))
lim
k—oo  4exp (2k+7)
keZ

= f(2)
where f is a continuous, non-constant function with period 1.

Explicit Formulas for the n-th Prime
DiETER WOLKE, FREIBURG

The classical Riemann-von Mangoldt formula

U(z) = Zlogp = x_zx_g_i_O(xlC;%Qx)

k<x 0 ¢

where ¢ = & + in runs through all non-trivial zeros of ((s) with |n| < T, 2<T <z,
allows one, roughly speaking, to calculate ¢ (x) up to an error of order z/T by using zeros
|o|] < T. We discussed the question whether a formula of the type

(1) pn = Li '(n) + Z f(n,0) + Error
o,[n[<T

for the n-th prime can be derived where Li z = f; dt/logt. The result is a bit disap-
pointing and seems not to be appropriate for numerical or theoretical use. First, T has to
be restricted by 2 < T < n®'2~¢. Secondly, p, can be written in the form (1) by means

of an iterative process for which < ¢(g) (loglog n)2 steps are sufficient.

Edited by Ulrike M. A. Vorhauer

16



Participants

Johan Andersson
johana@matematik.su.se
Dept. of Mathematics
University of Stockholm
Box 6701

S-10691 Stockholm

Prof. Dr. Michel Balazard
balazard@math.u-bordeaux.fr
Mathematiques et Informatique
Universite de Bordeaux I

351, cours de la Liberation
F-33405 Talence Cedex

Dr. Andras Biro

biroand@renyi.hu

Alfred Renyi Mathematical Institute
of the Hungarian Academy of Science
Realtanoda u. 13-15

P.O.Box 127

H-1053 Budapest

Prof. Dr. Enrico Bombieri
eb@math.ias.edu

School of Mathematics
Institute for Advanced Study
1 Einstein Drive

Princeton, N.J 08540

USA

Prof. Dr. Jorg Briidern
bruedern@mathematik.uni-stuttgart.de
Mathematisches Institut A
Universitat Stuttgart
Pfaffenwaldring 57

70569 Stuttgart

Dr. Roelof W. Bruggeman
bruggeman@math.uu.nl
Mathematisch Instituut
Universiteit Utrecht

P. O. Box 80.010

NL-3508 TA Utrecht

Prof. Dr. Fernando Chamizo
fernando.chamizo@uam.es
Departamento de Matematicas
Universidad Autonoma de Madrid
Ciudad Universitaria de Cantoblanco
E-28049 Madrid

Prof. Dr. Brian Conrey
conrey@best.com

conreyQaimath.org

American Institute of Mathematics
360 Portage Ave.

Palo Alto, CA 94306

USA

Prof. Dr. Jean-Marc Deshouillers
j-m.deshouillers@math.u-bordeaux.fr
Mathematiques Stochastiques

Universite Bordeaux 2
F-33076 Bordeaux Cedex

Prof. Dr. Shigeki Egami
megami@eng.toyama-u.ac.jp
Department of Mathematics
Faculty of Engineering
Toyama University

Gofuku 3190

Toyama City 930-8555
JAPAN

Prof. Dr. Etienne Fouvry
fouvry@math.u-psud.fr
Mathematiques

Universite Paris Sud (Paris XI)
Centre d’Orsay, Batiment 425
F-91405 Orsay Cedex



Prof. Dr. John B. Friedlander

frdlndr@math.toronto.edu

Dept. of Mathematics
Scarborough College

University of Toronto
Scarborough, Ontario M1C 1A4
CANADA

Prof. Dr. Martin N. Huxley
huxley@cf.ac.uk

School of Mathematics

Cardiff University

23, Senghenydd Road
GB-Cardiff CF24 4YH

Georg Illies
Mathematisches Institut
Universitat Miinster
Einsteinstr. 62

48149 Miinster

Prof. Dr. Aleksandar Ivic

aleks@ivic.matf.bg.ac.yu
eivica@ubbg.etf.bg.ac.yu
aivic@rgf.bg.ac.yu

Katedra Matematike RGF-a
Universiteta u Beogradu
Djusina 7

11000 Beograd

SERBIA

Prof. Dr. Henryk Iwaniec
iwaniec@math.rutgers.edu
Dept. of Mathematics
Rutgers University

Busch Campus, Hill Center
New Brunswick, NJ 08903
USA

Prof. Dr. Matti Jutila
jutila@utu.fi

Institute of Mathematical Sciences
University of Turku

FIN-20014 Turku

18

Prof. Dr. Jerzy Kaczorowski
kjerzyOmath.amu.edu.pl

Institute of Mathematics

A. Mickiewicz University

ul. J.Matejki 48/49

60-769 Poznan

POLAND

Prof. Dr. Shin-ya Koyama
koyama@math.keio.ac. jp

Dept. of Mathematics

Keio University

Hiyoshi 3-14-1, Kohokuku
Yokohama 223-8522

JAPAN

Prof. Dr. Antanas Laurincikas
antanas.laurincikas@maf.vu.lt

Dept. of Mathematics & Informatics
Vilnius University

Naugarduko 24

2006 Vilnius

LITHUANIA

Prof. Dr. Tom Meurman
tommeu@utu.fi

Department of Mathematics
University of Turku
FIN-20014 Turun yliopisto

Dr. Philippe Michel
michel@math.u-psud.fr
Departement de Mathematiques
Universite de Montpellier II
Place Eugene Bataillon

F-34095 Montpellier

Dr. Giuseppe Molteni
giuseppe.molteni@mat.unimi.it
Dipartimento di Matematica
Universita di Milano

Via C. Saldini, 50

[-20133 Milano



Prof. Dr. Hugh L. Montgomery
Hugh.Montgomery@math.lsa.umich.edu
hlm@math.lsa.umich.edu

Dept. of Matheamtics

The University of Michigan

4066 East Hall

Ann Arbor MI 48109-1109

USA

Prof. Dr. Yoichi Motohashi

ymoto@math.cst.nihon-u.ac. jp
am8y-mths@asahi-net.or. jp

Dept. of Mathematics

College of Science and Technology
Nihon University

Surugadai

Tokyo 101

JAPAN

Prof. Dr. Leo Murata
leo@eco.meijigakuin.ac.jp
Dept. of Mathematics
Meiji-gakuin University
Shirokane-dai 1-2-37
Minato-ku

Tokyo 108-8636

JAPAN

Prof. Samuel James Patterson
spatter@gwdvms.gwdg.de
sjp@uni-math.gwdg.de
Mathematisches Institut
Universitat Gottingen

Bunsenstr. 3-5

37073 Gottingen

Prof. Dr. Alberto Perelli
perelli@dima.unige.it
Dipartimento di Matematica
Universita di Genova

Via Dodecaneso 35

[-16146 Genova

19

Prof. Dr. A. Sankaranarayanan
sankO@math.tifr.res.in

Tata Institute of Fundamental
Research

School of Mathematics

Homi Bhabha Road, Colaba

400 005 Mumbai

INDIA

Prof. Dr. Kai Man Tsang
kmtsang@maths.hku.hk
Department of Mathematics
Hong Kong University

Hong Kong
CHINA

Prof. Dr. Ulrike Vorhauer
vorhauer@mathematik.uni-ulm.de

Dept. of Mathematics & Comp.Science
Kent State University

Kent, OH 44242-0001

USA

Michael Welter
mwelter@mi.uni-koeln.de
Mathematisches Institut
Universitat zu Koln
Weyertal 86-90

50931 Koln

Prof. Dr. Dieter Wolke
wolke@mathematik.uni-freiburg.de
Mathematisches Institut
Universitat Freiburg

Eckerstr.1

79104 Freiburg



