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The Arbeitsgemeinschaft was organized by Dietmar Salamon (Ziirich) and Matthias
Schwarz (Leipzig).

The course of this Arbeitsgemeinschaft was a series of 16 1-hour presentations with sub-
sequent discussions. The main object of the meeting was Floer homology in the symplectic
context. The first talks were focussed on an introduction, providing the necessary analyti-
cal concepts for defining Floer homology. Whereas Floer homology was at first motivated
by the proof of the Arnold conjecture, the focus was soon directed towards the more general
version provided for arbitrary symplectic diffeomorphisms rather than merely nondegen-
erate Hamiltonian ones. The central object was the presentation of Floer homology as a
functor (cf. the exposition in the program for this meeting). After discussing the relation
of the ring structure on Floer homology with the quantum cohomology ring the emphasis
of the last third of the meeting was laid on very recent application of Floer homology in
view of Lagrangian intersections and Seidel’s results based on the generalized Dehn twist.

The stimulating talks presented a fairly comprehensive introduction into the concept
of Floer homology and provided access to very promising and recent developments in the
field. They gave rise to fruitful discussions, in particular thanks to a very interested group
of participants comprising also a fairly high proportion of extremely motivated graduate
students and young researchers.

The lively atmosphere and inspiring environment of this meeting gave rise to a number
of new contacts, and stimulating substantial impact promising further progress.



Abstracts

Lecture 1, Introduction: Arnold Conjecture, Symplectic Fixed points and
Lagrangian Intersections

JoA WEBER

In the first part we introduce symplectic manifolds and their Lagrangian submanifolds,
and we show that the former are necessarily even-dimensional and orientable. We discuss
some basic examples such as (R*™,wp), (T*L,wean = —d\), (M X M,—w x w) and give
examples of Lagrangian submanifolds in each case, such as graphs of closed 1-forms on
L and graphs of symplectomorphisms of (M,w). We state Darboux’s Theorem and the
Lagrangian neighbourhood theorem and define Hamiltonian symplectomorphisms.

In the second part we state and discuss the weak / strong Arnold Conjecture for sym-
plectic fixed points in the degenerate as well as the nondegenerate case. A proof of the
strong Arnold Conjecture is given for Hamiltonian symplectomorphisms which are suffi-
ciently close to the identity. Here we use the facts from the first part. Finally, the Arnold
Conjecture for Lagrangian intersections is briefly mentioned.

Lecture 2: Morse Homology
ILYyA DOGOLAZKY AND ANNA PRATOUSSEVITCH

We introduce the Morse complex and Morse homology, and we discuss some examples (dif-
ferent Morse functions on S2, the 2-dimensional real projective space and the 2-dimensional
torus). In the second part we introduce index pairs, describe the Morse complex with the
help of index pairs and sketch the proof of the following

Theorem:

The Morse complex is a chain complex (0 0 @ = 0). The homology of the Morse
complex is isomorphic to the singular homology of the manifold.

Lecture 3: Introduction to the concept of Floer homology
ANNETTE HUBER

In the first part of this overview we give an axiomatic characterization of Floer homology.
It is a map

symplectic diffeom. fin. gen. Z/2 -graded
HF,: — ’
{ of (M,w) } { A-modules }

with A a principal ideal domain. The axioms are naturality, isotopy, identity, Lefschetz
property, dimension, duality and product. In general, A has to be chosen as a Novikov
ring.

In the second part, the construction of Floer homology for Hamiltonian diffeomorphisms
was sketched under the simplifying assumptions ¢ |x,(vr) = [W]|romy = 0. In particular,
the moduli space of connecting orbits was defined and key properties listed.



Lecture 4: Floer’s connecting orbits
SEBASTIAN GOTTE

In contrary to ordinary Morse theory, the gradient of the action functional does not define
a flow on the space of loops in symplectic manifolds. Instead, one has to solve a PDE.

Thus, Floer theory gives one periodic orbits of a Hamiltonian diffeomorphism, and cylin-
ders u: R x S* — M satisfying

(*) asu + Jatu - VHt = 0,

and which sit between periodic orbits. It turns out that these “connecting solutions” are
precisely the solutions of (x) of finite energy.

If one has a sequence of finite energy solutions of (x) such that the energy remains
bounded, one would like a subseqgence to converge to a limit solution. However, there
are two phenomena: Concentration of energy at certain points leads to the development
of “bubbles”, which are pseudo-holomorphic spheres attached to the limit solution. Also,
energy disappearing “at infinity” gives rise to new limit solutions that one sees after shifting
the s-parameter in (x).

Finiteness of the number of “bubbles” is guaranteed because every solution of (x) and
every pseudoholomorphic sphere has energy bounded below by an a priori given quantity.

Lecture 5: Floer homology for symplectic fixed points I: Fredholm theory
GREGOR NOETZEL

In order to give a manifold structure to the space of “connecting orbits”, i.e. the space
of solutions of the Floer equation which connect periodic solutions of the Hamiltonian
system, one has to express these solutions as zeros of a section of a suitable Banach bundle
over a Banach manifold of maps R x S' — M. Computing the differential at such a
solution gives an operator Fg: WP — LP of the form Fs¢ = 9,& + J,0:6 + S& where
S € C®°(R x S, R*™?") with limits S*(¢) = lim, 14 S(s,%). In the lecture it is shown
that Fg is a Fredholm operator and the index depends only on the “ends” S*. The
spectral flow is introduced and an example of computation in the case of Morse homology,
the finite-dimensional analogue of Floer homology, is given. Then we sketch a proof of

ind Fs = MCZ(S+) — ftez(S7)

where .. (-) is a suitably defined integer, called Conley-Zehnder-index, which is charac-
terized axiomatically. The proof consists of using the axioms to bring Fg into an easy-
to-compute form. Finally it is indicated how one defines the Conley-Zehnder-index for a
periodic solution.

Lecture 6: Floer homology for symplectic fixed points II: Transversality
ALBERTO ABBONDANDOLO

Let (M,w) be a symplectic manifold, {.J;};cs: an almost complex structure compatible
with w, and {X;},cs1 symplectic vector fields. Our aim is to show that for a generic choice
of {J;}, the space M(z~,z", X}, J;) of smooth maps u: R x S' — M solving

(%) Dyxu = 0gu—+ J,(u)(Ou — X,(u)) =0, u(s,-) =5 2F (),



is a manifold (where 2% are nondegenerate 1-periodic solutions of # = X;(z)). The map

5J,X can be seen as a smooth section of a Banach bundle £ — W, and its fiberwise
derivative is D, ; : WP (u*TM) — LP(u*T M),

Du,JU = Vv + Jt(u)vtv + Vv']t(u) - VU(JtXt)(u) :

We know from Lecture 5 that it is a Fredholm operator. In order to apply the implicit
function theorem, we need D, ; to be onto. Introducing a space J of almost complex
structures compatible with w, we will prove that the set Z = {(u,J) € W x J|0x ju = 0}
is a manifold. Then every regular value J of the projection Z — J is such that D, ;
is onto for every solution u, and the Sard-Smale theorem implies that the set of regular
values is residual.

To prove that Z is a manifold, we see it as the zero-set of the section

3:WXJ—>€, 3(U,J):5J,Xu

whose fiberwise derivative is DJ(u, J)[v,Y]| = D, jv+Y:i(u)(0pu — X¢(u)). Its kernel splits,
and to prove that it is onto, it is enough to check that the range is closed. Every n €
L9(u*T M) in the annihilator of such range solves an equation like d;n+J(s,t)0n+Cn =10
and satisfies [ [(Y;(u)J;(u)dsu,n)dsdt = 0. The nontrivial facts:

e Every zero of a solution w of dsw + J(s,t)0yw + C(s,t)w = 0, dsw Z 0 is isolated
(Unique continuation),
e the set {(s,t) € R x SY0u(s,t) #0, u(s,t) € u(R\ {s},t)} is open and dense,

easily imply that n = 0.

Lecture 7: Floer homology for symplectic fixed points III: Gluing
KATRIN WEHRHEIM

We complete the construction of Floer homology for a symplectomorphism ¢ in the mono-
tone case: The Floer chain complex is generated by the fixed points of ¢ o1y (where v is
the time-1-map of the Hamiltonian flow in the Floer equation and the boundary operator
0 is defined by counting Floer’s connection orbits of index 1). By transversality and com-
pactness this is well-defined for generic (H,J) in the Floer equation. It remains to show
that 0% = 0 for generic almost complex structures J. Equivalently, one has to identify the
broken flow lines of index 1 + 1 with the ends of the space of Floer’s connecting orbits of
index 2. This is achieved by a gluing construction. We give this proof and present some
technical foundations of general gluing constructions:
e Pregluing constructs approximate solutions of the Floer equation near broken flow
lines.
e A quantitative implicit function theorem is used to find exact solutions near approx-
imate solutions of the Floer equation and to obtain a local uniqueness property.
e The 'Linear gluing theorem’ establishes the required Fredholm and surjectivity prop-
erty and uniform estimates for the linearized Floer operator at 'preglued trajectories’.

Lecture 8: Continuation of Floer homology
RALF GAUTSCHI

Let (¢,7) be a monotone pair, where ¢ is a symplectomorphism and ~ a component of the
twisted loop space. If {H®, J*} and {H/,J’} are regular, there exists an isomorphism

¥ L HE (¢, v; {HP, JPY) — HF (¢, v {H/, J]})



such that

P 0 d =0 and B, =id.
The Proof is in 4 steps.
Step 1. Construction of a homomorphism on the chain level

o OF (p,7; {H}) — CF(p,7; {H/})
This involves the analysis of an equation similar to Floer’s equation:
Osu + Jy(u)(Opu — Xp,,(u)) =0, u: R — M,
where {Hy,, Js,;} is a homotopy from {H}, J7*} to {Hf, Jf}
Step II. p°8 is a chain map, i.e. ¢*? 0 9% = 9% o p®8. Similar to the proof that 9 o 0 = 0,
this follows from a gluing theorem.
Step III. 1f {H?,,.J,},{H}, J,,} are homotopies, there is

T: CF(p,7; {H}) — CF(p, % {H/})
such that
0 4+ 2 =0T +To*
The proof requires a parametrized version of the PDE above.

Step IV. That %7 o @ = &7 and ®** = id is proved by choosing special homotopies.

Lecture 9: Floer-Cohomology for Weakly-Monotone Manifolds
DANIEL ROGGENKAMP AND ANNA WIENHARD

The construction of Floer-cohomology is extended to the class of weakly-monotone man-
ifolds (i.e. for A € mo(M) 3 —n < ¢1(A) < 0 implies w(A) < 0). In comparison to the
monotone case (i.e. w(A) — Ac1(A) =0 VA € my(M) for fixed A > 0) one has to deal
with the following additional problems. To obtain energy bounds on the one- and two-
dimensional components of the moduli spaces of connecting orbits, one takes into account
the trivialization of TM along the contractible one-periodic orbits of the Hamiltonian flow,
necessary for the definition of the Conley-Zehnder-Index, i.e. one works over a suitable
covering of the loop space. As a consequence the cochain groups resulting from this con-
struction are infinite-dimensional vector spaces over Z,, but they are finite-dimensional
over some Novikov ring.

Imposing stronger, but still generic regularity conditions on the almost complex structure
and the Hamiltonian function, one can exclude bubbling-off of J-holomorphic spheres with
¢; < 0 in the one- and two-dimensional components of the moduli spaces of connecting
orbits. Thus, the coboundary operators are well-defined.

Lecture 10: Ring Structure I: Pairs-of -Pants product
DAN FULEA

The talk focused on the introduction of the duality structure and product structure on
the Floer-homology HF((M,w),Fs) = HF(idys). For the construction of the multilinear
operators on Floer homology, O(X) associated to topological surfaces with cylindrical ends,
the following steps were discussed:

1. Explicit definition of the model surface ¥ (with supplementary fixed structure).



2. Differential geometric Banach manifolds involved and associated Banach bundles.
These serve as the definition domain and value domain of an elliptic differential op-
erator.

3. The operator 51,,6 seen as a section of a Banach manifold with values in a canonical
Banach bundle over it.

4. Solution sets of the non-linear PDE 9;(u) = 0 are finite dimensional manifolds
because of the corresponding Fredholm properties of the linearization D, := D, 0 Tk
at a solution u of dyx(u) = 0. Because of the local character of the problem one has
a situation already encountered in previous talks, where analogous 0-operators were
studied on ¥ = R x S!, the infinite cylinder.

5. The moduli spaces of solutions with further special conditions: M(z,y; J, k,...),
where z,y fix the boundary conditions for solutions in terms of 1-periodic solutions
of the Hamiltonian equation, .J is a choice of an almost complex structure .J on M
and k is a suitable extension of the Hamiltonian vector field Xy (s,t) which is at first
only well-defined on the cylindrical ends of .

6. Definition of the operation O = O(X, J,...): For fixed z,y define the number (mod
2): <z,y>:=#Mlz,y;J,...). Set Olz] =3 <z,y>-[yl

A partial sketch of the compatibility of the operation O with the boundary operator 9 of
the complex computing the Floer homology, O9 = 00 was given.

Lecture 11: Ring Structure II: Quantum Cohomology
URS FRAUENFELDER

The quantum cup product is a deformation of the ordinary cup product by interaction
with J-holomorphic spheres. It can either be defined using Gromov-Witten invariants or
Morse-theoretically as a “spiked-sphere” product.

The spiked-sphere product is defined by counting spheres with two marked points on the
unstable manifolds of two critical points and with one marked point on the stable manifold
of a critical point. These critical points are associated to three auxiliary, generically chosen
Morse functions.

The spiked sphere product corresponds to the Pair-of-Pants product in Floer-homology,
the ring structure introduced in the previous lecture.

Lecture 12: Lagrangian intersections
URSULA HAMENSTADT

A Lagrangian submanifold L of a (compact) symplectic manifold (M, w) is monotone if
there exists A > 0 s.th. = A\w on my(M, L), where p is the Maslov homomorphism and w
is integration by w. For two monotone Lagrangian submanifolds L, Ly C M which intesect
tranversely and such that the generator of the Maslov homomorphism is at least 3 it is
possible to construct Floer homology. The chain complex is the free Z, -vector space over
the intersection points L N L;. Connecting orbits are holomorphic discs of bounded energy
with respect to some fixed compatible (time dependent) almost complex structure .J and
of Maslov-index 1. A new phenomenon is bubbling of discs which is prevented for discs of
Maslov-index < 2 by the assumption on the Maslov-homomorphism.

The resulting Floer-homology can be used to show (Oh): If ¢; is a Hamiltonian isotopy
of CP™ s.th. ¢;RP" intersects RP" transversely, then # RP™ N ¢ RP" > n + 1.



Lecture 13: Oh’s spectral sequence and applications
OctAav CORNEA

Oh’s spectral sequence is defined for a monotone Lagrangian L C (M, w) such that the min-
imal Maslov number (i.e. as above, the positive generator of the Maslov homomorphism)
Y1, > 3. It has the following structure:

By~ H(L;Z/2);  dy: Ef — B!

and it collapses to the Floer cohomology of L, HF*(L; M). The purpose of this spectral
sequence is to describe the contribution of the “long” trajectories to the Floer complex
associated to a pair of Lagrangians of type Ly = L, L; = graph(df) with f a sufficently
C?-small Morse function on L. (the “long” trajectories are those that are not completely
included in a Darboux neighbourhood of L). T have then discussed an application of this
spectral sequence that is due to Biran:

Theorem (Biran)

If L ¢ CP" is a Lagrangian submanifold with H, (L, Z) 2-torsion, then H*(L;Z/2) ~
H*(RP™;Z/2) as vector spaces and, if n is even, as algebras.

Lecture 14: Generalized Dehn twists
THILO KUESSNER

Let V' be a Lagrangian sphere in a symplectic manifold (M,w). We show that the Dehn
twist 7 at V' can be realized by a symplectomorphism. If dim M = 4 we give an explicit
homotopy to see that 72 is homotopic to the identity in Diff(A). Under additional assump-
tions (see the following lecture) it holds in particular that moSymp(M,w) — meDiff(M) is
not injective.

In the second part of the talk, we showed that this applies to a large number of symplec-
tic 4—manifolds: If a Kahler manifold E?"*2 fibers over the disc D? with singularities of
complex Morse type, then the fiber (M?" w) contains a Lagrangian sphere. Conversely,
any Dehn twist at a Lagrangian sphere can be realized as the monodromy of an almost
holomorphic fibration with Morse singularities.

Lecture 15: Seidel’s exact sequence and symplectic isotopy
DIETMAR SALAMON

Seidel’s exact triangle for a Dehn twist along a Lagrangian 2-sphere I C M* has the form

HF(id) — HF(r)

N v
ADA

Here A denotes the universal Novikov ring. Its elements have the form A = > \.t°, A, €
Zs where the sum runs over ¢ € R and #{e € R|A. # 0,e < ¢} < oo for all ¢ € R. The

term A @ A replaces the Floer homology group HF(L, L). This exact sequence exists, for
example, whenever ¢, (TM) = Aw], A <0.



In his thesis Seidel used the exact sequence to prove that, as a module over H,(M,A),
the Floer homology of 7, is isomorphic to the quotient of H,(M,A) by the submodule
generated by [pt] and [L]:

H,(M;A)

M) HE(m) = om0

This implies the following
Theorem (Seidel)

If 0y(M) = 0,bo(M) > 3,¢1(TM) = Mw]| for some A < 0, and L C M is a
Lagrangian sphere, then 77, o 77, is not symplectically isotopic to the identity.

The proof is based on the observation, that, if 7, o 7, were symplectically isotopic to the
identity then, since b; = 0, 7, would be Hamiltonian isotopic to TL_1. This would imply
the existence of a nondegenerate pairing on H F'(77) compatible with the module structure
over H,(M;A).

However, the formula (1) implies that such a pairing cannot exist, when by > 3.
Corollary (Seidel)

If M* is a complete intersection, other than CP? or CP' x CP!, then there exists
a symplectomorphism ¢ : M — M which is smoothly, but not symplectically,
isotopic to the identity.

Lecture 16: Graded Lagrangian submanifolds
MATTHIAS SCHWARZ

Using an additional structure on Lagrangian submanifolds, a so-called grading (extending
the notion of oriented Lagrangian Manifolds) Seidel extended the construction of Floer
homology HF (L1, L) so that one obtains an absolute grading rather than a purely relative
one as in Floer’s original setup. This allows finer distinctions of Hamiltonian isotopy classes
of embedded Lagrangian submanifolds, in particular in view of the generalized Dehn twist.
Based on graded Lagrangian manifolds, Seidel has given a new and also more general proof
for the following Theorem:
Theorem (Seidel)
Let (M?",w) be a compact symplectic manifold with contact type boundary,
assume n even and w exact, 2-¢;(M,w) = 0. If M contains an (Ajz)-configuration
of Lagrangian spheres (ly,l1,[3), l; : S™ < M then M contains infinitely many
symplectically knotted spheres, i.e. which are pairwise not Lagrangian isotopic,
but which are pairwise isotopic.
An (Ag)-configuration, k& > 2 is a collection of Lagrangian spheres (ly,...,[;) s.t. for
1. Liij:(Z)fOI‘ |Z—]| 22,
2. |Lz N Lii1| = 1,
3. L; M L;1; intersect transversely.

The proof of the above theorem is then based on showing that for an (Aj)-confiuration
LY = 72(Ly) oy Ly,

i.e. not Hamiltonian isotopic, although by Haefliger’s version of the h-principle Tlik oly ~ Iy,
isotopic through embeddings. Here 7, is the generalized Dehn twist along [5.



The new idea is to see that although original Floer homology gives
7~ HF(Ly, L) 2 HF (Ly; L") = HF(Ly, L,) = HF (L, L,)

the refined version for graded Lagrangians allows to distinguish different degrees in Floer
homology, namely

HF (L, igk)) = Z, exactly in degree 0,
HF(Egk), L,) = Z, exactly in degree 2k(1 — n),
which implies k = 0 if L ~,, L;.

Edited by Matthias Schwarz
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