
Mathematis
hes Fors
hungsinstitut Oberwolfa
h

Report No. 44/2001

Combinatori
s, Probability and Computing

September 23rd { September 29th, 2001

Organisers:

B. Bollob�as (Cambridge and Memphis)

I. Wegener (Dortmund)

Over the past few de
ades, the interplay between the three areas of 
ombinatori
s, proba-

bility and 
omputer s
ien
e has 
onsiderably enri
hed all three subje
ts; new te
hniques in

probability theory have been developed in order to ta
kle 
ombinatorial problems, whi
h

are often inspired in turn by important appli
ations in 
omputing. This meeting brought

together resear
hers in all three areas to explore re
ent developments and new appli
a-

tions. Among the themes treated in the talks and dis
ussions were new developments in:

many di�erent aspe
ts of the satis�ability problem for Boolean formulae, the theory of

pseudo-random graphs, sto
hasti
 pro
esses on in�nite graphs, randomised algorithms for

approximating the permanent of a matrix, 
onditions for normal approximation, random

lifts of graphs, allo
ation and assignment problems, abstra
t 
ombinatorial programming,

Ramsey properties of random graphs, probabilisti
 models for RNA stru
tures, 
omplex-

ity analysis for various graph problems, and a uni�ed probabilisti
 analysis for a 
lass of

parameters 
onne
ted with sear
h-trees.

It is planned that a sele
tion of papers from the meeting will be published as a spe
ial

issue of the journal Combinatori
s, Probability and Computing.
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Abstra
ts

Hashing, random forests and Brownian motion

Svante Janson

We study hashing with linear probing. We derive asymptoti
 distributions for the total

displa
ement and for related quantities su
h as the maximal individual displa
ement.

For a wide range of the parameters, in
luding the 
ase of hash tables �lled to a 
ertain

fra
tion, the total displa
ement is asymptoti
ally normal. This 
an be explained by the

fa
t that there are many blo
ks with almost independent 
ontributions, and that no single

blo
k alone gives a signi�
ant 
ontribution. The te
hni
al tool is a simple 
onditional


entral limit theorem.

For very dense hash tables, the total displa
ement is dominated by the 
ontribution from

one or a few blo
ks, and the limit is no longer normal.

There is a one to one 
orresponden
e between hash tables and random labelled rooted

forests with a given number of 
omponents, where blo
k lengths 
orrespond to tree sizes.

Both hash tables and the random rooted forests 
an be des
ribed by a random walk,


onditioned on a 
ertain event. In the dense 
ase, this 
onditioned random walk 
onverges

after res
aling, as the size of the hash table or forest tends to in�nity, to a Brownian

ex
ursion or a related pro
ess, whi
h implies the non-normal limit law in this 
ase.

Random Lifts of Graphs

Nathan Linial

In this talk I surveyed a new 
lass of random graphs that we have been investigating for

several years now. Given a (�nite 
onne
ted) graph G and an integer n, we 
onsider a 
lass

of random graphs L

n

(G) (the n-lifts of G). A graph H in this 
lass has a vertex set that

equals V � [n℄. For every edge xy 2 E(G) we sele
t a permutation � = �

xy

that is 
hosen

uniformly at random from S

n

, the symmetri
 group of order n. We 
onne
t, for every i,

the vertex (x; i) in H with (y; �(i)).

These graphs have an interesting \split personality". On the one hand they behave like

random graphs of bounded degrees, but at the same time they re
e
t some of the properties

of the base graph G. Among the results I mentioned:

� Amit and Linial: If Æ � 3 is the smallest vertex degree in G, then no n-lift of G has


onne
tivity larger than Æ (this is trivial). An n-lift of G is Æ-
onne
ted with probability

1� o(1).

� Amit, Linial and Matousek: Every n-lift of G is �(G)-
olorable (trivial). Almost

every n-lift has 
hromati
 number > 
(

q

�(G)

log(�(G)

):

� Linial and Rozenman: A zero-one law for perfe
t mat
hings: For every base graph

G, either almost every lift of G has a perfe
t mat
hing, ot almost none have a perfe
t

mat
hing.

Many open problems and variations on the basi
 theme were mentioned.
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Sparse Pseudorandom Graphs

Yoshiharu Kohayakawa

(joint work with Vojt�e
h R�odl, Papa Sissokho and Endre Szemer�edi)

The subje
t of quasi-random graphs was introdu
ed in the eighties by Thomason and

Chung, Graham and Wilson. They realized the surprising fa
t that several important

properties shared by almost all graphs are asymptoti
ally equivalent in a deterministi


sense (related work in this area was also published in the eighties by Alon, Frankl, and

R�odl).

Suppose (G

n

)

n�1

is a sequen
e of graphs with jV (G

n

)j = n, and let

p = p(n) = jE(G

n

)j

�

n

2

�

�1

:

Three basi
 properties are as follows:

NSUB(k): For any graph H on k verti
es, the number of labelled 
opies of H in G

n

(not

ne
essarily indu
ed) is

N(H;G

n

) = (1 + o(1))n

k

p

e

;

where e is the number of edges in H.

DISC: For all X, Y � V (G

n

) with X \ Y = ;, if e(X; Y ) denotes the number of edges

between X and Y , then

�

�

�

e(X; Y )� pjXjjY j

�

�

�

= o(pn

2

):

EIG: Let A denote the 0{1 adja
en
y matrix of G

n

, with 1s denoting edges. Let �

i

(1 �

i � n) be the eigenvalues of A and adjust the notation so that �

1

� j�

2

j � � � � � j�

n

j.

Then

�

1

= (1 + o(1))pn and j�

2

j = o(pn):

TUPLE(2): For all but at most o(n

2

) pairs fx

1

; x

2

g � V (G

n

), we have

�

�

�

j�(x

1

) \ �(x

2

)j � p

2

n

�

�

�

= o(p

2

n):

A 
lassi
al result in this area is that the properties above (with any �xed integer k � 4

in NSUB) are asymptoti
ally equivalent, if p is a 
onstant. If p = p(n) ! 0 as n ! 1,

this equivalen
e breaks down. Re
ently, Chung and Graham investigated how one 
an

generalize this equivalen
e to the 
ase of vanishing density. In parti
ular, they observed

that, if p = p(n) � n

�1=2

, then the properties NSUB(C

4

) and TUPLE(2) are equivalent,

and imply properties EIG and DISC. (By NSUB(C

4

) above, we mean that N(C

4

; G

n

) =

(1+o(1))(np)

4

, where C

4

is the 
y
le of length 4.) Moreover, they identi�ed the importan
e

of the property BDD(C; 2), de�ned in a slightly more general form below.

BDD(C;�): For all 1 � r � � and for all fx

1

; : : : ; x

r

g � V (G), we have

�

�

�

j�(x

1

) \ � � � \ �(x

r

)j � np

r

�

�

�

� Cp

r

n:

An example of Alon (1994) shows that the 
onditions above, even taken together (ex
ept

for NSUB), do not even imply that G

n


ontains a triangle, even when p = p(n) is of order

as large as n

�1=3

.

In joint work with V. R�odl and P. Sissokho, we re
ently proved that if (i) H is triangle-

free, (ii) np

�

� 1, where � = �(H) is the maximal degree in H, and (iii) TUPLE(2)

3



and BDD(C;�) hold for G

n

for some �xed 
onstant C > 1, then G

n


ontains H as a

subgraph, as long as n is large enough. In fa
t, we show that NSUB(H) holds for H.

In re
ent work with V. R�odl and E. Szemer�edi, we managed to prove some results 
on
ern-

ing the embedding of \large", bounded-degree graphs in \positive-density, pseudorandom

subgraphs" of sparse random graphs.

Some probabilisti
 algorithms for k-SAT

Uwe S
h

�

oning

We present several probabilisti
 algorithms for k-SAT, espe
ially for the (NP-
omplete)


ase k = 3. These algorithms are based on the lo
al sear
h paradigm. That is, starting

from some arbitrary (random or spe
ial) assignment a deterministi
 pro
edure test(a;m)

systemati
ally sear
hes for a satisfying assignment whi
h ism-
lose to the initial assignment

a with respe
t to Hamming distan
e. This basis pro
edure is modi�ed in several ways: �rst,

the initial assignments 
an be 
hosen either in a systemati
 way (like a 
overing 
ode) or

in a random fashion. Se
ond, the pro
edure test 
an be substituted by some random

walk. This last variant obtains the bound (4=3)

n

in the 
ase of 3-SAT. It 
an be improved

somewhat by a more sophisti
ated 
hoi
e of the initial probability distribution on so 
alled

independent 
lauses.

Optimal Multiple-Choi
e Allo
ation

Peter Sanders

(joint work with Sebastian Egner and Jan Korst)

The following allo
ation problem has been intensively studied in the last de
ade: Consider

n balls that shall be put into m bins. For ea
h ball there are two possible bins pi
ked

independently and uniformly at random. The task is to de
ide on one of the 
hoi
es for

ea
h ball su
h that the maximum o

upan
y is minimized. Korst observed that an optimal

allo
ation 
an be 
omputed in polynomial time using maximum 
ow 
omputations. In the

�rst part of the talk we answer the question \How good is optimal". It turns out that a

maximum o

upan
y of dn=me or dn=me + 1 
an be a
hieved with high probability. This

improves on results O(n=m) and n=m + O(log logm) respe
tiveley for simple suboptimal

s
heduling algorithms.

In the se
ond part of the talk it is explained how this low maximum o

upan
y 
an be

exploited for s
heduling parallel disks. The bins are disks. The balls are blo
ks to be

retrieved together. By storing two randomly pla
ed 
opies of ea
h logi
al blo
k of a virtual

memory, we 
an make two random 
hoi
es available. This result is also the key ingredient

in the observation that a realisti
 model for parallel disks (independent disks) 
an eÆ-


iently emulate on an unrealisti
 but easier to program model (parallel heads). In order

to 
over more aspe
ts of realisti
 ma
hines it is then explained how appli
ation oriented

generalizations 
an be a

omodated.

� A
hieving maximal o

upan
y dn=me for n 
lose to a multiple of m results in very high

eÆ
ien
y.

� Finding optimal s
hedules in time O(n logn).

� Tolerating disk failures: store 
opies on di�erent disks and update the analysis.
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� Variable length blo
ks: Generalize the analysis and allow pie
es of blo
ks to be read

from both 
opies to avoid NP-hardness.

� Model 
ommuni
ation bottlene
ks at disk 
ontrollers, I/O busses et
.

� Redu
ed redundan
y.

� Asyn
hronous s
heduling.

Uniform and non-uniform bounds in normal approximation under lo
al

dependen
e

Louis H. Y. Chen

(joint work with Qi-Man Shao)

There are generally three approa
hes to Stein's method for normal approximation. One is

by indu
tion (Bolthausen (1984)), another by using smoother fun
tions (Stein (1972 and

(1986)), and the third through a 
on
entration inequality (Chen and Shao (2001)). The

last approa
h is originally due to Stein (Ho and Chen (1978)) and was developed by Chen

(1986 and 2000) and Chen and Shao (2001). In the latter, the te
hnique is also developed

for non-uniform bounds.

This paper is 
on
erned with normal approximation for lo
ally dependent random variables

using Stein's method. Both uniform and non-uniform bounds are obtained by taking the


on
entration inequality approa
h.

Lo
al dependen
e is a more general notion than m-dependen
e in sequen
es of random

variables. It is de�ned for random variables with any index set. An example of lo
al

dependen
e is one de�ned in terms of 
ommon edges for random variables indexed by the

verti
es of a graph. See, for example, Baldi, Rinott and Stein (1989).

Several general results are obtained under di�erent orders of lo
al dependen
e. These are

then applied to various spe
ial 
ases, some of whi
h have been 
onsidered by others. The

uniform bounds obtained in these spe
ial 
ases are either similar or better than those of

other authors, while the non-uniform bounds obtained did not exist in the literature. These

bounds are also best possible in terms of order by 
omparison with the 
lassi
al results for

independent random variables.

Sto
hasti
 Pro
esses on Graphs and Amenability

Alan Sta
ey

A graph G = (V;E) is amenable if

inf

;6=W�V

W �nite

j�

E

W j

jW j

= 0:

All the graphs we 
onsider are in�nite, 
onne
ted and of bounded degree. Canoni
al

examples of nonamenable graphs are homogeneous trees, T

d

, in whi
h every vertex has

degree d � 3, and T

d

� Z. The d-dimensional latti
es Z

d

are amenable.

We survey an area of 
urrent resear
h in whi
h the behaviour of a sto
hasti
 pro
ess on a

graph typi
ally depends on whether or not the graph is amenable. The simplest interesting

example is the simple symmetri
 random walk on a graph, whi
h has spe
tral radius less

than 1 if and only if the graph is nonamenable (Gerl 1987).
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For per
olation on transitive (i. e. vertex-transitive) graphs, it is known that there is a

threshold value, p

u

, above whi
h there is a unique in�nite 
luster and below whi
h there

are either zero or in�nitely many in�nite 
lusters (H�aggstrom, Peres, S
honmann 1999). It

is known (Burton and Keane 1989) that on transitive graphs amenability implies p

u

= p




.

The reverse impli
ation is 
onje
tured to hold, but has been proven only in 
ertain spe
ial


ases.

The 
onta
t pro
ess and bran
hing random walk on graphs are 
onsidered. For ea
h of

these pro
esses �

1

is the threshold for global survival and �

2

is the threshold for lo
al (or

strong) survival. For the 
onta
t pro
ess it is known that on homogeneous trees of degree

d � 3, one has �

1

< �

2

(Pemantle(1990), Liggett(1996), Sta
ey(1996)) and on Z

d

one has

�

1

= �

2

(Bezuidenhout and Grimmett 1990). These results also hold, and are substantially

easier to prove, for the bran
hing random walk.

Certain 
onje
tures linking amenability with equality of �

1

and �

2

for the two pro
esses

were disproved by Pemantle and Sta
ey (2001). In parti
ular, examples were found of trees,

of bounded degree, whi
h are amenable and for whi
h the bran
hing random walk has �

1

<

�

2

; and nonamenable examples were found where �

1

= �

2

. These arose from 
onsidering

the pro
ess on Galton-Watson trees. Also, a spheri
ally symmetri
 nonamenable tree of

bounded degree was 
onstru
ted on whi
h the 
onta
t pro
ess has �

1

= �

2

. However,

the equivalen
e of amenability and �

1

= �

2

remains open for the 
onta
t pro
ess on

transitive and, more generally, quasi-transitive graphs (those for whi
h the a
tion of the

automorphism group on the verti
es has �nitely many orbits). For the bran
hing random

walk (b.r.w.), this issue is now resolved (Sta
ey 2001). On a transitive graph there is a

straightforward link between the behaviour of the b.r.w. and the simple random walk whi
h

establishes the equivalen
e. This link does not extend to quasi-transitive graphs, although

if the bran
hing random walk is modi�ed (in a 
ertain natural way) then the link, and

thereby the equivalen
e, holds for all graphs of bounded degree. For the standard b.r.w.

on a quasi-transitive graph, however, a new proof shows that �

1

= �

2

if and only if the

graph is amenable.

Optimal myopi
 algorithms for random 3-SAT

Gregory Sorkin

3-SAT is a 
anoni
al NP-
omplete problem: satis�able and unsatisifable instan
es 
annot

generally be distinguished in polynomial time. However, random 3-SAT formulas show

a phase transition: for any large number of variables n, sparse random formulas (with

m � 3:145n 
lauses) are almost always satis�able, dense ones (with m � 4:596n 
lauses)

are almost always unsatis�able, and the transition o

urs sharply when m=n 
rosses some

threshold. It is believed that the limiting threshold is around 4:2, but it is not even known

that a limit exists.

Proofs of the satis�ability of sparse instan
es have 
ome from analyzing heuristi
s: the

better the heuristi
 analyzed, the denser the instan
es that 
an be proved satis�able with

high probability. To date, the good heuristi
s have all been extensions of unit-
lause

resolution, all expressible within a 
ommon framework and analyzable in a uniform manner

through the di�erential equation method.

Here, we determine an optimal \tuning" of any algorithm expressible in this framework.

We extend the analysis via di�erential equations, and we make extensive use of a new

optimization problem we 
all \maximum-density multiple-
hoi
e knapsa
k". The stru
ture
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of optimal knapsa
k solutions elegantly 
hara
terizes the 
hoi
es made by an optimized

algorithm. We improve the known satis�ability bound from density 3:145 to 3:26.

Many open problems remain. It is non-trivial to extend the methods to 4-SAT and beyond.

If results are to be appli
able to \real-world" 3-SAT instan
es, then the theory should be

extended to formulas that need not be uniformly random, but obey some weaker 
onditions.

Also, there is theoreti
al eviden
e that in the unsatis�able regime it is diÆ
ult to prove

the unsatis�ability of a given formula, while in the known region of satis�ability, linear-

time algorithms produ
e satisfying assignments with high probability. Is the unsatis�able

regime truly hard, and is the whole of the satis�able regime truly easy? In parti
ular, as

the s
ope of myopi
, lo
al algorithms is expanded so that they examine more and more

variables, 
an su
h algorithms solve random instan
es arbitrarily 
lose to the threshold

density?

Abstra
t 
ombinatorial programming and eÆ
ient property testers

Christian Sohler

(joint work with Artur Czumaj)

The goal of property testing is to distinguish between the 
ase whether a given obje
t has

a 
ertain property or is `far away' from any obje
t having this property. In the �rst part

of the talk we prove that k-
olorability of graphs 
an be tested in time independent of the

size of the graph (this was �rst proven by Goldrei
h, Goldwasser, and Ron). We present a

testing algorithm that examines only

~

O(k

4

=�

4

) entries in the adja
en
y matrix of the input

graph, where � is a distan
e parameter independent of the size of the graph.

In the se
ond part of the talk we present a general proof te
hnique that 
an be used to

show that 
ertain properties that are 
losed under restri
tions (if an obje
t has a property

then any `subobje
t' also has the property; e. g., if the obje
t is a graph then 
olorability

is 
losed under restri
tions while 
onne
tivity is not). We introdu
e abstra
t 
ombinatorial

programming whi
h 
an be roughly des
ribed as linear programming where you forget

about the geometry and allow that a set of 
onstraints de�nes multiple bases. Then we

show that a property that is 
losed under restri
tions 
an be tested, if there is a gap and

feasibility preserving redu
tion that maps any obje
t to an abstra
t 
ombinatorial program

of small dimension. We illustrate our approa
h with three examples: testing low degree

uni-variate polynomials, radius 
lustering, and graph 
oloring.

BDD-based Cryptanalysis of Stream Ciphers

Matthias Krause

Many stream 
iphers o

uring in pra
ti
e produ
e their output bit stream a

ording to

a rule y = C(L(x)), where L(x) denotes an internal linear bit-stream produ
ed by a

�xed number of linear feedba
k shift registers starting from a se
ret initial state x =

(x

0

; : : : ; x

n�1

), and C denotes some nonlinear 
ompression fun
tion. We present an al-

gorithm for 
omputing the se
ret key x from a given output bitstream y of length � n,

whi
h uses Free Binary De
ision Diagrams (FBDDs), a data stru
ture for minimizing and

manipulating Boolean fun
tions. We show that if the de
ision whether C(z) = y 
an be

performed by polynomial size FBDDs (this is usually the 
ase), the e�e
tive key-length of

the 
ipher is bounded by

1��

1+�

n, where � denotes the information rate (per bit) whi
h y

reveals about the internal bit-stream z. This yields the best known upper bounds on the
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e�e
tive key length for several stream 
iphers of pra
ti
al use, for instan
e a 0:656n upper

bound on the e�e
tive key length of the self-shrinking generator, a 0:6364n upper bound

on the e�e
tive key length of the A5-generator, used in the GSM-standard, a 0:6n upper

bound on the e�e
tive key length of E

0

en
ryption standard in the one level mode, and a

0:8823n upper bound on the e�e
tive key length of E

0

in the two level mode, as it is used

in the Bluetooth wireless LAN system.

Approximating the permanent

Mark Jerrum

(joint work with Alistair Sin
lair and Eri
 Vigoda)

The permanent perX of an n � n matrix X = (x

ij

) is a multivariate polynomial akin

to the more familiar determinant, ex
ept that all monomials are given positive sign. If

X is interpreted as the adja
en
y matrix of a bipartite graph G (with x

ij


orresponding

to the edge from vertex i on the left to j on the right) then perX is the generating (or

partition) fun
tion of perfe
t mat
hings in G. In 
ontrast to the determinant, whi
h 
an

be evaluated eÆ
iently using Gaussian elimination, the permanent is known to be #P-


omplete, even when X is restri
ted to being a 0,1-matrix. This 
lassi
al result of Valiant

almost 
ertainly rules out a polynomial-time algorithm for 
omputing the permanent of

su
h a matrix exa
tly.

The proof of #P-
ompleteness of the permanent uses polynomial interpolation in an es-

sential way, and interpolation is numeri
ally unstable: it may be ne
essary to evaluate a

polynomial to very high a

ura
y in order to know the 
oeÆ
ients even roughly. Therefore

the 
ompleteness result does not rule out the possibility that the permanent of a 0,1-matrix


an be 
omputed to within relative error 1� " in time polynomial in n and "

�1

. (An ap-

proximation algorithm with this property is te
hni
ally a \fully polynomial randomised

approximation s
heme" or FPRAS.) The question of the existen
e of an FPRAS, whi
h

had been open for some time, has re
ently been resolved aÆrmatively.

The full solution builds on a partial solution of Jerrum and Sin
lair from the late eighties.

(It is 
onvenient at this jun
ture to swit
h to the perfe
t mat
hing formulation.) They

analysed a Markov 
hain, proposed by Broder, on perfe
t and near-perfe
t mat
hings (i. e.,

mat
hings leaving two verti
es un
overed) of a bipartite graph G. They showed that the

Markov 
hain is \rapidly mixing" { i. e., that it 
onverges to near-stationarity in time

polynomial in n { provided G satis�es a 
ertain graph-theoreti
 
ondition. Given samples

of perfe
t mat
hings from a near-uniform distribution it is possible to estimate the number

of perfe
t mat
hings to within small relative error in polynomial time.

The new approa
h removes the restri
tion on the graph G. The idea is to modify the

Markov 
hain by assigning to ea
h near-perfe
t mat
hing a weight that is a fun
tion of

the position of the pair of holes. If the weight is made inversely proportional to the total

number of near-perfe
t mat
hings with that hole pattern, then the modi�ed Markov 
hain

is un
onditionally rapidly mixing. Although we don't know at the outset what these ideal

weights are (indeed they are related to the very quantities we are trying to estimate), we

are able to 
onverge to them through an iterative pro
edure. As a 
onsequen
e, we obtain

an FPRAS for perX when X is a 0,1-matrix. The method generalises to arbitrarily non-

negative real matri
es. No further extension is possible, sin
e the presen
e of even one

negative entry in X is enough to render approximate evaluation of perX 
omputationally

intra
table (under some reasonable 
omplexity-theoreti
 assumption).
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EÆ
ient re
ognition of random unsatis�able k-SAT instan
es.

Andreas Goerdt

(joint work with Joel Friedman and Mi
hael Krivelevi
h)

We 
onsider the family of probability spa
es of random instan
es of the k-SAT problem,

that is formulas in 
onjun
tive normal form where ea
h 
lause 
onsists of exa
tly k literals.

We paramaterize these probability spa
es by n, the number of underlying variables, and

m = m(n), the number of random 
lauses.

The following threshold behaviour is well known and proved by a theorem of Friedgut:

There exist 
onstants 


k

su
h that fomulas with 


k

(1� ")n random 
lauses are satis�able

with high probability whereas formulas with 


k

(1 + ")n random 
lauses are unsatis�able

with high probability. From the algorithmi
 point of view it is interesting to note that

formulas at the threshold seem to be hard instan
es. Therefore it is an obvious proje
t

to get deterministi
 polynomial time algorithms working with high probability for random

formulas as 
lose as possible to the threshold. The behaviour of su
h algorithms on the

satis�able side of the threshold is 
on
eptually 
lear: Try to �nd a satisfying assignment.

On the unsatis�able side of the threshold this would read: Try to �nd a witness of unsat-

is�ability in deterministi
 polynomial time. And this is exa
tly the question we address.

Previous work of Beame, Pitassi, Karp, and Saks shows that random k-SAT instan
es with

n

k�1

=(logn)

k�2


lauses have polynomial size ba
ktra
king trees and thus 
an be 
erti�ed

eÆ
iently unsatis�able.

Our results improve on these bounds: For even k we show that formulas with n

k=2+"


lauses


an be eÆ
iently 
erti�ed unsatis�able with high probability, for odd k we get by a simple

redu
tion (k + 1)=2 in the exponent. For 3-SAT instan
es we get an eÆ
ient algorithm

for n

3=2+"

random 
lauses. Our algorithms work by assigning two graphs to a formula

and 
omputing the eigenvalue spe
trum of the adja
en
y matrix of these graphs. Then

we show that the eigenvalue spe
trum is su
h that it 
erti�es unsatis�abilty. Note that

the eigenvalue spe
trum of an adja
en
y matrix 
an be approximated to any degree of

pre
ision in polynomial time.

At the heart of our algorithms lies the following observation, whi
h we state for k = 4: If

a 4-SAT instan
e is satis�able then there is a set of n=2 variables su
h that all all-positive


lauses have at least one variable not from this set or all all-negative 
lauses have the

analogous property. We assign the following two graphs to a formula: The verti
es are

the

�

n

2

�

unordered pairs of variables. In the �rst graph two su
h verti
es are 
onne
ted by

an edge if the 
orresponding variables are in one all-positive 
lause. In the se
ond graph

the edges are indu
ed in the same way by the all-negative 
lauses. Note that we do not


onsider the mixed 
lauses of the underlying formula. Now the following holds: If the

underlying formula is satis�able then at least one of these graphs has an independent set

of verti
es having at least

�

n

2

�

=2 verti
es.

Our algorithms rely on bounding the size of independent sets by the eigenvalues of the

adja
en
y matrix of the underlying graph. We 
all a graph "-regular if the degree of ea
h

vertex is between d(1� ") and d(1+ "). We 
all a graph �-separated if for i � 2 j�

i

j � ��

1

where the eigenvalues of the adja
en
y matrix of the graph are �

1

� �

2

� � � � � �

n

. One

of our results is the following bound on the size of any independent set: If a graph is �-

separated and "-balan
ed then it has no independent set larger than n=5 + nf(�; ") where

f(�; ") goes to 0 if � and " do. This result allows to show the absen
e of independent sets

with at least

�

n

2

�

=2 verti
es in our graph.
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Ramsey properties of random graphs: sharp threshold and online 
oloring

Andrzej Ru
i

�

nski

Consider the graph Ramsey property R 
onsisting of all graphs for whi
h every 2-
oloring

of their edges results in a mono
hromati
 
opy of a triangle K

3

. It has been known that

there exist 
onstants 
 and C su
h that

lim

n!1

Pr[G(n; p) 2 R℄ =

�

1 if p > C=

p

n

0 if p < 
=

p

n

Using a re
ent 
riterion of Friedgut for the existen
e of a sharp threshold, Friedgut, R�odl,

Ru
i�nski and Tetali have shown that there exists a fun
tion b = b(n) su
h that for all � > 0

lim

n!1

Pr[G(n; p) 2 R℄ =

�

1 if p > (1 + �)b(n)=

p

n

0 if p < (1� �)b(n)=

p

n

As one of the main ingredients of the proof, the following lemma has been established. For

a graph F , let Base(F ) be the set of all pairs of verti
es in V (F ) whi
h together with any

two edges of F form a triangle.

Lemma For all � > 0 and 
 > 0 there exists � > 0 su
h that with probability tending to 1

as n!1, for any subgraph F of G(n; 
n

�1=2

) with at least �n

3=2

edges, the set Base(F )


ontains at least �n

3

triangles.

This lemma has also some interesting 
onsequen
es with respe
t to online 
oloring of the

edges of G(n;M). Consider the random graph pro
ess revealing its edges one by one:

e

1

; : : : ; e

(

n

2

)

, n � 6, and the following one-person game related to it. The Player's goal is

to 2-
olor the edges as they 
ome and not to 
reate a mono
hromati
 triangle for as long

as possible. The game is over when a mono
hromati
 triangle is 
reated.

While it is not hard to prove that the expe
ted length of the game is about n

4=3

, the

proof of the upper bound suggests the following relaxation: instead of 
oloring online, the

random graph is generated in only two rounds, and the Player 
olors the edges �rst after

round one and then at the end. Given the size of the �rst round, how large a se
ond round


an the Player survive?

In the most extreme 
ase, when round one 
onsists of a random graph with 
n

3=2

edges,

it follows from the Lemma above that asymptoti
ally almost surely the addition of !n

random edges makes the graph have the Ramsey property R, where ! = !(n) is any

fun
tion whi
h tends to 1 as n!1.

During my talk, I 
onje
tured that, in fa
t, only ! random edges should suÆ
e. This was


on�rmed during the workshop in 
ollaboration with Yoshi Kohayakawa.

Point Distributions and Large Tetrahedra

Hanno Lefmann

An old 
onje
ture of Heilbronn states that for every distribution of n points in the 2-

dimensional unit square [0; 1℄

2

(or unit dis
) there exist three distin
t points whi
h form

a triangle of area at most 
=n

2

for some �xed 
onstant 
 > 0. Erd�os observed that this


onje
ture, if true, would be best possible, as the points (i mod n; i

2

mod n)

i=0;::: ;n�1

on

the moment-
urve in the n � n grid would show after res
aling. However, Koml�os, Pintz

and Szemer�edi in 1982 disproved Heilbronn's 
onje
ture by proving that for every n there

exists a 
on�guration of n points in the unit square [0; 1℄

2

with every three points forming

10



a triangle of area at least 


0

� logn=n

2

, where 


0

> 0 is 
onstant. Using te
hniques from

derandomization, this existen
e argument was made 
onstru
tive in the sequel, namely a

polynomial time algorithm was given, whi
h �nds n points in [0; 1℄

2

a
hieving the lower

bound 
(logn=n

2

) on the minimum triangle area. Upper bounds on Heilbronn's triangle

problem were given by Roth and S
hmidt in a series of papers and the 
urrently best upper

bound is due to Koml�os, Pintz and Szemer�edi and is of the order n

�8=7+"

for every �xed

" > 0.

Re
ently, Barequet 
onsidered a k-dimensional version of Heilbronn's problem by looking at

the minimum volume of simpli
es arising from distributions of n points in [0; 1℄

k

. For given

dimension k � 3 he showed, that for every n there exist n points in the k-dimensional unit


ube [0; 1℄

k

su
h that the minimum volume of every simplex spanned by any (k+1) of these

n points is at least 
(1=n

k

). Barequet gave three approa
hes for proving his lower bound.

One uses a random argument; another is similar to Erd�os' 
onstru
tion (and was probably

known to him), namely taking the points P

l

= (l

j

mod n=n)

j=1;::: ;k

for l = 0; 1; : : : ; n � 1

on the moment-
urve.

Barequet's lower bound was improved by this author by a fa
tor �(logn) for dimensions

k � 3, using a probabilisti
 existen
e argument based on a variant of a result of Ajtai,

Koml�os, Pintz, Spen
er and Szemer�edi. For the 
orresponding arguments the 
ontinuous

stru
ture of [0; 1℄

k

was 
ru
ial. With Niels S
hmitt we investigated, how to �nd a deter-

ministi
 polynomial time algorithm for this problem. For the 
ase of dimension k = 3 we

obtained the following result:

Theorem For every positive integer n one 
an �nd deterministi
ally in polynomial time

a 
on�guration of n points in the unit 
ube [0; 1℄

3

su
h that the volume of any tetrahedron

spanned by any four of these points is at least 
(logn=n

3

).

The proof of this result is based on te
hniques from 
ombinatori
s and number theory and

some of the main ideas were presented in the talk.

Quasi-periodi
ity and quasi-randomness

Vera T. S

�

os

(joint work with Mikl�os Simonovits)

Considering di�erent stru
tures (graphs, numbers, permutations, et
.), an important ques-

tion is when deterministi
 obje
ts 
an be 
onsidered as randomlike ones and how random-

like obje
ts 
an be generated in non-random ways. Depending on the spe
i�
 problem,

these questions have di�erent aspe
ts and may have several nonequivalent answers.

In the talk we fo
us on two stru
tures.

1 Sequen
es. The simplest examples are the (fn�g) (and the (bn�
) = Sturmian)

sequen
es. These sequen
es are fundamental in diophantine approximation, in ergodi


theory et
. and are often used also in 
ombinatori
s.

They have two { seemingly 
ontradi
tory { features:

� These sequen
es have a very stri
t stru
ture, are 
lose to periodi
; are quasi-periodi


in several well de�ned senses, (e. g. three-distan
e or three di�eren
e property), among

non periodi
 sequen
es the 
hara
teristi
 sequen
e of an (bn�
) has the smallest number

of di�erent blo
ks of �xed size, et
.
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� They are randomlike in some sense (e. g., they are uniformly distributed sequen
es) and

therefore in some areas 
an be used as quasi-random (deterministi
) sequen
es.

In the last two de
ades quasi-periodi
 (almost periodi
) stru
tures, in
luding also those in

higher dimension (e. g. the Penrose tilings in the plane), be
ame important in many other

�elds, su
h as operation resear
h, 
omputer s
ien
e, game theory, but also in physi
s, in

the theory of quasi-
rystals et
.

In this le
ture we indi
ate some of this large variety of links and 
onne
tions, but we


on
entrate on results and problems with number-theoreti
al and 
ombinatorial features.

As an example we mention also Weyl trees (motivated also by 
omputer s
ien
e, introdu
ed

and investigated by Lu
 Devroye and A. Goudjil) whi
h are sear
h trees where the input

sequen
es are (fn�g) sequen
es. These sear
h trees are randomlike in some respe
ts but

not in all. With Simonovits we studied 
ertain aspe
ts of these sear
h trees.

2 Graphs. Thomason and Chung-Graham-Wilson gave a 
lass of graph properties, all pos-

sessed by random graphs and at the same time equivalent to ea
h other. With Simonovits

we proved that this 
lass (i. e., the 
lass of quasi-random graphs) 
an be 
hara
terized also

by the Szemer�edi-partition of graphs. Using this approa
h we proved that some properties,

whi
h do not imply quasi-randomness on their own, do imply it if we 
onsider the 
orre-

sponding hereditarily extended properties. (Large subgraphs of random-like graphs must

also be random-like.) E. g., we proved the following Theorem:

Let � = v(L), E = e(L). Denote by N(G � L) and N

�

(G � L) the number of not

ne
essarily indu
ed and indu
ed 
opies of L in G, respe
tively. Further, denote by �

L

(p)

and 


L

(p) the \densities" of labelled indu
ed and labelled not ne
essarily indu
ed


opies of L in a p{random graph:

�

L

(p) = p

E

(1� p)

(

�

2

)

�E

and 


L

(p) = p

E

:

Theorem Let L

�

be a �xed sample-graph, p 2 (0; 1) be �xed. Let (G

n

) be a sequen
e of

graphs. If (for every suÆ
iently large n) for every indu
ed F

h

� G

n

,

N(L

�

� F

h

) = 


L

(p)h

�

+ o(n

�

);

then (G

n

) is p{quasi{random.

For the 
ase of indu
ed 
opies the situation is more 
ompli
ated. We have the following

Conje
ture Let L

�

be a �xed sample-graph, p 2 (0; 1) be �xed. Let (G

n

) be a sequen
e of

graphs. If (for every suÆ
iently large n) for every indu
ed F

h

� G

n

,

N

�

(L

�

� F

h

) = �

L

(p)h

�

+ o(n

�

);

then (G

n

) is p{quasi{random.

We 
an prove this for several 
ases, among others:

Theorem The above 
onje
ture holds for regular graphs L

�

.

The results may 
ontribute to study the problem: how to 
reate a s
ale between periodi


and random sequen
es, between \non-random" and random graphs, et
. It is worth ob-

serving that some of these questions are mu
h better understood for sequen
es and others

for graphs.
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Randomized Rumor Spreading

Christian S
hindelhauer

(joint work with Ri
hard Karp, S
ott Shenker and Berthold V�o
king)

We investigate the 
lass of so-
alled epidemi
 algorithms that are 
ommonly used for the

lazy transmission of updates to distributed 
opies of a database. These algorithms use

a simple randomized 
ommuni
ation me
hanism to ensure robustness. Suppose n players


ommuni
ate in parallel rounds in ea
h of whi
h every player 
alls a randomly sele
ted


ommuni
ation partner. In every round, players 
an generate rumors (updates) that are

to be distributed among all players. Whenever 
ommuni
ation is established between

two players, ea
h one must de
ide whi
h of the rumors to transmit. The major problem

(arising due to the randomization) is that players might not know whi
h rumors their

partners have already re
eived. For example, a standard algorithm forwarding ea
h rumor

from the 
alling to the 
alled players for �(logn) rounds needs to transmit the rumor

�(n logn) times in order to ensure that every player �nally re
eives the rumor with high

probability.

We investigate whether su
h a large 
ommuni
ation overhead is inherent to epidemi
 al-

gorithms. On the positive side, we show that the 
ommuni
ation overhead 
an be redu
ed

signi�
antly. We give an algorithm using only O(n log logn) transmissions and O(logn)

rounds. In addition, we prove the robustness of this algorithm, e. g., against adversar-

ial failures. On the negative side, we show that any address-oblivious algorithm (i. e.,

an algorithm that does not use the addresses of 
ommuni
ation partners) needs to send


(n log logn) messages for ea
h rumor regardless of the number of rounds. Furthermore,

we give a general lower bound showing that time- and 
ommuni
ation-optimality 
annot be

a
hieved simultaneously using random phone 
alls, that is, every algorithm that distributes

a rumor in O(logn) rounds needs !(n) transmissions.

Exploring Graphs with Little Memory

R

�

udiger Reis
huk

(joint work with Andreas Jakoby and Ma
iej Liskiewi
z)

For graph problems like rea
hability { de
ide whether there exists a path between two

nodes { or planarity testing very eÆ
ient linear time algorithms have been known for

long. In this talk we dis
uss the spa
e 
omplexity of su
h problems. For dire
ted graphs

rea
hability is the 
anoni
al problem (often 
alled GAP for graph a

esibility problem in

this 
ontext) that is 
omplete for the 
omplexity 
lass nondeterministi
 logarithmi
 spa
e

NL. In 
ase of undire
ted graphs, the problem UGAP, one 
an exploit random walks to

�nd a 
onne
ting path { getting the 
omplexity down to probabilisti
 logarithmi
 spa
e

RL. Or one 
an use symme
tri
 nondeterministi
 ma
hines, that 
an always reverse a


omputational step, to put the problem into the 
omplexity 
lass SL. For the 
omplexity


lass L of problems that 
an be solved in deterministi
 logarithmi
 spa
e { the minimal

amount of spa
e ne
essary simply to identify a node { rea
hability in undire
ted forests,

UFA, is a 
anoni
al 
omplete problem.

Our goal is to extend the 
lass of graphs that have very spa
e eÆ
ient algorithms, that

is fall into L. With respe
t to the notion of tree width, trees or forests are the simplest

graphs having width 1. In
reasing the width to 2 we get the 
lass of series-parallel graphs,

SP-graphs for short, that have many appli
ations, for example in programming analysis,
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and have been studied extensively. SP-graphs 
an be de�ned 
onstru
tively by starting

with single edges and performing a sequen
e of operations, series and parallel 
omposition.

Alternatively, one 
ould give a 
hara
terization by forbidden minors, whi
h is the diamond

� in the dire
ted 
ase and the K

4

in the undire
ted 
ase.

We prove that both the rea
hability problem and the re
ognition problem for dire
ted

SP-graphs are L-
omplete. The lower bounds follow from simple redu
tions, whereas the

upper bounds require an extensive study of spe
ial properties of SP-graphs. It is shown

that the su

essor relation 
an be tested deterministi
ally by sele
ting spe
ial 
ombinations

of paths. A new 
hara
terization of dire
ted SP-graphs is given by a forbidden indu
ed

homeomorphi
 subgraph, the Zig-Zag graph Z, that 
an be tested spa
e eÆ
iently. Fur-

thermore, we show that the series-parallel de
omposition of su
h graphs 
an be 
omputed

in logarithmi
 spa
e.

Finally, we dis
uss the situation for undire
ted SP-graphs, whi
h 
ontrary to the general


ase seem to be more diÆ
ult than their dire
ted 
ounterparts, and related open problems,

for example whether for arbitrary �xed ` 
he
king for K

`

as a minor 
an be done spa
e

eÆ
iently.

The Complexity of Computing the MCD-Estimator

Paul Fis
her

(joint work with Thorsten Bernholt)

In modern mathemati
al statisti
s and data analysis, one fundamental problem is that of


onstru
ting statisti
al methods whi
h are robust against model deviations. For example, it

is well known that the standard estimates of lo
ation and s
atter { sample mean and sample

varian
e { are not robust. A single data point whi
h is moved far out will 
hange these

quantities arbitrarily. In general one assumes that the observed data is mainly generated

by some pro
ess or distribution whi
h one would like to analyse. We shall 
all the part

of the data 
oming from the distribution of interest the data from the true population.

The rest of the data, however, might 
ome from other sour
es or is altered by noise; we


all this the outliers. The goal is to nevertheless estimate statisti
al quantities of the true

population.

More pre
isely, given N observations, MCD is the problem to sele
t a subset of size h, for

some h > N=2, for whi
h the determinant of the empiri
al 
ovarian
e matrix is minimal

over all subsets of size h. For a set of points X

0

= x

1

; : : : ;x

h

in R

d

the (empiri
al)


ovarian
e matrix is de�ned as

C(X

0

) =

1

h

h

X

i=1

(x

i

� t) (x

i

� t)

T

with t =

1

h

h

X

i=1

x

i

:

There is a ni
e geometri
 interpretation of the MCD. The inverse C

�1

(X

0

) of the minimum


ovarian
e matrix C(X

0

) and the mean t(X

0

) de�ne an ellipsoid in R

d

. This ellipsoid

ni
ely mat
hes the points X

0

. The determinant is a measure of volume. Hen
e a small

determinant 
orresponds to an ellipsoid of small volume. If the extensions of the ellipsoid

in all dimensions are small then the set X

0

is quite 
ompa
t. Another way to get a small

volume is that the ellipsoid is somewhat \
at", i. e., it might have a large extension in

some dire
tions but only small ones in others. This indi
ates that the set X

0

is \essentially

lower dimensional".
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In this talk we address the 
omplexity of 
omputing the MCD-estimator. Obviously, 
om-

puting det(X

0

) for all

�

N

h

�

subsets X

0

of X of size h solves the problem, though it might

take exponential time in h. It was not 
lear whether the estimator itself has this 
omplex-

ity independent of the dimensionality d of the data. Here we show that the 
omplexity of

MCD is polynomial if the dimension is �xed. This is a
hieved by avoiding to 
onsider all

subsets of size h. Exploiting geometri
 properties of the estimator, we have been able to

design an algorithm whi
h enumerates a sequen
e of subsets of size h of the input data set

X in polynomial time. We show that one of the sets enumerated has minimum 
ovarian
e

determinant. The running time of our algorithm is O

�

N

d

2

�

.

On the other hand it is possible to show that the de
ision version of the MCD problem is

NP-
omplete if the dimension varies. This is a
hieved by redu
ing CLIQUE to MCD.

Per
olation Thresholds: Bounds, Conje
tures, and Counterexamples

John C. Wierman

The substitution method was used to derive several upper and lower bounds for per
ola-

tion thresholds of Ar
himedean latti
es. An Ar
himedean latti
e is a tiling of the plane

with regular polygons that is vertex-transitive. There are exa
tly 11 Ar
himedean latti
es.

Per
olation on these latti
es has been studied in the physi
s literature. They are related

to a 
onje
ture of H�aggstr�om, that vertex-transitive graphs either have 
riti
al probability

equal to one or less than a bound B < 1. The new substitution method bounds estab-

lish that the (3; 12

2

) latti
e has the largest bond per
olation threshold of all Ar
himedean

latti
es, making it a prime 
andidate for the vertex-transitive graph with the largest 
rit-

i
al probability less than one. The bounds are not suÆ
iently a

urate to identify the

Ar
himedean latti
e with the largest site per
olation 
riti
al probability.

The new bounds are more a

urate than previous ones: For bond per
olation models on

the (3; 12

2

) and Kagom�e latti
es, the upper and lower bounds di�er by less than 0.01. For

site per
olation models on the (4; 6; 12) and (4; 8

2

) latti
es, the bounds di�er by less than

0.1. These are the �rst bounds with this level of a

ura
y.

The range of 
riti
al probability values for bond per
olation models on fully-triangulated

latti
es was investigated. A sequen
e of su
h graphs was 
onstru
ted whi
h has 
riti
al

probability values tending to zero. Thus, the range is at least from 0 to .3473. Based on

both rigorous bounds and simulation estimates for 
riti
al probabilities, I 
onje
ture that

the standard triangular latti
e has the largest bond per
olation 
riti
al probability of any

fully-triangulated periodi
 graph.

Physi
s have tried to formulate a \universal formula" whi
h approximates the 
riti
al

probability values of all graphs, for many years. Re
ent formulas have been based on only

the dimension and average degree of the graph, and have 
laimed a maximum deviation

of 0.08. The fully-triangulated graphs mentioned above all have dimension 2 and average

degree 6, but show that any formula must have an error of at least .1736 on one of the

fully-triangulated graphs.

Counterexamples were provided for two 
ommon beliefs that have persisted for over 40

years in per
olation theory: The 
riti
al probability is not a monotone de
reasing fun
tion

of the average degree of the graph. For a set of graphs, the bond per
olation thresholds

and site per
olation thresholds may not have the same order.
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Random Assignment with Integer Costs

Sven Eri
k Alm

(joint work with Robert Parviainen)

In the random assignment problem, we are looking for a permutation � that minimizes

Z(n) =

n

X

i=1




i;�(i)

;

where C = (


ij

) is the 
ost matrix, with entries that are i. i. d. random variables, usually

U(0; 1) or Exp(1).

Let Z

�

(n) be the optimal (minimal) 
ost, and �

�

the optimal assignment.

Mzard (1988) 
onje
tured that

lim

n!1

E(Z

�

(n)) =

�

2

6

(for U(0; 1) 
osts) :

In 1992, Aldous showed that, for 
ontinuous 
ost distributions, there is a limit, whi
h only

depends on the density at 0. In 2000, Aldous proved Mzard's 
onje
ture, and also gave the

limiting distribution for n � 


i;�

�

(i)

. He also showed that the (row) rank of 


i;�

�

(i)


onverges

to a Geometri
(1/2) distribution.

We use Aldous' results and a 
oupling argument to study four di�erent models with integer


osts.

1. The rows of C are independent random permutations of 1; : : : ; n.

2. The 
osts, 


i;j

, are i.i.d. uniform on 1; : : : ; n.

3. The matrix C is a random permutation of 1; : : : ; n

2

.

4. The 
osts, 


i;j

, are i.i.d. uniform on 1; : : : ; n

2

.

Cases 1 and 2 are s
aled by 1=n; 
ases 3 and 4 by 1=n

2

.

The results are:

�

2

=6 � lim

n!1

E(Z

�

1

(n)) � 2 ;

�

2

=6 + 1=2 � lim

n!1

E(Z

�

2

(n)) � �

2

=6 + 13=24 ;

lim

n!1

E(Z

�

3

(n)) = �

2

=6 ;

lim

n!1

E(Z

�

4

(n)) = �

2

=6 :

Asymptoti
 normality and submap 
ounts in random maps

Ni
holas C. Wormald

It is well known that the moments, or fa
torial moments, determine many distributions

(su
h as Poisson or normal). This is 
onvenient if the 
entral moments are 
omputed, or if

the expe
ted value is bounded. But what if only non-
entral moments are known, and only

asymptoti
ally, and the expe
tation goes to in�nity quite rapidly? Zhi
heng Gao and I

gave a new general result showing that the asymptoti
 behaviour of high fa
torial moments


an determine the shape of asymptoti
ally normal distributions.
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Let X

n

be a nonnegative integer random variable (n � 1). Provided the kth fa
torial

moment E[X

n

℄

k

= EX

n

(X

n

� 1) � � � (X

n

� k + 1) 
onverges to �

k

for ea
h �xed k as

n!1, we 
an 
on
lude that X

n


onverges in distribution to the Poisson random variable

with mean �. This is the standard \method of moments". If E[X

n

℄

k

� �

k

n

for ea
h �nite

k but �

n

!1 as n!1 there is no 
on
lusion, and this is where the story usually ends.

But the surprising fa
t is that if the moments behave suitably also for k ! 1, we 
an

dedu
e the (expe
ted) result that X

n

is asymptoti
ally normal. What is required is that

E[X

n

℄

k

� �

k

n

exp

�

k

2

s

n

2

�

where s

n

> ��

�1

n

and a 
ouple of other simple 
onditions hold. The 
on
lusion is that (X

n

�

�

n

)=�

n

tends in distribution to the standard normal as n!1, where �

n

=

p

�

n

+ �

2

n

s

n

:

We gave appli
ations to submap 
ounts in random planar triangulations, where we use a

simple argument to asymptoti
ally determine the high moments for the number of 
opies

of a given subtriangulation in a random 3-
onne
ted planar triangulation. Similar results

were also obtained for 2-
onne
ted triangulations and quadrangulations with no multiple

edges.

For these appli
ations, the usual methods of proving asymptoti
 normality do not seem

to apply, as they all basi
ally rely on the variable in question being the sum of a large

number of nearly independent variables. For random maps, su
h a framework has never

been established. The new method also applies to some other situations. However, for the


ounts of small subgraphs in random graphs, it usually fails be
ause the high moments are

warped by the tail of the distribution.

On Random RNA Se
ondary Stru
tures

Markus Nebel

A RNA mole
ule 
onsists of a 
hain of four di�erent types of nu
leotides whi
h only di�er

by the base (adenine (A), 
ytosine (C), guanine (G) or ura
il (U)) involved. The spe
i�


sequen
e of bases along the 
hain is 
alled the primary stru
ture of the mole
ule. Through

the 
reation of hydrogen bounds, the 
omplementary bases A and U (resp. C and G) form

stable base pairs. Additionally, there exists the weaker G-U pair, where the bases bind in a

skewed fashion. By the 
reation of base pairs the primary stru
ture is folded into a stable

three-dimensional 
onformation 
alled tertiary stru
ture of the mole
ule. It is 
ustomary

in s
ien
es to study the simpli�ed se
ondary stru
ture by fo
using ones attention just on

what bases form pairs and allow the sequen
e to form heli
al regions in two dimensions.

Sin
e experimental approa
hes like X-ray di�ra
tion are quite expensive mu
h e�ort has

been made to dedu
e the se
ondary stru
ture from the knowledge of the primary stru
ture.

With respe
t to this task the notion of order of a se
ondary stru
ture has been introdu
ed

by Waterman, who gave the �rst formal framework for se
ondary stru
tures. Many au-

thors have paid attention to enumeration problems related to the 
ombinatori
s of RNA

se
ondary stru
tures. Two di�erent models have been 
onsidered. As shown by Waterman,

assuming that base-pairing is possible between arbitrary pairs of nu
leotides, the set of all

possible stru
tures 
an be modelled as a spe
i�
 
lass of planar graphs. As pointed out by

Zuker and Sanko�, a more realisti
 model is obtained by a sto
hasti
 approa
h, where we

assume a Bernoulli distribution of the bases. The probability p (usually 
alled sti
kiness)

that two random bases 
an be paired is used to 
ontrol the shape of the mole
ules. For

p = 1 both models are equivalent. In all 
ases, parameters like the number of di�erent
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stru
tures of a given size, the number of stru
tures of given size and order, the expe
ted

number of spe
i�
 substru
tures but also the systemati
al treatment of su
h problems from

a mathemati
al point of view are of interest.

In this talk we present a new approa
h (based on multivariate generating fun
tions) for

enumerating parameters related to se
ondary stru
tures. For the �rst time it be
omes pos-

sible to derive satisfying results for parameters whi
h depend on the order of the mole
ules


onsidered. We derive pre
ise asymptoti
s (number of nu
leotides n ! 1) for the (ex-

pe
ted) number of se
ondary stru
tures of size n and �xed order k and for the averaged

order of stru
tures of size n, assuming the Bernoulli model with a sti
kiness p > 0. This

solves an open problem whi
h 
an be tra
ed ba
k to the original work of Waterman. Many

additional results like the averaged length of loops (sequen
es of unpaired bases) or the

expe
ted number of substru
tures like hairpins and bulges will be presented.

The number of 2-SAT fun
tions

Imre Leader

(joint work with B�ela Bollob�as and Graham R. Brightwell)

Our aim is to study the following question: of the 2

2

n

Boolean fun
tions on n variables, how

many are expressible as 2-SAT formulae? In other words we wish to 
ount the number of

di�erent instan
es of 2-SAT, 
ounting two instan
es as equivalent if they have the same set

of satisfying assignments. Viewed geometri
ally, we are asking for the number of subsets

of the n-dimensional dis
rete 
ube that are unions of (n� 2)-dimensional sub
ubes.

There is a trivial upper bound of 2

4

(

n

2

)

, as this is the total number of 2-SAT formulae. There

is also an obvious lower bound of 2

n

2

=2

, 
orresponding to the monotone 2-SAT formulae.

So what is the 
orre
t speed? Is there a 
onstant 
 su
h that the number of su
h fun
tions

is (
+ o(1))

n

2

, and, if so, what 
an we say about the value of 
?

Our main result is that, rather surprisingly, the trivial lower bound gives the 
orre
t speed:

the number of 2-SAT fun
tions is 2

n

2

=2+o(n

2

)

. We also prove some results about the number

of k-SAT fun
tions, and make a number of related 
onje
tures.

Singularity Analysis and the Combinatorial/Probabilisti
 Analysis

of a Class of Sear
h-Tree Fun
tionals

James Allen Fill

(joint work with Philippe Flajolet and Nevin Kapur)

For integer m � 2, the m-ary sear
h tree, or multiway tree, generalizes (in order to produ
e

qui
ker sear
hes) the binary sear
h tree, a fundamental data stru
ture. An m-ary tree is a

rooted tree with at mostm \
hildren" for ea
h node (vertex), ea
h of whi
h is distinguished

as one of m possible types. An m-ary sear
h tree is an m-ary tree in whi
h ea
h node has

the 
apa
ity to 
ontain m � 1 elements of the linearly ordered set [n℄ of keys (identi�ed

here with the re
ords themselves). There is a natural way to asso
iate an m-ary sear
h tree

with a sequen
e of n distin
t keys; see, e. g., Chapter 3 in Mahmoud, Hosam M., Evolution

of Random Sear
h Trees, Wiley, New York, 1992.

A useful probability model is the random permutation model , des
ribed as follows. Let �

be a uniformly random permutation of [n℄ and build the naturally asso
iated tree. The
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distribution of trees under the random permutation model is the distribution indu
ed by

this 
onstru
tion, and we denote its probability mass fun
tion by Q.

For binary sear
h trees L(T ) := � logQ(T ) is simply the log-produ
t of bran
h sizes.

The \typi
al" shape of a binary sear
h tree 
an be des
ribed by studying the distribution

of L(T ) when T is given the distribution Q. This was done in earlier published work

of the speaker; asymptoti
 expressions for the expe
ted value and varian
e of L(T ) were

derived, and a limiting normal law was established. Qualitatively, the speaker's earlier

work summarized the results as follows: \Thus it might be fair to say that most binary

sear
h trees have a rather `full' shape, like the 
omplete tree."

Form-ary sear
h trees, the formula for Q is Q(T ) = 1

.

Q

x

�

jT (x)j

m�1

�

, where jT j is the number

of nodes in a tree T , T (x) is the bran
h of T rooted at the node x, and the produ
t is over all

nodes in T that are �lled to 
apa
ity. Again we 
onsider L(T ) := � logQ(T ) with T � Q.

We treat the indu
ed distribution of L(T ) by pla
ing the problem in a unifying framework

of additive-type fun
tional on trees. Fix m � 2, and let f on m-ary sear
h trees satisfy

f(T ) =

m

X

i=1

f(T

i

) + 


jT j

; jT j � m� 1;

where (


n

)

n�m�1

is a given sequen
e (often 
alled the toll fun
tion) and T

i

denotes the ith

subtree of the root of T ; the values f(T ) for jT j � m� 2 must also be spe
i�ed. Then we

say that f is of additive type. Examples in
lude spa
e requirement (


n

:= 1), internal path

length (


n

:= n � (m � 1)), and our \shape fun
tional" L (


n

:= ln

�

n

m�1

�

). For the �rst

example, the small-tree (jT j � m� 2) values f(T ) are all 1; for the others, they all vanish.

We provide a general framework for the exa
t and asymptoti
 analysis of the distributions

of fun
tionals of additive type. In parti
ular, singularity analysis (the extra
tion of as-

ymptoti
 information about a sequen
e from the behavior of its generating fun
tion near

singularities) 
an be extremely useful in the 
onsideration of asymptoti
 distributions, but

the tools 
urrently available do not handle the shape fun
tional. We expand the singularity

analysis tool kit by proving that if singularity analysis 
an be applied to ea
h of two gen-

erating fun
tions, then it 
an also be applied to their Hadamard produ
t. This tool allows

for the handling not only of the shape fun
tional, but also of a wide variety of asymptoti


problems in 
ombinatori
s and probability.

Edited by Thorsten Bernholt
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