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The workshop was organized by L�aszl�o Lov�asz (Redmond) and Hans J�urgen Pr�omel

(Berlin). During the meeting, 37 talks were delivered. They covered a wide range of

aspects within combinatorics, thus providing a forum where both surveys and in-depth

expositions of the most important new results and methods from many combinatorial

areas were given.

In total, 45 scientists participated in this meeting, coming from no less than 11 di�erent

countries. The organizers and participants thank the \Mathematisches Forschungsinstitut

Oberwolfach" for providing a comfortable and inspiring setting for this conference.

In the following we include the abstracts in alphabetical order.
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Abstracts

Interlace Polynomials

Martin Aigner

(joint work with Hein van der Holst)

Arr�atia, Bollob�as and Sorkin introduced an interesting polynomial q(G; x) of a simple graph

G, called the interlace polynomial : i) q(K

n

; x) = x

n

, ii) q(G; x) = q(Gnu; x)+q(G

uv

nv; x)

for uv 2 E, where G

uv

denotes the following graph: Let A;B and C be the sets of vertices

6= u; v adjacent to u but not to v, to v but not to u, to both u and v. Now interchange edges

 ! non{edges between any two di�erent sets from fA;B;Cg, leaving the rest unchanged.

They showed that q(G; x) is independent of the order of removal.

The following results are presented. Let V = [n] = f1; : : : ; ng.

1. q(G; x) =

P

S�[n]

(x�1)

co(A

S

)

where A

S

is the principal S�S{submatrix of the adjacency

matrix A, and co is the corank.

2. Let G be bipartite on color{classes of sizes r and s. Let A be the (shortened) r � s{

adjacency matrix, and M the binary matroid generated by (I

r

jA). Then q(G; x) =

T

M

(x; x) where T

M

is the Tutte polynomial of M .

3. q(G;�1) = (�1)

n

(�2)

co(A+I)

where A is the adjacency{matrix.

4. Let S = fAnX+BX : X � V g be the isotropic system (after Bouchet) corresponding

to G. Then q(G; x) is the Martin polynomial m(S; x).

5. Another interlace polynomial, de�ned by a 3{term recursion, is also discussed.

Voting paradoxes and digraphs realizations

Noga Alon

A family of permutations F forms a realization of a directed graph T = (V;E) if for every

directed edge uv of T , u precedes v in more than half of the permutations. The quality

q(F; T ) of the realization is the minimum, over all directed edges uv of T , of the ratio

(jF (u; v)j � jF (v; u)j)=jF j, where jF (x; y)j is the number of permutations in F in which x

precedes y.The study of this quantity is motivated by questions about voting schemes in

which each individual has a linear ordering of all candidates, and the individual preferences

are combined to decide between any pair of possible candidates by applying the majority

vote.

After a brief discussion of related topics in Social Choice Theory, including Condorcet

Paradox and Arrow Paradox, I will sketch a proof of a recent result that asserts that every

simple digraph T on n vertices, with no anti-parallel edges, admits a realization F with

quality at least c=

p

n for some absolute positive constant c. This is tight up to the constant

factor c.
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Combinatorics and topology of graph properties

Anders Bj

�

orner

Fix node set [n] = f1; 2; : : : ; ng and identify graphs on these nodes with the sets of edges

E � 2

(

[n]

2

)

. A monotone graph property is a family of graphs ([n]; E) closed under deletion

of edges and isomorphisms. Such a property P is therefore in particular an abstract

simplicial complex, a subcomplex of the complete simplex on

�

n

2

�

vertices.

In this talk I gave a survey of the main results known concerning the topology of P , for

properties such as \not i-connected" and \matching". Some motivations for asking such

questions was given, with examples coming from knot invariants, discrete geometry and

algebra. Similar results for directed graphs and hypergraphs were brie
y mentioned.

The number of k-Sat Funktions

Graham Brightwell

(joint work with B�ela Bollob�as and Imre Leader)

A k-Sat function is a Boolean function on n variables that can be represented by a k-Sat

formula. Most k-Sat formulae are equivalent to the identically zero function; our interest

is in determining the asymptotics of the number Sat(k;n) of di�erent k-Sat functions.

Here n!1, and k may be a function of n.

There is a simple lower bound of 2

(

n

k

)

, as this is the number of k-Sat formulae in which

only positive literals occur { it is easy to see that these all give rise to di�erent function.

For k = 2, we show that Sat(k;n) = 2

(

n

2

)

+o(n

2

)

. We conjecture that a similar result holds

whenever k � (1� ")

n=2

, and we can prove that Sat(k;n) � 2

p

�(k+1)

(

n

k

)

in this range.

The case k = 3 is of particular interest : the most we have proved is Sat(3;n) � 2

16

5

(

n

3

)

,

whereas we conjecture Sat(3;n) � 2

(

n

3

)

+o(n

3

)

.

The problem changes character for k � n=2; here it is more natural to think in terms of

an alternative formulation: how many subsets of the n-cube 2

n

can be written as unions

of (n� k)-cubes?

We show that, if r = n� k is a constant, then

Sat(n� r;n) = 2

2

n

�2

r�1

2

log

2

n+o(log

2

n)

:

For r = n�k between about log log logn and log logn, Sat(n�r;n)=2

2

n

grows very rapidly,

approximately as 2

�2

2

2

r

. For r = n�k = �n with � <

1

2

, we show 2

�2

n

� Sat(k;n) � 2

�

0

2

n

,

for some 0 < � = �(�) < �

0

= �

0

(�) < 1.

Combined connectivity orientation and augmentation problems

Andr

�

as Frank

We call an undirected graph G = (V;E) (k; `)-partition-connected (0 � ` � k) if e(P) �

k(t � 1) + ` for every partition P = fV

1

; : : : ; V

t

g of V where e(P) denotes the number of

edges connecting distinct sets V

i

.

When ` = 0, this is equivalent, by a classical theorem of W.T. Tutte, to the existence

of k edge-disjoint spanning trees. When ` = k, this is k-edge connectivity. A digraph

D = (V;E) is called (k; `)-edge connected, if there is a root{node s so that �(X) � k,

�(X) � ` for every subset X � V � s, where �(X) denotes the number of edges entering X
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and �(X) := �(V �X). By Menger's theorem this is equivalent to requiring that there are

k edge-disjoint paths from s to V and ` edge-disjoint paths from v to s for every v 2 V .

In 1980 I proved (in a more general form) that a graph G has a (k; `)-edge-connected

orientation i� G is (k; `)-partition connected.

Theorem (Frank and T. Kir�aly) Given a graph G = (V;E) and degree speci�cation

m : V ! Z

+

, there is a graph H = (V;E) so that d

H

(v) = m(v) 8v 2 V and G + H is

(k; `)-partition-connected i� m(V ) :=

P

m(v) is even,

m(V )=2 � k(t� 1) + `� e

G

(P); for every partition P = fV

1

; : : : ; V

t

g of V; and

m(V � V

i

) � k(t� 1) + `� e

G

(P); for 1 � i � t:

We also developed a min-max formula for the minimum number of new edges whose

addition to G leaves a (k; `)-partition-connected graph. Another result is an extension of

Tutte's theorem for hypergraphs. We call a hypergraph partition-connected if there are at

least t � 1 hypergraphs intersecting at least two members of every partition of V into t

parts. (For graphs, this is equivalent to connectivity.)

Theorem (Frank, T. Kir�aly, and M. Kriesell) A hypergraph can be partitioned into

k spanning partition-connected subhypergraphs if and only if there are at least k(t � 1)

hyperedges intersecting at least two members of every partition of V into t parts.

Corollary If the largest hyperedge of a hypergraph H has q elements and H is (qk)-

edge-connected (i.e., there exist qk hyperedges intersecting X and V �X for every X < V ),

then H can be decomposed into k connected (spanning) subhypergraphs.

A weighted version of Shearer's Entropy Lemma

Ehud Friedgut

Shearer's Lemma: Let H(V;E) be a hypergraph. Let F

1

; : : : F

r

� V such that every vertex

belongs to at least t of the sets F

i

. Let E

i

= fe \ F

i

: e 2 Eg, then

jEj

t

�

r

Y

i=1

jE

i

j:

The weighted version: Let H;F

i

; E

i

be as above. For each i let w

i

: E

i

! R

+

. Also,

assign weights �

j

(F

j

) such that for every v 2 V

X

j:v2F

j

�

j

� 1 :

Then

X

e2E

r

Y

i=1

w

i

(e

i

) �

r

Y

i=1

"

X

f2E

w

i

(f)

1

�

i

#

�

i

Here's a nice consequence. Let X; Y; Z be measure spaces and consider

f : X � Y ! R

g : Y � Z ! R

h : Z �X ! R.

Then

s

Z

f

2

(x; y)dxdy

Z

g

2

(y; z)dydz

Z

h

2

(z; x)dzdx �

Z

f(x; y)g(y; z)h(z; x)dxdydz:
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Perfect matchings in random graphs with minimum degree 1 or 2

Alan Frieze

(joint work with Boris Pittel)

We consider the existence of perfect matchings in random graphs with n vertices, m edges

and minimum degree at least 1 or 2. For minimum degree 1 we extend a result of Bollobas

and Frieze to bipartite graphs. We show that roughly n logn=2 edges are needed to obtain

a perfect matching in a random bipartite graph with n+n vertices, about 1=2 the number

needed in the unconditioned case. We further show that with high probability a random

graph with cn edges, c > 2 and minimum degree at least 2 has a perfect matching. For

non-bipartite graphs we establish the limiting probability that a random graph with cn

edges and minimum degree at least 2 has a perfect matching.

On Cycles in Matroids

Martin Gr

�

otschel

A circuit in a matroid is a minimal dependent subset of the ground set; a cycle is the disjoint

union of circuits. A matroid is binary if and only if every cycle is the symmetric di�erence

of some circiuts. Cycles in binary matroids are a very useful common generalization of

Eulerian subgraphs and of cuts in a graph. In fact, the polyhedral characterizations of the

cut and the Eulerian subgraph polytope carry nicely over to the cycle polytope, i.e., the

convex hull of all incidence vectors of cycles, if the matroid is binary. Nothing, though, is

known about cycle polytopes of non-binary matroids so far.

I will present in this talk complete and nonredundant characterizations of the circuit and

the cycle polytopes of the uniform matroids U(k; n). This result is derived from a slightly

more general characterization of polytopes associated with cardinality homogeneous set

systems.

On phase transition in the hard-core model on Z

d

Jeff Kahn

It is shown that the hard-core model on Z

d

exhibits a phase transition at activities above

some function �(d) which tends to zero as d!1. That is:

Consider the usual nearest neighbor graph on Z

d

, and write E and O for the sets of even

and odd vertices (de�ned in the obvious way). Set

B

N

= B

d

N

= fz 2 Z

d

: kzk

1

� Ng; @B

N

= fz 2 Z

d

: kzk

1

= Ng;

and write I(B

N

) for the collection of independent sets (sets of vertices spanning no edges)

in B

N

. For � > 0 let I be chosen from I(B

N

) with Pr(I = I) / �

jIj

.

Theorem [D.Galvin and J. Kahn] For suitable constant C, if � > Cd

�1=4

log

3=4

d, then

lim

N!1

Pr(0 2 IjI � @B

N

\ E) 6= lim

N!1

Pr(0 2 IjI � @B

N

\ O):

Thus, roughly speaking, the in
uence of the boundary on behavior at the origin persists

as the boundary recedes.

5



Reconstructing a Simple Polytope from its Graph

Volker Kaibel

(joint work with Michael Joswig and Friederike K�orner)

Blind and Mani proved in 1987 that every isomorphism of the (abstract) graphs of two

simple (convex) polytopes can be extended to an isomorphism of their face lattices. In

particular, the entire combinatorial structure of a simple polytope is determined by its

graph. Kalai (1988) found a short and elegant proof of that result, from which an algorithm

can be devised that computes the vertex-facet incidences (from which the face lattice can

be computed in polynomial time) of a simple polytope from its graph. However, the

complexity status of the latter problem remained unclear. We describe a strongly dual

pair (A), (B) of combinatorial optimization problems on the graph G of a simple polytope

P with the property that the optimal solution of (A) is the set of 2-faces of P (from which

one can compute the vertex-facet incidences in polynomial time) and the optimal solutions

of (B) are the \AOF-orientations" of G (which are those acyclic orientations whose linear

extensions correspond to the shelling orders of the boundary complex of the dual polytope

of P). Thus, we obtain good characterizations of both the vertex-facet incidences of a

simple polytope P and for its AOF-orientations in terms of the graph of P. This might

eventually lead to a polynomial time (primal-dual) algorithm to compute the vertex-facet

incidences of a simple polytope from its graph.

A coding problem for pairs of sets

Gyula O.H. Katona

Let X be an n{element �nite set, 0 < k < n=2 an integer. Suppose that (A

1

; B

1

) and

(A

2

; B

2

) are pairs of disjoint k-element subsets of X (that is, jA

1

j = jB

1

j = jA

2

j = jB

2

j =

k; A

1

\B

1

= ;; A

2

\B

2

= ;). De�ne the distance of these pairs by d((A

1

; B

1

); (A

2

; B

2

)) =

minfjA

1

�A

2

j+ jB

1

�B

2

j; jA

1

�B

2

j+ jB

1

�A

2

jg. One can see that this is really a distance

on the space of such pairs. C(n; k; d) denotes the maximum number of pairs (A;B) with

pairwise di�erence at least d. The motivation comes from database theory. The lower and

upper estimates use Hamiltonian type theorems, traditional code constructions and R�odl's

method for packing.

Sperner type theorems and Sperner capacity: new results via intertwining of

sequences

J

�

anos K

�

orner

(joint work with A. Monti)

Sequence intertwining is a construction method introduced by Gargano, K�orner and Vac-

caro (Graphs and Combinatorics, 1993) to build a construction achieving separation for

any two graphs based on constructions achieving the same for the two graphs individually,

and this without loss in the exponential asymptotics. This technique is not functioning for

corresponding problems involving hypergraphs.

A signi�cant exception to this is the proof of a theorem (with Angelo Monti, JCT to

appear) presented here. If t

�

(p) is the asymptotic exponent of the maximum cardinality of

a strong � system in the sense of Erd}os-Szemer�edi (JCT, 1978), and t

6

is the asymptotic
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exponent of the maximum cardinality of a set of bipartitions of an n-set such that the

roughest common re�nement of any 3 of them has at least 6 atoms, then we show that

t

6

= min

p2[0;1]

(t

�

(p); t

�

(1� p))

This implies that t

6

= 1 i� t

�

= max

p

t

�

(p) = 1.

A further new application of the sequence intertwining technique is to show that the

minmax theorem of Gargano, K�orner and Vaccaro (JCT-A, 1994) for the Sperner capacity

of a family of digraphs holds for graph separation in the sense in which two sequences are

G-separated if x 2 X

n

; y 2 X

n

, and for the graph G with vertex set X

2

there exists an

index i � n� 1 such that fx

i

x

i+1

; y

i

y

i+1

g 2 E(G).

Coloring uniform hypergraphs with few colors

Alexandr Kostochka

Let m(r; k) (respectively m

�

(r; k)) denote the minimum number of edges in an r-uniform

(respectively, simple r-uniform) hypergraph which is not k-colorable. The study of be-

haviour of m(r; k) and m

�

(r; k) was originated by P. Erd}os about 40 years ago and yielded

some striking results. The aim of the talk was to survey the state of art of the topic and

present the following result:

Theorem. For every k there are c = c(k) and r

0

= r

0

(k) s.t. for every r � r

0

m(r; 2

k

) �

�

2

k

�

r

� c �

�

r

ln r

�

k

k+1

:

Induced subdivisions in K

s;s

-free graphs

Daniela K

�

uhn

(joint work with Deryk Osthus)

A classical theorem of Mader states that for every graph H there exists d = d(H) such that

every graph G of average degree at least d contains a subdivison of H. (A subdivision of

a graph H is a graph obtained by replacing the edges of H with internally disjoint paths.)

Obviously, the result becomes false if we ask for an induced subdivision of H. However,

this stronger assertion does hold if G is `locally sparse' in the sense that it does not contain

a complete bipartite graph K

s;s

:

Theorem. For every graph H and every s there exists d = d(H; s) such that every graph G

of average degree at least d contains either a K

s;s

as a subgraph or an induced subdivision

of H.

Semide�nite relaxations via sums of squares of polynomials

Monique Laurent

Let K = fx 2 R

n

j g

`

(x) � 0 ` = 1 : : :mg be a semi-algebraic set where g

`

are polynomials

in x = (x

1

; : : : ; x

n

) of degree 1 and P = conv(K \ f0; 1g

n

). Lasserre (2000) proposed the

following method for approximating P via semide�nite relaxation.

Given y 2 R

P

t

(V )

a vector indexed by subsets of V = f1; : : : ; ng of size at most t, its

moment matrix of order t is de�ned as

M

t

(y) := (y(I [ J))

I;J�V; jIj;jJj�t

:
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Given two vectors g; y indexed by subsets of V , g � y is the vector with entries g � y(I) :=

P

H

g

H

y(H [ I).

Let Q

t

(K) denote the projection on R

V

of set of vectors y 2 R

P

t

(V )

for which M

t

(y) � 0,

M

t�1

(g

`

� y) � y0 for all `. Then, P � Q

n+1

(K) � � � � � Q

1

(K) � K and there is �nite

convergence P = Q

n+1

(K). The original proof of convergence of Lasserre is based on a

result of real algebraic geometry [under some technical assumption on K, every polynomial

positive on K can be decomposed as p

0

+

P

`

p

`

g

`

where p

0

; p

`

are sums of squares of

polynomials] due to Putinar (1993). Laurent (2001) gives a simple direct combinatorial

proof. Moreover, she shows that the Lasserre hierarchy re�nes the hierarchy obtained via

the Lov�asz-Schrijver iterative method (1991). Precisely,

Q

t

(U) � N

t�1

+

(U) for t � 1 :

Applications to the maximum stable set problem and the maximum cut problems are

presented. In both cases the �rst order Lasserre relaxation (t = 1) coincides with the basic

semide�nite relaxation of the problem (the theta body TH(G) in the case of stable sets).

A geometric result about moment matrices in the �1-variable setting is proved.

Theorem. Let

M

t

(y) := (y(I [ J))

I;J�V; jIj;jJj�t; jIj;jJj�t mod 2

:

If Y � 0 and rank M

1

(y) � t then Y is a convex combination of 2

t�1

cut matrices.

Consistency for Partition Regular Equations

Imre Leader

(joint work with Neil Hindman and Dona Strauss)

A matrix A with rational entries is called partition regular if, whenever N is �nitely

coloured, there is an (integer) vector x with A

x

monochromatic. In the �nite case, the

partition regular matrics were characterized by Rado, and as a consequence we have con-

sistency : if A and B are partition regular then so is

�

A 0

0B

�

.

In the in�nite case, consistency is known to fail. But what about consistency for the

most trivial systems, namely those just following from Ramsey's theorem { for example, we

know that whenever N is �nitely coloured there are distinct x

1

; x

2

: : : with fx

i

+x

j

: i 6= jg

monochromatic and distinct y

1

; y

2

: : : with fy

i

+ 2y

j

: i < jg monochromatic. Are these

consistent (i.e., can we solve both in the same colour class)? Here we give a positive answer.

Surprisingly, the proof uses a lot of work in the Stone-

�

Cech compacti�cation �N.

Euclidian distortion in graphs of high girth

Nati Linial

Let (X; d) be a �nite metric space. We denote by c

2

(X) the least metric distortion (Lip-

schitz constant) with which (X; d) can be embedded in `

2

. It is known (Bourgain) that

c

2

(X) � O(logn) for every n-point metric X and this bound is tight (joint work with

London and Rabinovich) and is attained for the metric of constant degree expander. It is

also known that c

2

(X) is poly-time computable. It was conjectured that if (X; d) is the

metric of a graph of girth g where all vertex degrees are � 3, then c

2

(X) � 
(g). In this

talk I survey recent work with A. Magen and A. Naor where we show c

2

(X) � 
(

p

g) for

regular graphs. The exact bound is still unknown. It is also not known if any lower bound

on `

1

-embeddings exists which tends to 1 with g.
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Ramsey properties of families of graphs

Tomasz  Luczak

(joint work with R.L. Graham, V. R�odl, A. Ruci�nski, and S. Urba�nski.)

For two families of graphs G

1

; : : : ; G

r

and H

1

; : : : ; H

s

we write (G

1

; : : : ; G

r

)! (H

1

; : : : ; H

s

)

if for any graph F such that F ! (G

1

; : : : ; G

r

) we have also F ! (H

1

; : : : ; H

s

). We survey

the known results on the relation (G

1

; : : : ; G

r

) ! (H

1

; : : : ; H

s

) and its vertex-partition

analog, and state some of many open questions concerning them.

Unique-sink orientations of cubes

Ji

�

r

�

� Matou

�

sek

The n-cube is considered as a graph (with vertex set f0; 1g

n

). An unique-sink orientation

(USO) is an orientation of the edges of the n-cube such that every face of the cube has

exactly one sink (directed cycles are allowed). Such orientations arise from several sources,

such as linear programs (considering a generic linear function on a polytope isomorphic

to the cube), certain linear complementarity problems, and certain convex programs. Al-

gorithms have been studied for �nding the global sink in a USO; the USO is speci�ed by

an oracle that, given a vertex, returns the orientation of the edges incident to that vertex.

Upper and lower bounds for the complexity of such algorithms have recently been given by

Welzl, Szab�o, and Schurr; improving them signi�cantly is the main challenge. The speaker

has proved that the number of USO is 2

�(2

n

logn)

. The number of acyclic USO is easily seen

to be between 2


(2

n

)

and 2

O(2

n

log n)

; it would be nice to �nd better bounds.

Some new results on hypergraph Tur�an number

Dhruv Mubayi

We obtain new bounds for the Tur�an numbers of several classes of hypergraphs, both

degenerate and nondegenerate. The main result is summarized below.

Let t; n be integers with n � 3t. Let F be any family of at least t

4

�

n

2

�

triples from

an n-element set X. Then there exist 2t triples A

1

; B

1

; : : : A

t

; B

t

and distinct elements

a; b 2 X such that A

i

\ A

j

= fag and B

i

\ B

j

= fbg, for all i 6= j, and

A

i

\ B

j

=

�

A

i

� fag = B

j

� fbg for i = j

; for i 6= j

When t = 2, the upper bound t

4

�

n

2

�

is improved to 3

�

n

2

�

+ 6n. This improves upon the

previous best known bound of 3:5

�

n

2

�

due to F�uredi.

9



Bounds for graphs

Jaroslav Ne

�

set

�

ril

The lecture covered the solution of two problems which were posed at the last Oberwolfach

meeting on combinatorics (2000):

1. Antisymmetric 
ows

Thm. Every orientation of a 3-connected graph G has a Z

6

3

�Z

6

6

-
ow f which satis�es

f(e) 6= �f(e

0

)

for any edges e; e

0

2 E(G).

This solves a problem of Ne�set�ril and Raspaud and extends a result of Seymour

and DeVos and Johnson (who �rst established a universal bound). It is due to DeVos,

Ne�set�ril and Raspaud.

2. K

k

-free bounds

The coloring order C (induced by graphs and homomorphisms) has the following

property (established jointly with P. Orsona Mendes):

Thm. For any minor closed class K;K 6= all graphs and any k � 3 there exists a

graph H(K; k) = H with the following property:

1. K

k

6! H

2. For any G 2 K; K

k

6! G implies G! H.

Topological minors in graphs of large girth

Deryk Osthus

(joint work with Daniela K�uhn)

Theorem Every graph of minimum degree at least r and girth at least 186 contains a

subdivision of K

r+1

and for large r a girth of at least 15 su�ces.

This improves a result of Mader, who gave a bound on the necessary girth which is linear

in r. It also implies that the conjecture of Haj�os that every graph of chromatic number at

least r contains a subdivision of K

r

(which is false in general) is true for graphs of girth at

least 186 (or 15 if r is large). For ordinary minors we obtained the following result:

Theorem Every K

s;s

-free graph of average degree at least r contains a K

t

-minor for all

t � r

1+

1

2(s�1)

+o(1)

.

This implies the conjecture of Hadwiger for K

s;s

-free graphs whose chromatic number is

su�ciently large compared to s.

Remarks on the construction of Hadamard matrices

Alexander Pott

(joint work with U.T. Arasu and Y.Q. Chen)

A Hadamard matrix H of order n is a �1-matrix of size n such that H �H

t

= n � I

n

. It is

an open question whether they exist for all n divisible by 4. There are many constructions

known. However, they are mostly limited in the sense that it can be shown that they

are not powerful enough to construct Hadamard matrices for all n � 0 mod 4. In the

talk I suggest a method to construct H-matrices which seems to be rather powerful. The

matrices are cocyclically developped; the idea to use such matrices goes back to Ito and

DeLauney/Horadam. We know of no single value n � 0 mod 4 for which such matrices

10



cannot exist. But, on the other hand, there are still many integers n for which we do not

know whether a construction works.

I also discuss a similar approach to conference matrices. These are matrices in f0;+1;�1g

n

such that C � C

t

= (n � 1)I

n

. It is known that no circulant conference matrices can

exist. Negacirculant matrices are known if n = p

f

+ 1 (p prime). It has sometimes been

conjectured that no other sizes of group developped conference matrices can exist. It is

therefore surprising that we can �nd cocyclic conference matrices of size 2(p

f

+1) if p

f

� 3

mod 4).

S-paths

Alexander Schrijver

We present a short proof of Mader's theorem on the maximum number of disjoint S-paths

in a graph. The method is based on an exchange property of S-paths, which also leads to

a matroid. Moreover, a new derivation is given of the disjoint S-path problem from the

matching problem.

Independent sets, lattice gas and the Lov�asz Local Lemma

Alexander Scott

(joint work with Alan Sokal)

Let G be a graph with vertex set X. We say that G is a dependency graph for a collection

of events (A

x

)x 2 X (in some probability space) if for each x 2 X and Y � Xn(�(x)[fxg)

the event A

x

is independent of the �-algebra �(A

y

: y 2 Y ). Given such a collection of

events, with probabilities (p

x

)

x2X

, what is the largest real r such that we can guarantee

P(

V

x2X

A

x

) > 0? In particular, for what (p

x

)

x2X

can we guarantee r > 0? An important

tool for dealing with this setup is the Lov�asz Local Lemma, which gives a qualitative lower

bound on P(

V

x2X

A

x

).

The partition function of the hard-care lattice gas, with variables (z

x

)

x2X

, is the poly-

nomial

Z

G

=

X

I independent

Y

x2I

z

x

:

Mathematical physicists have devoted signi�cant e�ort to �nding complex polydiscs in

which the partition function Z

G

is nonvanishing.

This talk discusses the close relationship between these problems: in particular, (p

x

)

x2X

guarantees P(

V

x

A

x

) > 0 if and only if the partition function Z

G

is nonvanishing in the

polydisc (jz

x

j � p

x

: x 2 X). Furthermore, the Loc�asz Local Lemma turns out to be

equivalent to a result found twenty years later by the mathematical physicist Dobrushin.

Finally, a softened version of Dobrushin's argument translates back into the probabilistic

context to give a softened version of the Lov�asz Local Lemma.
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On the number of L-free graphs

Mikl

�

os Simonovits

(joint work with J�osef Balogh and B�ela Bollob�as)

Given a family L of graphs, let

p = min

L2L

�(L)� 1

and P(n;L) be the set of L-free graphs on f1; : : : ; ng (labelled). Extending, and sharpening

the Erd}os-Frankl-R�odl theorem we prove that

jP(n;L)j � 2

1

2

(1�

1

p

)n

2

+O(n

2�


)

where we also characterize the best 
 in this estimate, in terms of the "decomposition

class" of L, by connecting this problem to the extremal problem ex(n;L): the error terms

in these two cases basically are the same.

Frequency of subgraphs in (G

n

)

Vera T. S

�

os

We say that a graph L (respectively induced L) is p-uniformly distributed in (G

n

), if the

number of copies (respectively induced copies) of L in every S � V (G

n

) is

p

`

jSj

v

+ o(n

v

)

respectively

p

`

(1� p)

(

v

2

)

�e

jSj

v

+ o(n

v

)

(where v = jV (L)j, e = jE(L)j).

We proved with M. Simonovits, that for an arbitrary L

0

6= K if L

0

is p-uniformly

distributed in (G

n

), then this implies that every L 6= K is p-uniformly distributed.

For induced L the analogous statement does not hold for every L

0

. E.g., L

0

= P

3

(or

L

0

= P

3

) is a counterexample. For every p there is a (G

n

) s.t. P

3

is p-uniformly distributed

in (G

n

) but even edges (L = K

2

) are not p-uniformly distributed in (G

n

). (We determine

all graph sequences (G

n

) with that property.)

We proved that if L

0

is regular and induced L

0

is p-uniformly distributed in (G

n

), then

this implies that every induced L is p-uniformly distributed in (G

n

). We conjecture that

L

0

= P

3

and L

0

= P

3

are the only counterexamples.

K

4

-free subgraphs of random graphs revisited

Angelika Steger

(joint work with S. Gerke, H.J. Pr�omel, T. Schickinger, and A. Taraz)

In Combinatorica 17(2), 1997, Kohayakawa,  Luczak and R�odl state a conjecture which

would permit the application of Szemer�edi's regularity lemma for the estimation of ex(G

n;p

,

G), where ex(G

n;p

, G) denotes the maximum number of edges in a G-free subgraph of a

random graph G

n;p

. In this talk we outline a proof of their conjecture for G = K

4

, thereby

providing a comparatively short proof for the original result of Kohayakawa,  Luczak and

R�odl .
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On Ramsey numbers of sparse graphs

Benny Sudakov

(joint work with Sasha Kostochka)

The Ramsey number of a graph G, denoted by r(G) is the minimum integer N such that

in any 2-coloring of the edges of the complete graph K

N

on N vertices, there is always a

monochromatic copy of G. In 1975 Burr and Erd}os posed a problem of estimating Ramsey

numbers of d-degenerate graphs. They conjectured that for all d there exist a constant

c(d) such that all graphs G of order n in which every subgraph has minimum degree at

most d satisfy

r(G) � c(d)n :

This conjecture attracted a lot of attention in the last two decades and is still open despite

attempts by various researchers to attack it.

In this talk we prove the following slightly weaker result. Let d be a �xed integer and G

be a d-degenerate graph of order n. Then the Ramsey number of G is bounded by

r(G) � n

1+o(1)

where o(1)! 0 as n!1.

On the density of sequences of integers the sum of no two of which is a square

Endre Szemer

�

edi

(joint work with Ayman Khalfalah and Sachin Lodha)

Erd}os and Silverman proved the problem of determining the maximal density attainable

by a set S = fs

i

g of positive integers having the following property NS: s

i

+ s

j

is not a

perfect square whenever i 6= j.

Massias discovered that the set S

1

consisting of all x � 1 (mod 4) together with x �

14; 16; 30 (mod 32) has property NS and density

11

32

. Lagasios, Odlyzko, Shearer proved

that if the set S is the union of arithmetical progressions than Massias's example is the

best. We prove it for general sets S.

Lattice gases and the number of partial orders

Anusch Taraz

(joint work with H.J. Pr�omel and A. Steger)

Denote by P

n;d

the set of labelled partial orders on n points with bdn

2

c comparable pairs.

De�ne the function c(d) by letting jP

n;d

j = 2

c(d)n

2

+o(n

2

)

. The question of determining c(d)

was raised by Deepak Dhar, who suggested a model for a lattice gas where the system

is described by a partial order, the energy be proportional to the number of comparable

pairs, and the entropy given by c(d).

In a series of papers (around 1980), Dhar, as well as Kleitman and Rothschild, determined

c(d) in the range 0 < d �

3

10

. We complete the picture for the whole range 0 < d �

1

2

and

show that in�nitely many phase transitions in the structure of a "typical" partial order

occur.
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On the Strong Perfect Graph Conjecture

Robin Thomas

A hole in a graph is an induced cycle of length at least four. An antihole in a graph is an

induced subgraph isomorphic to the complement of a cycle of length at least four. A graph

is Berge if it has no odd hole and no odd antihole. The Strong Perfect Graph Conjecture

of Berge from 1960 asserts that every Berge graph is perfect (that is, �(H) = !(H) for

every induced subgraph H).

Neil Robertson, Paul Seymour and I have been working on the SPGC for the past two

years. In my talk I have given an outline of our strategy for attacking the SPGC. I have

also mentioned the following:

Theorem: Let G be a graph with an odd hole and no K

4

subgraph. Then G is 4-colorable.

This is special case of a conjecture of Gyarfas, and the proof method may give a clue for

the general case.

Extremal Properties of Graph Minors

Andrew Thomason

Mader de�ned, and showed the existence of, the function c(t) = inff c : e(G) � cjGj im-

plies G � K

t

g, where G � H means that H is a subcontraction, or minor, of G. Kostochka

proved that c(t) has order of magnitude t

p

log t for large t, with random graphs provid-

ing the best known lower bounds. Recently the speaker found the asymptotic expression

c(t) � (
 + o(1))t

p

log t, the constant 
 being exactly that given by the random examples.

It has also been shown that any graph of positive density contains complete minors at least

as large as those found in a random graph of the same order and density (provided the

connectivity of the graph is not vanishingly small).

S�os asked whether the only examples attaining equality are pseudo-random graphs; that

is, if a graph has no minor larger than that of a random graph of the same order and

density, then it is pseudo-random. We describe an argument of Myers that gives a positive

answer to this question.

Myers and I have also considered, for a general graph H, the extremal function c(jHj) =

inff c : e(G) � cjGj implies G � Hg, and ask whether there is some simple property of H

that determines the order of magnitude of c(H) (in the same way that the chromatic number

determines the ordinary extremal function). It is shown that c(K

�t;(1��)t

) � c(K

�t

+

K

(1��)t

) �

p

4�(1� �)c(K

t

), and the extremal function for all complete multipartite

graphs is found. In general it seems that c(H) � c(jHj) provided H is \nowhere sparse"

(in a precise sense).

Finally we describe a relationship between minors and linking. Using arguments of Mader

and Thomassen it is shown that graphs of connectivity only 2k are k-linked provided the

girth is at least 133. Elsewhere at this meeting, K�uhn and Osthus describe their recent

results which are much better than this.
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Classi�cation of locally 2-connected compact metric spaces

Carsten Thomassen

A connected metric space M is called locally 2-connected if, for every point x in M and

every open set U containing x, there is an open set U

0

contained in U and containing x

such that both U

0

and U

0

�x are connected. If we impose the additional conditions that M

is compact and contains no in�nite complete graph, then surprisingly, M can be embedded

in a 2-dimensional compact surface S. Moreover, S can be chosen such that M and S

contain precisely the same �nite graphs. One application is a complete solution of the

k-arc-problem (the problem of �nding k pairwise disjoint simple arcs with prescribed ends)

for M and each �xed natural number k. The �rst step in the proof of the classi�cation

result is the following generalization of Kuratowski's theorem: A 2-connected, compact,

locally connected topological space M can be embedded in the 2-sphere if and only if M

is metrizable and contains none of the Kuratowski graphs K

5

or K

3;3

.

Unavoidable Cycles in Graphs

Jacques Verstraete

A set S of integers is called unavoidable if there exists a constant c such that every graph

of average degree at least c contains a cycle of length in S. We prove an old conjecture

of Erd}os, stating that there exists an unavoidable set of density zero proving the following

Theorem:

Theorem. There exists an unavoidable set S such that jS \ f1; 2; : : : ; ngj = o(n

1�1=100

)

as n!1.

As a consequence, we prove another conjecture of Erd}os stating that the number of sets

C(G) = f` : there exists a cycle of length ` in Gg over graphs G of order n is o(2

n

).

The Complexity of some Polynomial Invariants

Dominic Welsh

I shall present results on the computational complexity of computing invariants of three

classical polynomials namely the chromatic, 
ow and reliability polynomials of a graph.

Each of these is intimately related to the partition function of the Ising-Potts partition

function of statistical physics and all are specialisations of the Tutte polynomial. In 1990,

with F. Jaeger and D.L. Vertigan, we showed that unless #P=P (which is most unlikely)

there is no polynomial time evaluation algorithm except at 8 special points and along one

special curve of the plane. In this talk I shall concentrate on the complexity of computing

various coe�cients of these polynomials and show that unless NP=RP, these coe�cients do

not even have good randomised approximation schemes. We also introduce a quasiorder

induced by approximation reducibility. Our nonapproximability results are obtained by

showing that various predicates based on the coe�cients are NP hard. It also turns out

that there is a signi�cant di�erence between the case of graphs where, using Robertson-

Seymour theory many of these predicates can be shown to be in P and nongraphic but

representable matroids where we show that in many cases no approximation scheme can

exist unless NP=RP.

(This work is joint with James Oxley and will be appearing in Combinatorics, Probability

and Computing 2002.)
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Combinatorial Proofs for some Kneser-Type Coloring Theorems

G

�

unter M. Ziegler

A general Kneser hypergraph KG

r

s

(S) may be de�ned by all the r-tuples of sets from

a set system S � 2

[n]

such that no element is contained in more than s of the sets. We

give a lower bound for the chromatic numbers of such hypergraphs in terms of an \s-

disjoint r-colorability defect." Our bound is sharp for many (but not all!) instances of the

type S =

�

[n]

k

�

, and thus implies results/theorems of Lov

�

asz (the Kneser conjecture),

Alon-Frankl-Lov

�

asz, Dolnikov, Kriz and Sarkaria.

Furthermore, we sketch an entirely combinatorial proof of our result, using a Z

p

-analogue

of the octahedral Tucker lemma, as well as Lefschetz numbers of self-maps of chain

complexes.

(Both our theorem, and the combinatorial proof, extend and were inspired by work

(and lectures) of J. Matou

�

sek, speci�cally his simple proof of Kriz' theorem, and his

combinatorial proof of the Kneser conjecture.)

Edited by Anusch Taraz
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