
Mathematis
hes Fors
hungsinstitut Oberwolfa
h

Report No. 43/2001

Theory of the Riemann Zeta and Allied Fun
tions

September 16 { September 22, 2001

The present 
onferen
e was

organized by

Martin N.Huxley, Cardi�

Matti Jutila, Turku

Yoi
hi Motohashi, Tokyo

Over forty mathemati
ians a

epted the invitation of the Institute, but the great tragedy

in the U. S. on September 11 unfortunately prevented some of them from 
oming. The

total number of parti
ipants was 33 representing 17 
ountries.

The main topi
s 
onsidered in the 29 le
tures given in the 
onferen
e and in the problem

session were

- approa
hes to the Riemann Hypothesis and other 
onje
tures on zeta-- and L--fun
-

tions

- appli
ations of the spe
tral theory of automorphi
 fun
tions and the representation

theory of Lie groups

- L--fun
tions 
onne
ted with algebrai
 number �elds

- related arithmeti
al problems.

The organizers and parti
ipants are grateful to the Land Baden-W�urttemberg, and to

the dire
tor Prof. Kre
k as well as to the sta� of the Institute, for providing us with su
h

a ni
e opportunity to hold this spe
ial workshop.

1



Abstra
ts

A Summation Formula on SL

2

(Z) and the Fourth Power Moment of the

Riemann Zeta--Fun
tion

Johan Andersson, Sto
kholm

We dis
uss a new summation formula
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2SL
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(Z)
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(n)F (n;m; k
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+ terms 
oming from Eisenstein series and holomorphi
 
usp forms

for the full modular group, and how it relates to Motohashi's formula for the fourth power

moment. The main idea is to expand a sum over the big 
ell as
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and then using the double Poisson summation on f




. Kloosterman sums appear and the

Kuznetsov sum formula 
an be applied. The same tri
k 
an be used to get a simple proof

for the fourth power moment.

Some Determinants Conne
ted with RH

Mi
hel Balazard

(joint work with Luis B�aez-Duarte, Bernard Landreau and Eri
 Saias)

Let H be the Hilbert spa
e L

2

(0;+1; t

�2

dt) , let e

�

(t) = ft=�g and � = �

(1;1)

. Then e

�

and � are in H , and we are interested in the distan
e d

n

= distan
e

H

�

�; Ve
t(e

1

; : : : ; e

n

)

�

.

It is well--known that RH follows from d

n

= o(1) , but the 
onverse is unknown. This is

related to the Nyman--Beurling equivalent form for RH. Numeri
al experiments support

the 
onje
ture:

d

2

n

�

2 + 
 � log 4�

logn

(n!1)

Burnol proved re
ently that

d

2

n

�

2 + 
 � log 4� + o(1)

logn

:

Let us try to 
ompute d

n

by the Gram formula

d

2

n

=

Gram(e

1

; : : : ; e

n

; �)

Gram(e

1

; : : : ; e

n

)

:

One is led to study the multipli
ative self--
orrelation of the fra
tional part fun
tion

A(�) =

Z

1

0

ftgf�tg t

�2

dt :

The lo
al behavior of A near ea
h rational 
an be a

urately des
ribed. In parti
ular

A(p=q + t)� A(p=q) �

1

2p

jtj log jtj (t! 0);
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and A has a stri
t lo
al maximum at ea
h rational point. One 
an dedu
e from that, that

putting f

k

= (k + 1)e

k+1

� ke

k

is a �rst step in the orthogonalization of the e

k

, and one

gets some insight into the stru
ture of the Gram matrix of the f

k

.

As a �rst result about the asymptoti
 behavior of G

n

:= Gram(e

1

; : : : ; e

n

) , we obtain

the following

Proposition. There exists an absolute positive 
onstant 
 su
h that

exp

�




p

n (logn)

1=4

log logn

�

� n!

2

G

n

� exp

�

n log logn+O(n= logn)

�

:

We 
onje
ture that

n!

2

G

n

= exp

�

n

1+o(1)

�

:

On the Class Number 1 Problem for Spe
ial Real Quadrati
 Number Fields

Andr

�

as Biro, Budapest

For an odd positive integer p where p

2

+4 is squarefree, we 
onsider the quadrati
 �eld

K = Q (

p

p

2

+4 ) . H.Yokoi 
onje
tured that h(K) > 1 if p > 17 . This is a real analogue

of the famous problem of determining expli
itly the imaginary quadrati
 �elds with 
lass

number 1, sin
e for our K the fundamental unit is small. So Siegel's Theorem implies the

�niteness of su
h �elds K with h(K) = 1 , but this result is ine�e
tive.

We give an e�e
tive upper bound for p if h(K) = 1 , hen
e we prove Yokoi's 
onje
ture.

The proof applies ideas of a paper of J. Be
k together with new ingredients. It is very likely

that the same method applies to the similar 
onje
ture of Chowla.

A Variational Approa
h to Weil's Expli
it Formula

Enri
o Bombieri, Prin
eton

We owe to Andr�e Weil the formulation of the Riemann Hypothesis (RH) as a statement

about the positivity of a 
ertain quadrati
 or hermitian fun
tional, representing a far

rea
hing extension of Riemann's 
elebrated formula for the number of primes up to a

given bound. It is natural to study this problem as that of minimizing this fun
tional

in the unit sphere of a suitable Hilbert spa
e, naturally asso
iated to the problem. In

this le
ture it is shown that a minimum is attained, and we obtain some properties of

the asso
iated extremal. The asso
iated kernel is highly singular and its regularization

leads to the study of high order iterated kernels. It is shown that the pointwise positivity

of iterates of suÆ
iently large order implies RH, together with some heuristi
 arguments

suggesting that this may be the 
ase. The le
ture 
on
ludes with a redu
tion, based on

heuristi
 arguments, of the problem to the study of a 
ertain random walk on the real line,

although no de�nite 
on
lusion has been rea
hed yet about the possible impli
ations of

these 
onsiderations for an atta
k to RH.

Primes Representable as Sums of k --th Powers

J

�

org Br

�

udern, Stuttgart

(joint work with K.Kawada and T.Wooley)

Let P (k) denote the smallest s su
h that in�nitely many primes are the sum of s k --th

powers of natural numbers. We prove
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Theorem 1. Assume GRH. Then P (k) �

8

3

k .

Un
onditionally one only knows that P (k) � (1=2+o(1)) k log k although it is very likely

P (k) � 3 for all k . Similar results 
an be obtained un
onditionally when the primes are

repla
ed by other related sequen
es. For example, when s > 2k , there are in�nitely many

numbers with at most two prime fa
tors in the numbers of the type x

k

1

+ : : :+x

k

s

. We also

have

Theorem 2. If s > (1=2 + log 2) k , then there are in�nitely many sums of two squares

that are the sum of s k --th powers.

Automorphi
 Forms and the Zeta--Fun
tion

Roelof W.Bruggeman, Utre
ht

The expli
it formula of Y.Motohashi (see x4.7, Spe
tral Theory of the Riemann zeta--

fun
tion, Cambridge Univ. Press, 1997) gives an expli
it expression for

Z

1

�1

�

�

�(

1

2

+ it)

�

�

4

g(t) dt

where g is a suitable test fun
tion in terms of automorphi
 forms for � = SL

2

(R) :

holomorphi
 
usp forms, Maass 
usp forms, and Eisenstein series. In the proof of the

expli
it formula, this relation between the Riemann zeta--fun
tion and modular forms arises

from the use of the sum formula of Kuznetsov (Mat. Sb. 111, 1980). In the le
ture various

points of view of this fomula were dis
ussed. The original approa
h of Kuznetsov is based

on the spe
tral theory L

2

(�nH) , where H denotes the upper half plane. But Petersson's

formula for Fourier 
oeÆ
ients of holomorphi
 Poin
ar�e series implies that a more natural

formulation of the sum formula should involve holomorphi
 
usp forms as well. This leads

to the spe
tral de
omposition in other even weights. A limit pro
edure gives the full

sum formula. But this formulation is also a 
onsequen
e of a representational approa
h,

indi
ated by J. Cogdell and I. Pyatetskii--Shapiro. The last point of view should lead to a

more dire
t relation between the zeta--fun
tion and automorphi
 forms, bypassing the sum

formula of Kuznetsov.

Modular Forms, Fra
tal Sets and Di�erentiability Properties

Fernando Chamizo, Madrid

Given an ellipti
 
urve with Hasse--Weil L--fun
tion

P

a

n

n

�s

, we 
onsider the Fourier

series A

�

(x) =

P

a

n

n

��


os 2�nx and B

�

(x) =

P

a

n

n

��

sin 2�nx . We prove that

(a) For 3=2 < � < 2 the fun
tions A

�

and B

�

are di�erentiable at x = x

0

, if

and only if x

0

is rational.

(b) For 1 < � < 2 the graphs of A

�

and B

�

are fra
tal sets with Minkowski

dimensions 3� � .

In fa
t we state a more general theorem whi
h applies to fra
tional integrals of modular

forms.
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A Conje
ture for the 2k-th Moment of the Riemann Zeta--Fun
tion

Brian Conrey

(joint work with D.Farmer, J.Keating, M.Rubinstein and N. Snaith)

Let

I

k

(g) =

Z

1

0

g(t)

�

�

�(

1

2

+ it)

�

�

2k

dt

where g is a reasonable test fun
tion. We have in mind g(t) = �

[0; T ℄

(t) or g(t) = e

�t=T

.

It may be 
onje
tured that

I

k

(g) �

Z

1

0

g(t)P

k

2

�

log

t

2�

�

dt

where P

k

2

is a polynomial of degree k

2

. Su
h formulas are known for k = 1 and k = 2

(Hardy and Littlewood, Ingham, Atkinson, Heath--Brown, Motohashi). The leading term

of P

k

2

, if it exists, seems to have the form

g

k

a

k

�

log

t

2�

�

k

2

(k

2

)!

with

a

k

=

Y

p

�

1�

1

p

�

(k�1)

2

k�1

X

j=0

�

k�1

j

�

2

p

�j

and where g

1

= 1 and g

2

= 2 . It was 
onje
tured by Conrey and Ghosh and by Con-

rey and Gonek that g

4

= 24024 . These 
onje
tures were based on Diri
hlet polynomial


onsiderations. Re
ently, Keating and Snaith used Random Matrix Theory to suggest that

g

k

= (k

2

)!

k�1

Y

j=0

j !

(j+k)!

:

It was un
lear how a

k

and g

k

would mix in lower order terms. Combining number theoreti


and random matrix theoreti
 te
hniques we are led to the following

Conje
ture.

P

k

2
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k
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2

1
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k
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k
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) �
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�

�
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Y

j=1

�

1�
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1�
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1=2�z

k+j

�

�1

d� ;

and �(w

1

; : : : ; w

r

) =

Q

1�i<j�r

(w

i

� w

j

) is the Vandermode.

We give numeri
al eviden
e for the 
onje
ture.

5



Mean Value of Automorphi
 L--Fun
tions and the Selberg Kernel Fun
tion

Shigeki Egami, Toyama

Let A(z) be a holomorphi
 
usp form of weight k (k � 12 an even integer) for the full

modular group, and let H

A

(s) be the automorphi
 He
ke L--fun
tion asso
iated to A

via Mellin transformation. In 1994 Y.Motohashi obtained the spe
tral resolution of the

weighted mean square of H

A

(1=2 + it) , i.e.

Z

1

�1

jH

A

(

1

2

+ it)j

2

g(t) dt ;

whi
h is an analogue of his famous �

4

--formula. In this talk I explain my attempt to

give an alternative proof by using the Selberg kernel fun
tion and the Parseval identity

for the Mellin transformation (see my paper in: Number Theory and its Appli
ations by

S.Kanemitsu and K.Gy�ory, 101{110). Our method of the proof is to 
al
ulate

Z

1

0

y

s�1

Z

�nH

K

�

(iy; w) jA(w)j

2

I

k�2

m

w dw dy

in two ways: �rst unfolding, se
ond spe
tral resolution. In this talk I also des
ribed my

re
ent attempt to generalize to the Hilbert modular 
ase. After the talk R.Bruggeman

suggested that there are in�nitely many su
h identities if we apply the Maass operator

repeatedly to A(z) .

Low--lying Zeros of Class Group L-Fun
tions

Etienne Fouvry, Orsay

(joint work with H. Iwanie
)

We assume the Generalized Riemann Hypothesis. Let D be a squarefree integer, D > 3 ,

D � 3 (mod 4) , K = Q (

p

�D ) ,  a 
hara
ter on the 
lass group of ideals of O

K

, and

let L(s;  ) be the atta
hed L--fun
tion.

We investigate the distribution of the zeros 


 

of L(s;  ) near the point 1=2 and prove

the following theorems.

Theorem 1. Let � : R ! R even, smooth, su
h that supp

b

� � (�1; 1) . Then for

D!1 we have

1

h(�D)

X

 2

\

C`(K)

X




 

�

�




 

2�

logD

�

=

Z

1

�1

�(x)W (Sp)(x) dx + O

�

log logD

logD

�

where W (Sp)(x) is the symple
ti
 measure W (Sp)(x) = 1� sin 2�x=(2�x) .

The question is to prove Theorem 1 for fun
tions � with larger 
ompa
t support of

b

�

(Density Conje
ture). This is a
hieved, on average only, for supp

b

� � (�4=3; 4=3) . More

pre
isely, we prove

Theorem 2. Suppose � : R ! R even, smooth, su
h that supp

b

� � (��; �) with

0 < � < 4=3 . Let � � 3 and D be any set of squarefree numbers D � 3 (mod 4) , with

� < D � 2� , of 
ardinality jDj � �

��1=3

. Then for D!1 , we have

1

jDj

X

D2D

�

�

�

�

�

�

1

h(�D)

X

 2

\

C`(K)

X




 

�

�




 

2�

logD

�

�

Z

1

�1

�(x)W (Sp)(x) dx

�

�

�

�

�

�

= O

�;�

�

log log�

log�

�

:
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The proof of Theorem 2 requires a study (on average over D ) of primes p of the form

m

2

+Dn

2

= 4p , so 
alled Euler primes, satisfying p < �

�

.

The Sub
onvexity Problem for Artin L--Fun
tions

John B.Friedlander

(joint work with W.Duke and H. Iwanie
)

Let k � 0 be an integer, � a primitive 
hara
ter modulo D satisfying �(�1) = (�1)

k

,

u

j

(z) a He
ke--Maass 
usp form of weight k for the 
ongruen
e group �

0

(D) with neben-

typus � , and Lapla
e eigenvalue 1=4 + t

2

j

. The atta
hed L--fun
tion satis�es a fun
-

tional equation whi
h leads to the 
onvexity bound L

j

(s) � jD j

1=4+"

on the 
riti
al line

<s = 1=2 , where the implied 
onstant depends on k; t

j

and s: We su

eeded to prove a

sub
onvexity bound in the D --aspe
t

L

j

(s)�

�

jt

j

j+ j%j

�

10

D

1=4��

where now the implied 
onstant depends only on k (whi
h 
ould also have been done in

the previous bound) and � = 1=23042 . In parti
ular we dedu
e the bound

L(s; %)� jsj

10

D

1=4��

for <s = 1=2 for those degree 2 Artin L--fun
tions over Q whi
h we know to be entire (i.e.

all those not of i
osahedral type) where D is the modulus of the primitive determinantal


hara
ter. These in turn in
lude the L--fun
tions asso
iated to the 
lass--group of the real

or imaginary quadrati
 �eld Q (

p

d ) where D = jdj .

From the latter we obtain as 
orollary the existen
e of ideals having small norm in every


oset of quotients of suÆ
iently small index of the 
lass group. In the spe
ial 
ase of

the genus group only Diri
hlet 
hara
ters are required and A.Baker and A. S
hinzel had

derived su
h a result (quantitatively stronger) using the Burgess bound. Another 
orollary

gives the existen
e of a generator of small norm in every 
y
li
 subgroup of the 
lass group.

Te
hni
al Improvements in the Bombieri--Iwanie
 Method for Exponential

Sums

Martin N.Huxley, Cardiff

The method uses the short interval stru
ture of the sums

X

m

e (f(m))(1)

X

h

X

m

e (hf

0

(m))(2)

X

h

X

m

e (f(m + h)� f(m� h))(3)

whi
h depends on rational approximation to f

00

(x) . Means of short interval sums using

the large sieve require estimates of the number of 
oin
ident pairs in ea
h of two sets of

four--dimensional ve
tors, the two spa
ing problems.

Watt has seen that the �rst spa
ing problem in (3) 
an be regarded as a perturbation

of the 
orresponding problems for both (1) and (2) in di�erent ranges. This work will

lead to better bounds.
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The se
ond spa
ing problem is the same for all three sums given in (1) , (2) and (3) .

A 
oin
ident pair 
orresponds to an integer--preserving aÆne map taking one region of the

graph of y = f

0

(x) to another. AÆne maps with the same matrix part 
orrespond rather

pre
isely to integer points 
lose to a \resonan
e 
urve" in a two--dimensional spa
e dual to

the spa
e of (x; f(x)) . The in
lusion map in our spa
e a
ts fun
torially as an aÆne map

of resonan
e 
urves in the dual spa
e. Swinnerton--Dyer's approa
h to integer points 
lose

to 
urves leads to slightly better estimates for the sums given above.

Table of exponents in the 
lassi
al problems

�

Old New Limit of method Target

(1) Size of �(1=2 + it) 89=570 32=205 3=20 0

(2) Divisor problem 23=73 131=416 5=16 1=4

(2) Cir
le problem 46=73 131=208 5=8 1=2

�

(up to " )

On Some Conje
tures and Results for the Riemann Zeta--Fun
tion

and He
ke Series

Aleksandar Ivi

�


, Belgrade

The le
ture 
overed three related topi
s:

1. Mean values of j�(

1

2

+ it)j .

2. The Mellin transform zeta--fun
tion

Z

k

(s) :=

Z

1

1

j�(

1

2

+ ix)j

2k

x

�s

dx ;

where k 2 N , <s > 
(k) > 1 .

3. Some 
onje
tures on Z

k

(s) and the He
ke series H

j

(s) .

The asymptoti
 formula

Z

T

0

j�(

1

2

+ it)j

2k

dt = T P

k

2

(logT ) + E

k

(T ) ;(1)

k 2 N , was extensively dis
ussed with the a

ent on known results and 
onje
tures for

E

k

(T ) . The fun
tion Z

k

(s) , whi
h is a natural tool for investigating the integral in (1) ,

was studied. Re
ent results by M. Jutila, Y. Motohashi and the author were presented as

well as some 
onje
tures of the author on Z

k

(s) and H

j

(s) . For example if the 
onje
tured

bound, the analogue of the Lindel�of Hypothesis for Z

2

(s) ,

Z

2

(� + it) �

"

jtj

"

holds for all " > 0 and � > 1=2 �xed, then

Z

T

0

j�(

1

2

+ it)j

8

dt �

"

T

1+ "

; E

2

(T ) �

"

T

1=2+ "

;

whi
h is (up to " ) best possible.
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The Class Number Problem and Spa
ing of Zeros of He
ke L-Fun
tions

Henryk Iwanie
, New Brunswi
k

(joint work with Brian Conrey)

Let K = Q(

p

�q ) be the imaginary quadrati
 �eld of dis
riminant �q with q > 4 . Let

 2

b

C`(K) be a 
lass group 
hara
ter and

L(s;  ) =

X

a

 (a) (Na)

�s

;

where a runs over the non--zero integral ideals, the 
orresponding L--fun
tion. We proved

that if the gap between 
onse
utive zeros of L(s;  ) on the 
riti
al line is somewhat smaller

than the average for suÆ
iently many pairs, note that no Riemann Hypothesis is required,

then the 
lass number of K satis�es h�

p

q (log q)

�A

, where A is an absolute 
onstant

and the implied 
onstant is e�e
tively 
omputable. In parti
ular for the trivial 
hara
ter

 = 1 we have L(s;  ) = �

K

(s) = �(s)L(s; �

q

) , and restri
ting our 
hoi
e to the zeros of

�(s) we obtain the following theorem.

Theorem. Let % = 1=2+ i
 be the zeros of �(s) on the 
riti
al line and %

0

= 1=2+ i


0

be the nearest zero to % on the 
riti
al line, %

0

= % if % is a multiple zero. Suppose

#

n

% : 0 < 
 � T; j
 � 


0

j �

�

log 


�

1�

1

p

log 


�o

� T

�

logT

�

4=5

for any T � 2001 . Then we have

L(1; �

q

) �

�

log q

�

�90

where the implied 
onstant is e�e
tively 
omputable.

Remarks. The 
ondition of the theorem requires gaps between 
onse
utive zeros of �(s)

to be only slightly smaller than the half of the average gaps. This 
ondition follows from

the Pair Correlation Conje
ture.

Spe
tral Averages and Estimates for L--Fun
tions Atta
hed to Maass Wave

Forms

Matti Jutila, Turku

(joint work with Y.Motohashi)

Let

H

j

(s) =

1

X

n=1

t

j

(n)n

�s

(� > 1)

be the L--fun
tion atta
hed to the Maass wave form 
orresponding to the eigenvalue �

j

=

1=4+�

2

j

of the hyperboli
 Lapla
ian. The fun
tional equation of H

j

(s) and the 
onvexity

prin
iple imply the bound

H

j

(1=2 + it)� (t+ �

j

)

1=2+ "

for t � 1 :

The estimates

H

j

(1=2 + it)� t

1=3+ "

for �xed �

j

and t � 1

by T.Meurman 1987 and

H

j

(1=2)� �

1=3+ "

j

by A. Ivi�
 1999, suggest the following

9



Conje
ture.

H

j

(1=2 + it)� (jtj+ �

j

)

1=3+ "

:

In re
ent joint work with Y.Motohashi, this was veri�ed for jtj � �

2=3� "

j

as an imme-

diate 
orollary of the following

Theorem. Let �

j

= j%

j

(1)j

2

= 
osh(��

j

) with %

j

(n) the Fourier 
oeÆ
ients of the j --th

Maass wave form. Then for jtj � K

2=3� "

we have uniformly

X

j�

j

�Kj�K

1=3

�

j

�

�

H

j

(1=2+ it)

�

�

4

� K

4=3+ "

:

The main ingredients of the proof are:

- An approximate fun
tional equation for H

2

j

(1=2 + it)

- Kuznetsov's tra
e formula

- Vorono��'s sum formula with additive 
hara
ters

- Motohashi's identity for the additive divisor problem

- The saddle point method

- The spe
tral large sieve

On the Stru
ture of the Selberg Class

Jerzy Ka
zorowski, Poznan

(joint work with A.Perelli)

We prove the following theorem.

Theorem. Let S

#

d

denote the set of all L--fun
tions of the extended Selberg 
lass of

degree d: Then S

#

d

= ; if 1 < d < 5=3 .

The proof depends on the theory of the hypergeometri
 Fox fun
tions. To deal with

bilinear forms of the form

X

m

X

n

a(m)a(n) e(f(m;n; t))

where a(n) are the 
oeÆ
ients of F 2 S

#

d

, we apply the saddle point method and estimates

of sums

X

K�n�K+H

ja(n)j

2

over short intervals

�

H � K

2�1=(d�1)

�

. To this end we develop an analyti
 theory of the

Rankin--Selberg 
onvolution.

Quantum Ergodi
ity for Arithmeti
 3--Manifolds

Shin--ya Koyama, Yokohama

Three topi
s were presented in the generalization of the quantum 
haos theory developed

by Sarnak, Luo and other people.

10



(1) The quantum ergodi
ity of Eisenstein series is valid for Bian
hii manifolds.

Namely,

lim

t!1

�

t

(A)

�

t

(B)

=

vol(A)

vol(B)

for any 
ompa
t Jordan measurable subsets A , B of the Bian
hii manifold,

where �

t

= jE(v; 1 + it)j

2

dV with E(v; s) being the Eisenstein series, and

dV is the volume element.

(2) An improvement of the prime geodesi
 theorem is possible, if we assume

the mean Lindel�of Hypothesis in the �--aspe
t for automorphi
 L--fun
tions.

Pre
isely,

�

�

(x) = li(x

2

) +O(x

11=7+ "

)

with � being the Pi
ard group.

(3) A new estimate of the �rst eigenvalue will be obtained by using the re
ent

results of Kim--Sarnak and the theorem of Kim.

A Limit Theorem for the Riemann Zeta--Fun
tion in the Spa
e of Continuous

Fun
tions

Antanas Laurin

�


ikas

We 
onsider the value distribution of the Riemann zeta--fun
tion in the sense of the weak


onvergen
e of probability measures. Denote by B(S) the 
lass of Borel sets of the spa
e

S . Let 
 be the unit 
ir
le on the 
omplex plane and 
 =

Q

p




p

, where 
 = 


p

for

ea
h prime p: On

�


;B(
)

�

there exists the probability Haar measure m

H

, and we

have a probability spa
e

�


;B(
); m

H

�

. Let !(p) be the proje
tion of ! 2 
 to 


p

,

and !(m) =

Q

p

�

km

!

�

(p) . Moreover, let C(R) denote the spa
e of 
ontinuous fun
tions

on R with the topology of uniform 
onvergen
e on 
ompa
t sets. Let d

a

(m) be the


oeÆ
ients of the Diri
hlet series for �

a

(s) in the half plane � > 1 (s = � + it) , and let

�

T

= 1=2 + � log log

3=2

T= logT , � >

p

2=2 �xed, �

T

= (1=2 log logT )

� 1=2

. Then

X

m�T

d

�

T

!(m)

m

�

T

+it


onverges uniformly in t on 
ompa
t subsets of R for almost all ! 2 
 to some fun
tion

�(t; !) as T tends to in�nity. Therefore, �(t; !) is a C(R)--valued random element de�ned

on

�


;B(
); m

H

�

. Denote by P

�

the distribution of �(t; !) , and let measA denote the

Lebesgue measure of the set A:

Theorem. Under RH the probability measure

1

T

meas

�

� 2 [0; T ℄ : �

�

T

(�

T

+ it + i�) 2 A

	

where A 2 B

�

C(R)

�


onverges weakly to P

�

for T !1 .

The latter theorem 
ontinues the work of Bohr, Jessen, Wintner, Selberg, Joyner, Mat-

sumoto, Montgomery, the author and others.

11



The Additive Divisor Problem

Tom Meurman, Turku

Let d(n) denote the divisor fun
tion, and let

D(N ; f) =

X

n�N

d(n) d(n+ f) :

We announ
e a new estimate for the mean square of the error term in the asymptoti


formula of D(N ; f) .

The Sub
onvexity Problem for Rankin--Selberg L--Fun
tions

Philippe Mi
hel, Paris

We 
onsider the sub
onvexity problem for the rank 4 Rankin--Selberg L--fun
tions L(s; f


g) , where g is a �xed holomorphi
 or Maass 
usp form, and f is a 
usp form with level

q ! 1 and nebentypus �

f

(q) . Two years ago, Kowalski, the speaker and Vanderkam

proved

L(s; f 
 g) �

"

q

1=2� 1=80+ "

for <s = 1=2

for holomorphi
 
usp forms f of weight larger than 1 and su
h that the 
ondu
tor q

�

of

�

f

satis�es q

�

< q

�

for some � < 1=2 .

In this talk we explain how to remove these two assumptions on f and how to prove

the bound

L(s; f 
 g) � q

1=2� 1=300

under the only hypothesis that �

�

f

6= �

�

g

where �

�

is the underlying primitive 
hara
ter

of � . Note that this hypothesis 
an be removed as well with more 
omputations and that

our method applies also when g is an Eisenstein series.

The key point is to estimate non--trivially shifted 
onvolution sums

X

h 6=0

G

�

f

(h; 
)

X

`m�n=h

�

g

(m)�

g

(n)W (m;n)

when m;n; 
 � q , and in parti
ular to in
orporate the os
illations of the Gauss sums

G

�

f

(h; 
) as h varies. We treat the shifted sums, where `m � n = h , using a method

of Sarnak based on spe
tral methods whi
h allows us to redu
e the problem to the sub-


onvexity problem for twisted L--fun
tions L(s; �

j


�) in the q aspe
t, where �

j

ranges

over a basis of Maass forms for �

0

(`) , a problem whi
h was solved by Duke, Friedlander

and Iwanie
 more than a year ago.

We des
ribe appli
ations of our bound to the equidistribution problem of Heegner points

on Shimura 
urves.

Upper bounds near s = 1 for an Axiomati
 Class of L--Fun
tions

Giuseppe Molteni

Estimates of the form L

(j)

(s; A) �

";j

R

"

A

in the range js�1j � 1= logR

A

for general

L--fun
tions, where R

A

is a parameter related to the fun
tional equation of L(s; A) ,


an be quite easily obtained if the Ramanujan Hypothesis is assumed. We prove the

same estimates when the L--fun
tions have an Euler produ
t of polynomial type and the

Ramanujan Hypothesis is repla
ed by a mu
h weaker assumption about the growth of


ertain elementary symmetri
al fun
tions. As a 
onsequen
e, we obtain an upper bound

of this type for every L(s; �) , where � is an automorphi
 
usp form on GL(n; A

K

) . We

12



employ these results to obtain Siegel--type lower bounds for twists by Diri
hlet 
hara
ters

of the third symmetri
 power of a Maass form.

Beyond Pair Correlation

Hugh L.Montgomery, Ann Arbor

(joint work with S.Gonek and U.Vorhauer; K. Soundararajan)

Let

F (�; T ) =

�

T

2�

logT

�

�1

X

0<
�T

0<


0

�T

T

i�(
�


0

)

w(
 � 


0

)

where w(u) = 4=(4 + u

2

) . If r(t) =

R

R

br(�)e(t�) d� then

X

0<
�T

0<


0

�T

r

�

(
 � 


0

)

logT

2�

�

w(
 � 


0

) =

T

2�

logT

Z

R

F (�; T )br(�) d� :

Assuming RH, the asymptoti
 size of F was determined in 1972 for �1 � � � 1 . Thus

the left hand side above 
an be estimated when supp br � [�1; 1℄ . In joint work with

S.Gonek and U.Vorhauer, wider 
lasses of kernels are allowed in whi
h the sign of br(�)

is spe
i�ed when j�j � 1 . Sin
e F (�; T ) � 0 for all � , this yields useful inequalities.

In joint work with K. Soundararajan, the prime k--tuple Conje
ture is used to generate

a heuristi
 argument that suggests that

1

X

Z

X

0

�

 (x+ h)�  (x)� h

�

k

dx =

�




k

+ o(1)

��

h logX=h

�

k=2

when X

"

� h � X

1�"

. Here the 
ase k = 2 is equivalent assuming RH to the Pair

Correlation Conje
ture. The numbers 


k

are the moments of the normalized normal

distribution, so we are led to expe
t that  (x + h) �  (x) is approximately normally

distributed with mean h and varian
e � h logX=h .

Trying to embed �(s) into L

2

(� nG)

Yoi
hi Motohashi, Tokyo

It is dis
ussed how to dire
tly prove the spe
tral de
omposition of the fourth moment of

�(s) . Here dire
tly means that it is wished to dispense with Kloostermania. To a
hieve

this aim, it is suggested to use two main tools, whi
h are well-known in the theory of

the representation of Lie groups: A) the Kirillov model and B) the Bessel fun
tion of a

representation.

Here we investigate the 
ase L

2

(�nG) with � = PSL

2

(Z) and G = PSL

2

(R) . The use

of A), espe
ially its unitari
ity, is given, e.g. in the book by J.W.Cogdell, I. I. Pyatetskii--

Shapiro: The Arithmeti
 and Spe
tral Analysis of Poin
ar�e Series, Perspe
tives in Math-

emati
s, 13, A
ademi
 Press, San Diego, California, 1990. We prove, however, the most

essential point in their work with an alternative and elementary argument pertaining to

an orthogonality among the relevant family of Whittaker fun
tions.

B) is a 
on
ept due to Gel'fand and Formin. But we use it in the formulation due to

Vilenkin--Klimyk (1991), whi
h we prove, alternatively, as the Mellin inversion of the lo
al

13



fun
tional equation atta
hed to an irredu
ible representation, in the sense of Ja
quet and

Langlands. The fun
tional equation itself is proved in an elementary and qui
k way.

An extension to the 
omplex 
ase e.g. the fourth moment of the Dedekind zeta--fun
tion

of the Gaussian number �eld is also given. Here � = PSL

2

(Z[i℄) and G = PSL

2

(C ) . The

tools A) and B) are extended to this setting of L

2

(� nG) too. This part is a joint work

with R.W.Bruggeman.

Further, a suggestion was made about the uni�ed treatment of mean values of zeta, L--

and He
ke L--fun
tions. This is related to a joint proje
t with M. Jutila.

Distribution Property of Residual Orders

Leo Murata, Tokyo

(joint work with K.Chinen)

Let a be a positive integer whi
h is not a perfe
t k--th power with k � 2 , and Q

a

(x; 4; `)

be the set of primes p � x su
h that the residual order of a(mod p) in Z=pZ

�

is 
ongruent

to ` modulo 4: When ` = 0; 2 , it is known that 
al
ulations of #Q

a

(x; 4; `) are simple,

and we 
an get these natural densities un
onditionally. On the 
ontrary, when ` = 1; 3 , the

distribution properties of Q

a

(x; 4; `) are rather 
ompli
ated. Here, under the assumption of

the Generalized Riemann Hypothesis (GRH) we determine 
ompletely the natural densities

of #Q

a

(x; 4; `) for ` = 0; 1; 2; 3 . For example we proved the following result.

Theorem. Let a

1

be the squarefree part of a: If a

1

� 1 or 3 (mod 4) then

the natural density of #Q

a

(x; 4; `) =

�

1=3 if ` = 0 or 2 (un
onditionally)

1=6 if ` = 1 or 3 (under GRH)

If a

1

= 2 then

the natural density of

8

>

>

>

<

>

>

>

:

#Q

a

(x; 4; 0) = 5=12

#Q

a

(x; 4; 1) = 7=48� C=8

#Q

a

(x; 4; 2) = 7=24

#Q

a

(x; 4; 3) = 7=48 + C=8

where

C =

Y

p� 3 (mod 4)

p prime

�

1�

2p

(p

2

+ 1)(p� 1)

�

� 0:64365 :

Experiments in Analyti
 Number Theory

Samuel J. Patterson, G

�

ottingen

One problem that often arises is the following: Let a

n

be an arithmeti
 fun
tion for whi
h

one knows or suspe
ts that an asymptoti
 law of the type

P

n�X

a

n

� 
X




holds. We

shall suppose that 
 is known but one wishes to determine 
 . It is often ne
essary to do

this as a

urately as possible for reasons of numerology. One 
ase of parti
ular interest is

a

n

= S(f(x); n) where f 2 Z[x℄ is a polynomial, for simpli
ity of degree 3. Here

S(f(x); n) =

X

j (mod n)

exp

�

2�i

f(j)

n

�

:

14



In this 
ase one suspe
ts, and in some 
ases one 
an prove, that 
 = 4=3 . By 
omparison

with 
lassi
al examples, and also from statisti
al 
onsiderations it appears that in general

one 
an �nd no de
ent estimate for 
 substantially better than X

�


P

n�X

a

n

for the

largest value of X available. It is, in general, unrealisti
 to expe
t more than a rough

estimate for 
 by this method.

On an Asymptoti
 Formula of Srinivas Ramanujan

Ayyadurai Sankaranarayanan, Mumbai

(joint work with K.Rama
handra)

Let d(n) denote the Diri
hlet divisor fun
tion and let

E(x) =

X

n�x

d

2

(n) � xP

3

(log x)

where P

3

is a polynomial of degree three. We dis
ussed upper bounds and 
 --results for

E(x) un
onditionally and proposed a 
onje
ture.

Mean Square of the Central Values of Automorphi
 L--Fun
tions

Kai--Man Tsang, Hong Kong

(joint work with Yuk--KamLau)

Let � be a real primitive 
hara
ter of 
ondu
tor D: Any modular form

f(z) =

1

X

n=1

�

f

(n)n

(k�1)=2

e(nz) ;

�

f

(1) = 1, 
an be twisted by �:

f

�

(z) =

1

X

n=1

�

f

(n)�(n)n

(k�1)=2

e(nz) :

The asso
iated L--fun
tion is

L(s; f 
 �) =

1

X

n=1

�

f

(n)�(n)n

�s

(<s > 1) :

We investigate the mean square

X

f2F

k

!

f

L

2

(1=2; f 
 �)

where F

k

is the He
ke basis in the spa
e of holomorphi
 
usp forms of weight k with

respe
t to SL

2

(Z) and !

f

= � (k�1)(4�)

1�k

kfk

�2

where kfk is the Petersson norm. We

prove that

X

f2F

k

!

f

L

2

(1=2; f 
 �) = 2(1 + �(�1) i

k

)

�

log

Dk

4�

+ 
 +

X

pjD

log p

p� 1

�

+O

�

D

3

�

+O

�

D

15=2

k

�1=4+"

�

;

as k tends to in�nity, k even.
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Corollary. We have

#

�

f 2 F

k

: L(1=2; f 
 �) > 0

	

�

k

(log k)

2

:

Greedy Sums of Distin
t Squares

Ulrike M.A.Vorhauer, Kent

(joint work with Hugh L.Montgomery)

When a positive integer is expressed as a sum of squares, with ea
h su

essive summand

as large as possible, the summands de
rease rapidly in size until the very end, where one

may �nd two 4's, or several 1's. We �nd that the set of integers for whi
h the summands

are distin
t, we 
all them greedy sums of distin
t squares, does not have a natural density,

but that the 
ounting fun
tion os
illates in a predi
table way. Let A(v) be the number of

greedy sums of distin
t squares less than v , then

lim

k!1

k2Z

A

�

4 exp (2

k+x

)

�

4 exp (2

k+x

)

= f(x)

where f is a 
ontinuous, non--
onstant fun
tion with period 1.

Expli
it Formulas for the n --th Prime

Dieter Wolke, Freiburg

The 
lassi
al Riemann--von Mangoldt formula

 (x) =

X

p

k

�x

log p = x�

X

%

x

%

%

+O

�

x log

2

x

T

�

where % = � + i� runs through all non--trivial zeros of �(s) with j� j � T , 2 � T � x ,

allows one, roughly speaking, to 
al
ulate  (x) up to an error of order x=T by using zeros

j%j � T . We dis
ussed the question whether a formula of the type

p

n

= Li

�1

(n) +

X

%; j� j�T

f(n; %) + Error(1)

for the n --th prime 
an be derived where Li x =

R

x

2

dt= log t . The result is a bit disap-

pointing and seems not to be appropriate for numeri
al or theoreti
al use. First, T has to

be restri
ted by 2 � T � n

5=12� "

. Se
ondly, p

n


an be written in the form (1) by means

of an iterative pro
ess for whi
h � 
(")

�

log logn

�

2

steps are suÆ
ient.

Edited by Ulrike M.A.Vorhauer
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