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The Arbeitsgemeinshaft was organized by Dietmar Salamon (Z�urih) and Matthias

Shwarz (Leipzig).

The ourse of this Arbeitsgemeinshaft was a series of 16 1-hour presentations with sub-

sequent disussions. The main objet of the meeting was Floer homology in the sympleti

ontext. The �rst talks were foussed on an introdution, providing the neessary analyti-

al onepts for de�ning Floer homology. Whereas Floer homology was at �rst motivated

by the proof of the Arnold onjeture, the fous was soon direted towards the more general

version provided for arbitrary sympleti di�eomorphisms rather than merely nondegen-

erate Hamiltonian ones. The entral objet was the presentation of Floer homology as a

funtor (f. the exposition in the program for this meeting). After disussing the relation

of the ring struture on Floer homology with the quantum ohomology ring the emphasis

of the last third of the meeting was laid on very reent appliation of Floer homology in

view of Lagrangian intersetions and Seidel's results based on the generalized Dehn twist.

The stimulating talks presented a fairly omprehensive introdution into the onept

of Floer homology and provided aess to very promising and reent developments in the

�eld. They gave rise to fruitful disussions, in partiular thanks to a very interested group

of partiipants omprising also a fairly high proportion of extremely motivated graduate

students and young researhers.

The lively atmosphere and inspiring environment of this meeting gave rise to a number

of new ontats, and stimulating substantial impat promising further progress.
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Abstrats

Leture 1, Introdution: Arnold Conjeture, Sympleti Fixed points and

Lagrangian Intersetions

Joa Weber

In the �rst part we introdue sympleti manifolds and their Lagrangian submanifolds,

and we show that the former are neessarily even-dimensional and orientable. We disuss

some basi examples suh as (R

2n

; !

0

); (T

�

L; !

an

= �d�); (M � M;�! � !) and give

examples of Lagrangian submanifolds in eah ase, suh as graphs of losed 1-forms on

L and graphs of sympletomorphisms of (M;!). We state Darboux's Theorem and the

Lagrangian neighbourhood theorem and de�ne Hamiltonian sympletomorphisms.

In the seond part we state and disuss the weak / strong Arnold Conjeture for sym-

pleti �xed points in the degenerate as well as the nondegenerate ase. A proof of the

strong Arnold Conjeture is given for Hamiltonian sympletomorphisms whih are suÆ-

iently lose to the identity. Here we use the fats from the �rst part. Finally, the Arnold

Conjeture for Lagrangian intersetions is briey mentioned.

Leture 2: Morse Homology

Ilya Dogolazky and Anna Pratoussevith

We introdue the Morse omplex and Morse homology, and we disuss some examples (dif-

ferent Morse funtions on S

2

, the 2-dimensional real projetive spae and the 2-dimensional

torus). In the seond part we introdue index pairs, desribe the Morse omplex with the

help of index pairs and sketh the proof of the following

Theorem:

The Morse omplex is a hain omplex (� Æ � = 0). The homology of the Morse

omplex is isomorphi to the singular homology of the manifold.

Leture 3: Introdution to the onept of Floer homology

Annette Huber

In the �rst part of this overview we give an axiomati haraterization of Floer homology.

It is a map

HF

�

:

�

sympleti di�eom.

of (M;!)

�

!

n

�n. gen. Z=2 -graded,

�-modules

o

with � a prinipal ideal domain. The axioms are naturality, isotopy, identity, Lefshetz

property, dimension, duality and produt. In general, � has to be hosen as a Novikov

ring.

In the seond part, the onstrution of Floer homology for Hamiltonian di�eomorphisms

was skethed under the simplifying assumptions 

1

j

�

2

(M)

= [!℄j

�

2

(M)

= 0. In partiular,

the moduli spae of onneting orbits was de�ned and key properties listed.
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Leture 4: Floer's onneting orbits

Sebastian G

�

otte

In ontrary to ordinary Morse theory, the gradient of the ation funtional does not de�ne

a ow on the spae of loops in sympleti manifolds. Instead, one has to solve a PDE.

Thus, Floer theory gives one periodi orbits of a Hamiltonian di�eomorphism, and ylin-

ders u : R � S

1

!M satisfying

�

s

u+ J�

t

u�rH

t

= 0;(�)

and whih sit between periodi orbits. It turns out that these \onneting solutions" are

preisely the solutions of (�) of �nite energy.

If one has a sequene of �nite energy solutions of (�) suh that the energy remains

bounded, one would like a subseqene to onverge to a limit solution. However, there

are two phenomena: Conentration of energy at ertain points leads to the development

of \bubbles", whih are pseudo-holomorphi spheres attahed to the limit solution. Also,

energy disappearing \at in�nity" gives rise to new limit solutions that one sees after shifting

the s-parameter in (�).

Finiteness of the number of \bubbles" is guaranteed beause every solution of (�) and

every pseudoholomorphi sphere has energy bounded below by an a priori given quantity.

Leture 5: Floer homology for sympleti �xed points I: Fredholm theory

Gregor Noetzel

In order to give a manifold struture to the spae of \onneting orbits", i.e. the spae

of solutions of the Floer equation whih onnet periodi solutions of the Hamiltonian

system, one has to express these solutions as zeros of a setion of a suitable Banah bundle

over a Banah manifold of maps R � S

1

! M . Computing the di�erential at suh a

solution gives an operator F

S

: W

1;p

! L

p

of the form F

S

� = �

s

� + J

o

�

t

� + S� where

S 2 C

1

(R � S

1

;R

2n�2n

) with limits S

�

(t) = lim

s!�1

S(s; t). In the leture it is shown

that F

S

is a Fredholm operator and the index depends only on the \ends" S

�

. The

spetral ow is introdued and an example of omputation in the ase of Morse homology,

the �nite-dimensional analogue of Floer homology, is given. Then we sketh a proof of

indF

S

= �

z

(S

+

)� �

z

(S

�

)

where �

z

(�) is a suitably de�ned integer, alled Conley-Zehnder-index, whih is hara-

terized axiomatially. The proof onsists of using the axioms to bring F

S

into an easy-

to-ompute form. Finally it is indiated how one de�nes the Conley-Zehnder-index for a

periodi solution.

Leture 6: Floer homology for sympleti �xed points II: Transversality

Alberto Abbondandolo

Let (M;!) be a sympleti manifold, fJ

t

g

t2S

1

an almost omplex struture ompatible

with !, and fX

t

g

t2S

1

sympleti vetor �elds. Our aim is to show that for a generi hoie

of fJ

t

g, the spae M(x

�

; x

+

; X

t

; J

t

) of smooth maps u : R � S

1

!M solving

�

J;X

u = �

s

u+ J

t

(u)(�

t

u�X

t

(u)) = 0; u(s; �)

s!�1

�! x

�

(�);(�)
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is a manifold (where x

�

are nondegenerate 1-periodi solutions of _x = X

t

(x)). The map

�

J;X

an be seen as a smooth setion of a Banah bundle E ! W, and its �berwise

derivative is D

u;J

: W

1;p

(u

�

TM)! L

p

(u

�

TM),

D

u;J

v = r

s

v + J

t

(u)r

t

v +r

v

J

t

(u)�r

v

(J

t

X

t

)(u) :

We know from Leture 5 that it is a Fredholm operator. In order to apply the impliit

funtion theorem, we need D

u;J

to be onto. Introduing a spae J of almost omplex

strutures ompatible with !, we will prove that the set Z = f(u; J) 2 W �J j�

X;J

u = 0g

is a manifold. Then every regular value J of the projetion Z ! J is suh that D

u;J

is onto for every solution u, and the Sard-Smale theorem implies that the set of regular

values is residual.

To prove that Z is a manifold, we see it as the zero-set of the setion

J :W �J ! E ; J(u; J) = �

J;X

u

whose �berwise derivative is DJ(u; J)[v; Y ℄ = D

u;J

v+Y

t

(u)(�

t

u�X

t

(u)). Its kernel splits,

and to prove that it is onto, it is enough to hek that the range is losed. Every � 2

L

q

(u

�

TM) in the annihilator of suh range solves an equation like �

s

�+J(s; t)�

t

�+C� = 0

and satis�es

R R

hY

t

(u)J

t

(u)�

s

u; �idsdt = 0. The nontrivial fats:

� Every zero of a solution w of �

s

w + J(s; t)�

t

w + C(s; t)w = 0, �

s

w 6� 0 is isolated

(Unique ontinuation),

� the set f(s; t) 2 R � S

1

j�

s

u(s; t) 6= 0 ; u(s; t) 62 u(R n fsg; t)g is open and dense,

easily imply that � � 0.

Leture 7: Floer homology for sympleti �xed points III: Gluing

Katrin Wehrheim

We omplete the onstrution of Floer homology for a sympletomorphism � in the mono-

tone ase: The Floer hain omplex is generated by the �xed points of � Æ  

1

(where  

1

is

the time-1-map of the Hamiltonian ow in the Floer equation and the boundary operator

� is de�ned by ounting Floer's onnetion orbits of index 1). By transversality and om-

patness this is well-de�ned for generi (H; J) in the Floer equation. It remains to show

that �

2

= 0 for generi almost omplex strutures J . Equivalently, one has to identify the

broken ow lines of index 1 + 1 with the ends of the spae of Floer's onneting orbits of

index 2. This is ahieved by a gluing onstrution. We give this proof and present some

tehnial foundations of general gluing onstrutions:

� Pregluing onstruts approximate solutions of the Floer equation near broken ow

lines.

� A quantitative impliit funtion theorem is used to �nd exat solutions near approx-

imate solutions of the Floer equation and to obtain a loal uniqueness property.

� The 'Linear gluing theorem' establishes the required Fredholm and surjetivity prop-

erty and uniform estimates for the linearized Floer operator at 'preglued trajetories'.

Leture 8: Continuation of Floer homology

Ralf Gautshi

Let (�; ) be a monotone pair, where � is a sympletomorphism and  a omponent of the

twisted loop spae. If fH

�

t

; J

�

t

g and fH

�

t

; J

�

t

g are regular, there exists an isomorphism

�

��

: HF (�; ; fH

�

t

; J

�

t

g)! HF (�; ; fH

�

t

; J

�

t

g)
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suh that

�

�

Æ �

��

= �

�

and �

��

= id :

The Proof is in 4 steps.

Step I. Constrution of a homomorphism on the hain level

'

��

: CF ('; ; fH

�

t

g) �! CF ('; ; fH

�

t

g)

This involves the analysis of an equation similar to Floer's equation:

�

s

u+ J

s;t

(u)(�

t

u�X

H

s;t

(u)) = 0; u : R

2

!M;

where fH

s;t

; J

s;t

g is a homotopy from fH

�

t

; J

�

t

g to fH

�

t

; J

�

t

g.

Step II. '

��

is a hain map, i.e. '

��

Æ �

�

= �

�

Æ '

��

: Similar to the proof that � Æ � = 0,

this follows from a gluing theorem.

Step III. If fH

0

s;t

; J

0

s;t

g; fH

1

s;t

; J

1

s;t

g are homotopies, there is

T : CF ('; ; fH

�

t

g) �! CF ('; ; fH

�

t

g)

suh that

'

��

1

+ '

��

0

= �

�

T + T�

�

:

The proof requires a parametrized version of the PDE above.

Step IV. That �

�

Æ �

�

= �

�

and �

��

= id is proved by hoosing speial homotopies.

Leture 9: Floer-Cohomology for Weakly-Monotone Manifolds

Daniel Roggenkamp and Anna Wienhard

The onstrution of Floer-ohomology is extended to the lass of weakly-monotone man-

ifolds (i.e. for A 2 �

2

(M) 3 � n � 

1

(A) < 0 implies !(A) � 0): In omparison to the

monotone ase (i.e. !(A) � �

1

(A) = 0 8A 2 �

2

(M) for �xed � � 0) one has to deal

with the following additional problems. To obtain energy bounds on the one- and two-

dimensional omponents of the moduli spaes of onneting orbits, one takes into aount

the trivialization of TM along the ontratible one-periodi orbits of the Hamiltonian ow,

neessary for the de�nition of the Conley-Zehnder-Index, i.e. one works over a suitable

overing of the loop spae. As a onsequene the ohain groups resulting from this on-

strution are in�nite-dimensional vetor spaes over Z

2

, but they are �nite-dimensional

over some Novikov ring.

Imposing stronger, but still generi regularity onditions on the almost omplex struture

and the Hamiltonian funtion, one an exlude bubbling-o� of J-holomorphi spheres with



1

� 0 in the one- and two-dimensional omponents of the moduli spaes of onneting

orbits. Thus, the oboundary operators are well-de�ned.

Leture 10: Ring Struture I: Pairs-of -Pants produt

Dan Fulea

The talk foused on the introdution of the duality struture and produt struture on

the Floer-homology HF ((M;!); F

2

) = HF (id

M

). For the onstrution of the multilinear

operators on Floer homology, O(�) assoiated to topologial surfaes with ylindrial ends,

the following steps were disussed:

1. Expliit de�nition of the model surfae � (with supplementary �xed struture).
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2. Di�erential geometri Banah manifolds involved and assoiated Banah bundles.

These serve as the de�nition domain and value domain of an ellipti di�erential op-

erator.

3. The operator

�

�

J;k

seen as a setion of a Banah manifold with values in a anonial

Banah bundle over it.

4. Solution sets of the non-linear PDE

�

�

J;k

(u) = 0 are �nite dimensional manifolds

beause of the orresponding Fredholm properties of the linearization D

u

:= D

u

�

�

J;k

at a solution u of

�

�

J;k

(u) = 0. Beause of the loal harater of the problem one has

a situation already enountered in previous talks, where analogous

�

�-operators were

studied on � = R � S

1

, the in�nite ylinder.

5. The moduli spaes of solutions with further speial onditions: M(x; y; J; k; : : : ),

where x; y �x the boundary onditions for solutions in terms of 1-periodi solutions

of the Hamiltonian equation, J is a hoie of an almost omplex struture J on M

and k is a suitable extension of the Hamiltonian vetor �eld X

H

(s; t) whih is at �rst

only well-de�ned on the ylindrial ends of �.

6. De�nition of the operation O = O(�; J; : : : ): For �xed x; y de�ne the number (mod

2): < x; y > := #M(x; y; J; : : : ). Set O[x℄ :=

P

y

< x; y > �[y℄:

A partial sketh of the ompatibility of the operation O with the boundary operator � of

the omplex omputing the Floer homology, O� = �O was given.

Leture 11: Ring Struture II: Quantum Cohomology

Urs Frauenfelder

The quantum up produt is a deformation of the ordinary up produt by interation

with J-holomorphi spheres. It an either be de�ned using Gromov-Witten invariants or

Morse-theoretially as a \spiked-sphere" produt.

The spiked-sphere produt is de�ned by ounting spheres with two marked points on the

unstable manifolds of two ritial points and with one marked point on the stable manifold

of a ritial point. These ritial points are assoiated to three auxiliary, generially hosen

Morse funtions.

The spiked sphere produt orresponds to the Pair-of-Pants produt in Floer-homology,

the ring struture introdued in the previous leture.

Leture 12: Lagrangian intersetions

Ursula Hamenst

�

adt

A Lagrangian submanifold L of a (ompat) sympleti manifold (M;!) is monotone if

there exists � > 0 s.th. � = �! on �

2

(M;L), where � is the Maslov homomorphism and !

is integration by !. For two monotone Lagrangian submanifolds L; L

1

� M whih inteset

tranversely and suh that the generator of the Maslov homomorphism is at least 3 it is

possible to onstrut Floer homology. The hain omplex is the free Z

2

-vetor spae over

the intersetion points L\L

1

. Conneting orbits are holomorphi diss of bounded energy

with respet to some �xed ompatible (time dependent) almost omplex struture J and

of Maslov-index 1. A new phenomenon is bubbling of diss whih is prevented for diss of

Maslov-index � 2 by the assumption on the Maslov-homomorphism.

The resulting Floer-homology an be used to show (Oh): If �

t

is a Hamiltonian isotopy

of C P

n

s.th. �

1

RP

n

intersets RP

n

transversely, then #RP

n

\ �

1

RP

n

� n+ 1.
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Leture 13: Oh's spetral sequene and appliations

Otav Cornea

Oh's spetral sequene is de�ned for a monotone Lagrangian L � (M;!) suh that the min-

imal Maslov number (i.e. as above, the positive generator of the Maslov homomorphism)

�

L

� 3. It has the following struture:

E

1

' H

�

(L;Z=2); d

n

: E

�

r

! E

��r�

L

+1

r

and it ollapses to the Floer ohomology of L, HF

�

(L;M). The purpose of this spetral

sequene is to desribe the ontribution of the \long" trajetories to the Floer omplex

assoiated to a pair of Lagrangians of type L

0

= L; L

1

= graph(df) with f a suÆently

C

2

-small Morse funtion on L. (the \long" trajetories are those that are not ompletely

inluded in a Darboux neighbourhood of L). I have then disussed an appliation of this

spetral sequene that is due to Biran:

Theorem (Biran)

If L � C P

n

is a Lagrangian submanifold withH

1

(L;Z) 2-torsion, thenH

�

(L;Z=2) '

H

�

(RP

n

;Z=2) as vetor spaes and, if n is even, as algebras.

Leture 14: Generalized Dehn twists

Thilo Kuessner

Let V be a Lagrangian sphere in a sympleti manifold (M;!). We show that the Dehn

twist � at V an be realized by a sympletomorphism. If dimM = 4 we give an expliit

homotopy to see that �

2

is homotopi to the identity in Di�(M). Under additional assump-

tions (see the following leture) it holds in partiular that �

0

Symp(M;!)! �

0

Di�(M) is

not injetive.

In the seond part of the talk, we showed that this applies to a large number of symple-

ti 4�manifolds: If a K�ahler manifold E

2n+2

�bers over the dis D

2

with singularities of

omplex Morse type, then the �ber (M

2n

; !) ontains a Lagrangian sphere. Conversely,

any Dehn twist at a Lagrangian sphere an be realized as the monodromy of an almost

holomorphi �bration with Morse singularities.

Leture 15: Seidel's exat sequene and sympleti isotopy

Dietmar Salamon

Seidel's exat triangle for a Dehn twist along a Lagrangian 2-sphere L �M

4

has the form

HF (id) �! HF (�

L

)

- .

�� �

Here � denotes the universal Novikov ring. Its elements have the form � =

P

�

"

t

"

; �

"

2

Z

2

where the sum runs over " 2 R and #f" 2 Rj�

"

6= 0; " � g < 1 for all  2 R. The

term �� � replaes the Floer homology group HF (L; L). This exat sequene exists, for

example, whenever 

1

(TM) = �[!℄, � � 0.
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In his thesis Seidel used the exat sequene to prove that, as a module over H

�

(M;�);

the Floer homology of �

L

is isomorphi to the quotient of H

�

(M;�) by the submodule

generated by [pt℄ and [L℄:

HF (�

L

)

�

=

H

�

(M ; �)

span([pt℄; [L℄)

(1)

This implies the following

Theorem (Seidel)

If b

1

(M) = 0; b

2

(M) � 3; 

1

(TM) = �[!℄ for some � � 0; and L � M is a

Lagrangian sphere, then �

L

Æ �

L

is not sympletially isotopi to the identity.

The proof is based on the observation, that, if �

L

Æ �

L

were sympletially isotopi to the

identity then, sine b

1

= 0; �

L

would be Hamiltonian isotopi to �

�1

L

. This would imply

the existene of a nondegenerate pairing on HF (�

L

) ompatible with the module struture

over H

�

(M ; �):

However, the formula (1) implies that suh a pairing annot exist, when b

2

� 3.

Corollary (Seidel)

IfM

4

is a omplete intersetion, other than C P

2

or C P

1

�C P

1

, then there exists

a sympletomorphism ' : M ! M whih is smoothly, but not sympletially,

isotopi to the identity.

Leture 16: Graded Lagrangian submanifolds

Matthias Shwarz

Using an additional struture on Lagrangian submanifolds, a so-alled grading (extending

the notion of oriented Lagrangian Manifolds) Seidel extended the onstrution of Floer

homologyHF (L

1

; L

2

) so that one obtains an absolute grading rather than a purely relative

one as in Floer's original setup. This allows �ner distintions of Hamiltonian isotopy lasses

of embedded Lagrangian submanifolds, in partiular in view of the generalized Dehn twist.

Based on graded Lagrangian manifolds, Seidel has given a new and also more general proof

for the following Theorem:

Theorem(Seidel)

Let (M

2n

; !) be a ompat sympleti manifold with ontat type boundary,

assume n even and ! exat, 2 �

1

(M;!) = 0: IfM ontains an (A

3

)-on�guration

of Lagrangian spheres (l

0

; l

1

; l

2

); l

i

: S

n

,! M then M ontains in�nitely many

sympletially knotted spheres, i.e. whih are pairwise not Lagrangian isotopi,

but whih are pairwise isotopi.

An (A

k

)-on�guration, k � 2 is a olletion of Lagrangian spheres (l

1

; : : : ; l

k

) s.t. for

L

i

= l

i

(S

n

):

1. L

i

\ L

j

= ; for ji� jj � 2,

2. jL

i

\ L

i�1

j = 1,

3. L

i

t L

i�1

interset transversely.

The proof of the above theorem is then based on showing that for an (A

3

)-on�uration

L

(k)

1

:= �

2k

l

2

(L

1

) 6�

!

L

1

;

i.e. not Hamiltonian isotopi, although by Haeiger's version of the h-priniple �

2k

l

2

Æ l

1

� l

1

,

isotopi through embeddings. Here �

l

2

is the generalized Dehn twist along l

2

.
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The new idea is to see that although original Floer homology gives

Z

�

=

HF (L

0

; L

1

)

�

=

HF (L

0

;L

(k)

1

)

�

=

HF (L

1

; L

2

)

�

=

HF (L

(k)

1

; L

2

)

the re�ned version for graded Lagrangians allows to distinguish di�erent degrees in Floer

homology, namely

HF (

~

L

0

;

~

L

(k)

1

) = Z

2

exatly in degree 0;

HF (

~

L

(k)

1

;

~

L

2

) = Z

2

exatly in degree 2k(1� n);

whih implies k = 0 if L

(k)

1

�

!

L

1

.

Edited by Matthias Shwarz
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