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O
tober 8th { O
tober 12th, 2001

The Arbeitsgemeins
haft was organized by Dietmar Salamon (Z�uri
h) and Matthias

S
hwarz (Leipzig).

The 
ourse of this Arbeitsgemeins
haft was a series of 16 1-hour presentations with sub-

sequent dis
ussions. The main obje
t of the meeting was Floer homology in the symple
ti



ontext. The �rst talks were fo
ussed on an introdu
tion, providing the ne
essary analyti-


al 
on
epts for de�ning Floer homology. Whereas Floer homology was at �rst motivated

by the proof of the Arnold 
onje
ture, the fo
us was soon dire
ted towards the more general

version provided for arbitrary symple
ti
 di�eomorphisms rather than merely nondegen-

erate Hamiltonian ones. The 
entral obje
t was the presentation of Floer homology as a

fun
tor (
f. the exposition in the program for this meeting). After dis
ussing the relation

of the ring stru
ture on Floer homology with the quantum 
ohomology ring the emphasis

of the last third of the meeting was laid on very re
ent appli
ation of Floer homology in

view of Lagrangian interse
tions and Seidel's results based on the generalized Dehn twist.

The stimulating talks presented a fairly 
omprehensive introdu
tion into the 
on
ept

of Floer homology and provided a

ess to very promising and re
ent developments in the

�eld. They gave rise to fruitful dis
ussions, in parti
ular thanks to a very interested group

of parti
ipants 
omprising also a fairly high proportion of extremely motivated graduate

students and young resear
hers.

The lively atmosphere and inspiring environment of this meeting gave rise to a number

of new 
onta
ts, and stimulating substantial impa
t promising further progress.
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Abstra
ts

Le
ture 1, Introdu
tion: Arnold Conje
ture, Symple
ti
 Fixed points and

Lagrangian Interse
tions

Joa Weber

In the �rst part we introdu
e symple
ti
 manifolds and their Lagrangian submanifolds,

and we show that the former are ne
essarily even-dimensional and orientable. We dis
uss

some basi
 examples su
h as (R

2n

; !

0

); (T

�

L; !


an

= �d�); (M � M;�! � !) and give

examples of Lagrangian submanifolds in ea
h 
ase, su
h as graphs of 
losed 1-forms on

L and graphs of symple
tomorphisms of (M;!). We state Darboux's Theorem and the

Lagrangian neighbourhood theorem and de�ne Hamiltonian symple
tomorphisms.

In the se
ond part we state and dis
uss the weak / strong Arnold Conje
ture for sym-

ple
ti
 �xed points in the degenerate as well as the nondegenerate 
ase. A proof of the

strong Arnold Conje
ture is given for Hamiltonian symple
tomorphisms whi
h are suÆ-


iently 
lose to the identity. Here we use the fa
ts from the �rst part. Finally, the Arnold

Conje
ture for Lagrangian interse
tions is brie
y mentioned.

Le
ture 2: Morse Homology

Ilya Dogolazky and Anna Pratoussevit
h

We introdu
e the Morse 
omplex and Morse homology, and we dis
uss some examples (dif-

ferent Morse fun
tions on S

2

, the 2-dimensional real proje
tive spa
e and the 2-dimensional

torus). In the se
ond part we introdu
e index pairs, des
ribe the Morse 
omplex with the

help of index pairs and sket
h the proof of the following

Theorem:

The Morse 
omplex is a 
hain 
omplex (� Æ � = 0). The homology of the Morse


omplex is isomorphi
 to the singular homology of the manifold.

Le
ture 3: Introdu
tion to the 
on
ept of Floer homology

Annette Huber

In the �rst part of this overview we give an axiomati
 
hara
terization of Floer homology.

It is a map

HF

�

:

�

symple
ti
 di�eom.

of (M;!)

�

!

n

�n. gen. Z=2 -graded,

�-modules

o

with � a prin
ipal ideal domain. The axioms are naturality, isotopy, identity, Lefs
hetz

property, dimension, duality and produ
t. In general, � has to be 
hosen as a Novikov

ring.

In the se
ond part, the 
onstru
tion of Floer homology for Hamiltonian di�eomorphisms

was sket
hed under the simplifying assumptions 


1

j

�

2

(M)

= [!℄j

�

2

(M)

= 0. In parti
ular,

the moduli spa
e of 
onne
ting orbits was de�ned and key properties listed.
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Le
ture 4: Floer's 
onne
ting orbits

Sebastian G

�

otte

In 
ontrary to ordinary Morse theory, the gradient of the a
tion fun
tional does not de�ne

a 
ow on the spa
e of loops in symple
ti
 manifolds. Instead, one has to solve a PDE.

Thus, Floer theory gives one periodi
 orbits of a Hamiltonian di�eomorphism, and 
ylin-

ders u : R � S

1

!M satisfying

�

s

u+ J�

t

u�rH

t

= 0;(�)

and whi
h sit between periodi
 orbits. It turns out that these \
onne
ting solutions" are

pre
isely the solutions of (�) of �nite energy.

If one has a sequen
e of �nite energy solutions of (�) su
h that the energy remains

bounded, one would like a subseqen
e to 
onverge to a limit solution. However, there

are two phenomena: Con
entration of energy at 
ertain points leads to the development

of \bubbles", whi
h are pseudo-holomorphi
 spheres atta
hed to the limit solution. Also,

energy disappearing \at in�nity" gives rise to new limit solutions that one sees after shifting

the s-parameter in (�).

Finiteness of the number of \bubbles" is guaranteed be
ause every solution of (�) and

every pseudoholomorphi
 sphere has energy bounded below by an a priori given quantity.

Le
ture 5: Floer homology for symple
ti
 �xed points I: Fredholm theory

Gregor Noetzel

In order to give a manifold stru
ture to the spa
e of \
onne
ting orbits", i.e. the spa
e

of solutions of the Floer equation whi
h 
onne
t periodi
 solutions of the Hamiltonian

system, one has to express these solutions as zeros of a se
tion of a suitable Bana
h bundle

over a Bana
h manifold of maps R � S

1

! M . Computing the di�erential at su
h a

solution gives an operator F

S

: W

1;p

! L

p

of the form F

S

� = �

s

� + J

o

�

t

� + S� where

S 2 C

1

(R � S

1

;R

2n�2n

) with limits S

�

(t) = lim

s!�1

S(s; t). In the le
ture it is shown

that F

S

is a Fredholm operator and the index depends only on the \ends" S

�

. The

spe
tral 
ow is introdu
ed and an example of 
omputation in the 
ase of Morse homology,

the �nite-dimensional analogue of Floer homology, is given. Then we sket
h a proof of

indF

S

= �


z

(S

+

)� �


z

(S

�

)

where �


z

(�) is a suitably de�ned integer, 
alled Conley-Zehnder-index, whi
h is 
hara
-

terized axiomati
ally. The proof 
onsists of using the axioms to bring F

S

into an easy-

to-
ompute form. Finally it is indi
ated how one de�nes the Conley-Zehnder-index for a

periodi
 solution.

Le
ture 6: Floer homology for symple
ti
 �xed points II: Transversality

Alberto Abbondandolo

Let (M;!) be a symple
ti
 manifold, fJ

t

g

t2S

1

an almost 
omplex stru
ture 
ompatible

with !, and fX

t

g

t2S

1

symple
ti
 ve
tor �elds. Our aim is to show that for a generi
 
hoi
e

of fJ

t

g, the spa
e M(x

�

; x

+

; X

t

; J

t

) of smooth maps u : R � S

1

!M solving

�

J;X

u = �

s

u+ J

t

(u)(�

t

u�X

t

(u)) = 0; u(s; �)

s!�1

�! x

�

(�);(�)
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is a manifold (where x

�

are nondegenerate 1-periodi
 solutions of _x = X

t

(x)). The map

�

J;X


an be seen as a smooth se
tion of a Bana
h bundle E ! W, and its �berwise

derivative is D

u;J

: W

1;p

(u

�

TM)! L

p

(u

�

TM),

D

u;J

v = r

s

v + J

t

(u)r

t

v +r

v

J

t

(u)�r

v

(J

t

X

t

)(u) :

We know from Le
ture 5 that it is a Fredholm operator. In order to apply the impli
it

fun
tion theorem, we need D

u;J

to be onto. Introdu
ing a spa
e J of almost 
omplex

stru
tures 
ompatible with !, we will prove that the set Z = f(u; J) 2 W �J j�

X;J

u = 0g

is a manifold. Then every regular value J of the proje
tion Z ! J is su
h that D

u;J

is onto for every solution u, and the Sard-Smale theorem implies that the set of regular

values is residual.

To prove that Z is a manifold, we see it as the zero-set of the se
tion

J :W �J ! E ; J(u; J) = �

J;X

u

whose �berwise derivative is DJ(u; J)[v; Y ℄ = D

u;J

v+Y

t

(u)(�

t

u�X

t

(u)). Its kernel splits,

and to prove that it is onto, it is enough to 
he
k that the range is 
losed. Every � 2

L

q

(u

�

TM) in the annihilator of su
h range solves an equation like �

s

�+J(s; t)�

t

�+C� = 0

and satis�es

R R

hY

t

(u)J

t

(u)�

s

u; �idsdt = 0. The nontrivial fa
ts:

� Every zero of a solution w of �

s

w + J(s; t)�

t

w + C(s; t)w = 0, �

s

w 6� 0 is isolated

(Unique 
ontinuation),

� the set f(s; t) 2 R � S

1

j�

s

u(s; t) 6= 0 ; u(s; t) 62 u(R n fsg; t)g is open and dense,

easily imply that � � 0.

Le
ture 7: Floer homology for symple
ti
 �xed points III: Gluing

Katrin Wehrheim

We 
omplete the 
onstru
tion of Floer homology for a symple
tomorphism � in the mono-

tone 
ase: The Floer 
hain 
omplex is generated by the �xed points of � Æ  

1

(where  

1

is

the time-1-map of the Hamiltonian 
ow in the Floer equation and the boundary operator

� is de�ned by 
ounting Floer's 
onne
tion orbits of index 1). By transversality and 
om-

pa
tness this is well-de�ned for generi
 (H; J) in the Floer equation. It remains to show

that �

2

= 0 for generi
 almost 
omplex stru
tures J . Equivalently, one has to identify the

broken 
ow lines of index 1 + 1 with the ends of the spa
e of Floer's 
onne
ting orbits of

index 2. This is a
hieved by a gluing 
onstru
tion. We give this proof and present some

te
hni
al foundations of general gluing 
onstru
tions:

� Pregluing 
onstru
ts approximate solutions of the Floer equation near broken 
ow

lines.

� A quantitative impli
it fun
tion theorem is used to �nd exa
t solutions near approx-

imate solutions of the Floer equation and to obtain a lo
al uniqueness property.

� The 'Linear gluing theorem' establishes the required Fredholm and surje
tivity prop-

erty and uniform estimates for the linearized Floer operator at 'preglued traje
tories'.

Le
ture 8: Continuation of Floer homology

Ralf Gauts
hi

Let (�; 
) be a monotone pair, where � is a symple
tomorphism and 
 a 
omponent of the

twisted loop spa
e. If fH

�

t

; J

�

t

g and fH

�

t

; J

�

t

g are regular, there exists an isomorphism

�

��

: HF (�; 
; fH

�

t

; J

�

t

g)! HF (�; 
; fH

�

t

; J

�

t

g)
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su
h that

�

�


Æ �

��

= �

�


and �

��

= id :

The Proof is in 4 steps.

Step I. Constru
tion of a homomorphism on the 
hain level

'

��

: CF ('; 
; fH

�

t

g) �! CF ('; 
; fH

�

t

g)

This involves the analysis of an equation similar to Floer's equation:

�

s

u+ J

s;t

(u)(�

t

u�X

H

s;t

(u)) = 0; u : R

2

!M;

where fH

s;t

; J

s;t

g is a homotopy from fH

�

t

; J

�

t

g to fH

�

t

; J

�

t

g.

Step II. '

��

is a 
hain map, i.e. '

��

Æ �

�

= �

�

Æ '

��

: Similar to the proof that � Æ � = 0,

this follows from a gluing theorem.

Step III. If fH

0

s;t

; J

0

s;t

g; fH

1

s;t

; J

1

s;t

g are homotopies, there is

T : CF ('; 
; fH

�

t

g) �! CF ('; 
; fH

�

t

g)

su
h that

'

��

1

+ '

��

0

= �

�

T + T�

�

:

The proof requires a parametrized version of the PDE above.

Step IV. That �

�


Æ �

�


= �

�


and �

��

= id is proved by 
hoosing spe
ial homotopies.

Le
ture 9: Floer-Cohomology for Weakly-Monotone Manifolds

Daniel Roggenkamp and Anna Wienhard

The 
onstru
tion of Floer-
ohomology is extended to the 
lass of weakly-monotone man-

ifolds (i.e. for A 2 �

2

(M) 3 � n � 


1

(A) < 0 implies !(A) � 0): In 
omparison to the

monotone 
ase (i.e. !(A) � �


1

(A) = 0 8A 2 �

2

(M) for �xed � � 0) one has to deal

with the following additional problems. To obtain energy bounds on the one- and two-

dimensional 
omponents of the moduli spa
es of 
onne
ting orbits, one takes into a

ount

the trivialization of TM along the 
ontra
tible one-periodi
 orbits of the Hamiltonian 
ow,

ne
essary for the de�nition of the Conley-Zehnder-Index, i.e. one works over a suitable


overing of the loop spa
e. As a 
onsequen
e the 
o
hain groups resulting from this 
on-

stru
tion are in�nite-dimensional ve
tor spa
es over Z

2

, but they are �nite-dimensional

over some Novikov ring.

Imposing stronger, but still generi
 regularity 
onditions on the almost 
omplex stru
ture

and the Hamiltonian fun
tion, one 
an ex
lude bubbling-o� of J-holomorphi
 spheres with




1

� 0 in the one- and two-dimensional 
omponents of the moduli spa
es of 
onne
ting

orbits. Thus, the 
oboundary operators are well-de�ned.

Le
ture 10: Ring Stru
ture I: Pairs-of -Pants produ
t

Dan Fulea

The talk fo
used on the introdu
tion of the duality stru
ture and produ
t stru
ture on

the Floer-homology HF ((M;!); F

2

) = HF (id

M

). For the 
onstru
tion of the multilinear

operators on Floer homology, O(�) asso
iated to topologi
al surfa
es with 
ylindri
al ends,

the following steps were dis
ussed:

1. Expli
it de�nition of the model surfa
e � (with supplementary �xed stru
ture).
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2. Di�erential geometri
 Bana
h manifolds involved and asso
iated Bana
h bundles.

These serve as the de�nition domain and value domain of an ellipti
 di�erential op-

erator.

3. The operator

�

�

J;k

seen as a se
tion of a Bana
h manifold with values in a 
anoni
al

Bana
h bundle over it.

4. Solution sets of the non-linear PDE

�

�

J;k

(u) = 0 are �nite dimensional manifolds

be
ause of the 
orresponding Fredholm properties of the linearization D

u

:= D

u

�

�

J;k

at a solution u of

�

�

J;k

(u) = 0. Be
ause of the lo
al 
hara
ter of the problem one has

a situation already en
ountered in previous talks, where analogous

�

�-operators were

studied on � = R � S

1

, the in�nite 
ylinder.

5. The moduli spa
es of solutions with further spe
ial 
onditions: M(x; y; J; k; : : : ),

where x; y �x the boundary 
onditions for solutions in terms of 1-periodi
 solutions

of the Hamiltonian equation, J is a 
hoi
e of an almost 
omplex stru
ture J on M

and k is a suitable extension of the Hamiltonian ve
tor �eld X

H

(s; t) whi
h is at �rst

only well-de�ned on the 
ylindri
al ends of �.

6. De�nition of the operation O = O(�; J; : : : ): For �xed x; y de�ne the number (mod

2): < x; y > := #M(x; y; J; : : : ). Set O[x℄ :=

P

y

< x; y > �[y℄:

A partial sket
h of the 
ompatibility of the operation O with the boundary operator � of

the 
omplex 
omputing the Floer homology, O� = �O was given.

Le
ture 11: Ring Stru
ture II: Quantum Cohomology

Urs Frauenfelder

The quantum 
up produ
t is a deformation of the ordinary 
up produ
t by intera
tion

with J-holomorphi
 spheres. It 
an either be de�ned using Gromov-Witten invariants or

Morse-theoreti
ally as a \spiked-sphere" produ
t.

The spiked-sphere produ
t is de�ned by 
ounting spheres with two marked points on the

unstable manifolds of two 
riti
al points and with one marked point on the stable manifold

of a 
riti
al point. These 
riti
al points are asso
iated to three auxiliary, generi
ally 
hosen

Morse fun
tions.

The spiked sphere produ
t 
orresponds to the Pair-of-Pants produ
t in Floer-homology,

the ring stru
ture introdu
ed in the previous le
ture.

Le
ture 12: Lagrangian interse
tions

Ursula Hamenst

�

adt

A Lagrangian submanifold L of a (
ompa
t) symple
ti
 manifold (M;!) is monotone if

there exists � > 0 s.th. � = �! on �

2

(M;L), where � is the Maslov homomorphism and !

is integration by !. For two monotone Lagrangian submanifolds L; L

1

� M whi
h intese
t

tranversely and su
h that the generator of the Maslov homomorphism is at least 3 it is

possible to 
onstru
t Floer homology. The 
hain 
omplex is the free Z

2

-ve
tor spa
e over

the interse
tion points L\L

1

. Conne
ting orbits are holomorphi
 dis
s of bounded energy

with respe
t to some �xed 
ompatible (time dependent) almost 
omplex stru
ture J and

of Maslov-index 1. A new phenomenon is bubbling of dis
s whi
h is prevented for dis
s of

Maslov-index � 2 by the assumption on the Maslov-homomorphism.

The resulting Floer-homology 
an be used to show (Oh): If �

t

is a Hamiltonian isotopy

of C P

n

s.th. �

1

RP

n

interse
ts RP

n

transversely, then #RP

n

\ �

1

RP

n

� n+ 1.
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Le
ture 13: Oh's spe
tral sequen
e and appli
ations

O
tav Cornea

Oh's spe
tral sequen
e is de�ned for a monotone Lagrangian L � (M;!) su
h that the min-

imal Maslov number (i.e. as above, the positive generator of the Maslov homomorphism)

�

L

� 3. It has the following stru
ture:

E

1

' H

�

(L;Z=2); d

n

: E

�

r

! E

��r�

L

+1

r

and it 
ollapses to the Floer 
ohomology of L, HF

�

(L;M). The purpose of this spe
tral

sequen
e is to des
ribe the 
ontribution of the \long" traje
tories to the Floer 
omplex

asso
iated to a pair of Lagrangians of type L

0

= L; L

1

= graph(df) with f a suÆ
ently

C

2

-small Morse fun
tion on L. (the \long" traje
tories are those that are not 
ompletely

in
luded in a Darboux neighbourhood of L). I have then dis
ussed an appli
ation of this

spe
tral sequen
e that is due to Biran:

Theorem (Biran)

If L � C P

n

is a Lagrangian submanifold withH

1

(L;Z) 2-torsion, thenH

�

(L;Z=2) '

H

�

(RP

n

;Z=2) as ve
tor spa
es and, if n is even, as algebras.

Le
ture 14: Generalized Dehn twists

Thilo Kuessner

Let V be a Lagrangian sphere in a symple
ti
 manifold (M;!). We show that the Dehn

twist � at V 
an be realized by a symple
tomorphism. If dimM = 4 we give an expli
it

homotopy to see that �

2

is homotopi
 to the identity in Di�(M). Under additional assump-

tions (see the following le
ture) it holds in parti
ular that �

0

Symp(M;!)! �

0

Di�(M) is

not inje
tive.

In the se
ond part of the talk, we showed that this applies to a large number of symple
-

ti
 4�manifolds: If a K�ahler manifold E

2n+2

�bers over the dis
 D

2

with singularities of


omplex Morse type, then the �ber (M

2n

; !) 
ontains a Lagrangian sphere. Conversely,

any Dehn twist at a Lagrangian sphere 
an be realized as the monodromy of an almost

holomorphi
 �bration with Morse singularities.

Le
ture 15: Seidel's exa
t sequen
e and symple
ti
 isotopy

Dietmar Salamon

Seidel's exa
t triangle for a Dehn twist along a Lagrangian 2-sphere L �M

4

has the form

HF (id) �! HF (�

L

)

- .

�� �

Here � denotes the universal Novikov ring. Its elements have the form � =

P

�

"

t

"

; �

"

2

Z

2

where the sum runs over " 2 R and #f" 2 Rj�

"

6= 0; " � 
g < 1 for all 
 2 R. The

term �� � repla
es the Floer homology group HF (L; L). This exa
t sequen
e exists, for

example, whenever 


1

(TM) = �[!℄, � � 0.
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In his thesis Seidel used the exa
t sequen
e to prove that, as a module over H

�

(M;�);

the Floer homology of �

L

is isomorphi
 to the quotient of H

�

(M;�) by the submodule

generated by [pt℄ and [L℄:

HF (�

L

)

�

=

H

�

(M ; �)

span([pt℄; [L℄)

(1)

This implies the following

Theorem (Seidel)

If b

1

(M) = 0; b

2

(M) � 3; 


1

(TM) = �[!℄ for some � � 0; and L � M is a

Lagrangian sphere, then �

L

Æ �

L

is not symple
ti
ally isotopi
 to the identity.

The proof is based on the observation, that, if �

L

Æ �

L

were symple
ti
ally isotopi
 to the

identity then, sin
e b

1

= 0; �

L

would be Hamiltonian isotopi
 to �

�1

L

. This would imply

the existen
e of a nondegenerate pairing on HF (�

L

) 
ompatible with the module stru
ture

over H

�

(M ; �):

However, the formula (1) implies that su
h a pairing 
annot exist, when b

2

� 3.

Corollary (Seidel)

IfM

4

is a 
omplete interse
tion, other than C P

2

or C P

1

�C P

1

, then there exists

a symple
tomorphism ' : M ! M whi
h is smoothly, but not symple
ti
ally,

isotopi
 to the identity.

Le
ture 16: Graded Lagrangian submanifolds

Matthias S
hwarz

Using an additional stru
ture on Lagrangian submanifolds, a so-
alled grading (extending

the notion of oriented Lagrangian Manifolds) Seidel extended the 
onstru
tion of Floer

homologyHF (L

1

; L

2

) so that one obtains an absolute grading rather than a purely relative

one as in Floer's original setup. This allows �ner distin
tions of Hamiltonian isotopy 
lasses

of embedded Lagrangian submanifolds, in parti
ular in view of the generalized Dehn twist.

Based on graded Lagrangian manifolds, Seidel has given a new and also more general proof

for the following Theorem:

Theorem(Seidel)

Let (M

2n

; !) be a 
ompa
t symple
ti
 manifold with 
onta
t type boundary,

assume n even and ! exa
t, 2 �


1

(M;!) = 0: IfM 
ontains an (A

3

)-
on�guration

of Lagrangian spheres (l

0

; l

1

; l

2

); l

i

: S

n

,! M then M 
ontains in�nitely many

symple
ti
ally knotted spheres, i.e. whi
h are pairwise not Lagrangian isotopi
,

but whi
h are pairwise isotopi
.

An (A

k

)-
on�guration, k � 2 is a 
olle
tion of Lagrangian spheres (l

1

; : : : ; l

k

) s.t. for

L

i

= l

i

(S

n

):

1. L

i

\ L

j

= ; for ji� jj � 2,

2. jL

i

\ L

i�1

j = 1,

3. L

i

t L

i�1

interse
t transversely.

The proof of the above theorem is then based on showing that for an (A

3

)-
on�uration

L

(k)

1

:= �

2k

l

2

(L

1

) 6�

!

L

1

;

i.e. not Hamiltonian isotopi
, although by Hae
iger's version of the h-prin
iple �

2k

l

2

Æ l

1

� l

1

,

isotopi
 through embeddings. Here �

l

2

is the generalized Dehn twist along l

2

.
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The new idea is to see that although original Floer homology gives

Z

�

=

HF (L

0

; L

1

)

�

=

HF (L

0

;L

(k)

1

)

�

=

HF (L

1

; L

2

)

�

=

HF (L

(k)

1

; L

2

)

the re�ned version for graded Lagrangians allows to distinguish di�erent degrees in Floer

homology, namely

HF (

~

L

0

;

~

L

(k)

1

) = Z

2

exa
tly in degree 0;

HF (

~

L

(k)

1

;

~

L

2

) = Z

2

exa
tly in degree 2k(1� n);

whi
h implies k = 0 if L

(k)

1

�

!

L

1

.

Edited by Matthias S
hwarz
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