
Mathematisches Forschungsinstitut Oberwolfach

Report No. 03 / 2002

Set Theory

January 20th { January 26th, 2002

The meeting was organized by Sy Friedman (Vienna), Ronald Jensen (Berlin), Men-

achem Magidor (Jerusalem), and Hugh Woodin (Berkeley). Talks were given on current

research in various areas, including forcing techniques, applications of descriptive set the-

ory, set theory of the continuum, core model theory, and determinacy. In addition there

were many fruitful and stimulating interchanges outside the talks.

We wish to thank the sta� of the Mathematisches Forschungsinstitute Oberwolfach for

the care and dedication which, in no small measure, contributed to the success of the

meeting.
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Abstracts

Cardinalities of boldface point-classes

Alessandro Andretta, Torino, Italy

(joint work with Greg Hjorth)

We show that, assuming AD + V = L(R), there are more sets of the form F n G where

F;G 2 F

�

, than there are F

�

sets. More precisely, letting Di�(�; �

0

2

) be the collection of

all �-di�erences of �

0

2

sets, we have:

Theorem. Assume AD+ V = L(R) and 1 � � < � < !

1

. Then

jDi�(�; �

0

2

)j < jDi�(�; �

0

2

)j:

Indestructibility and Strong Compactness

Arthur W. Apter, New York, USA

Starting from a ground model satisfying \ZFC+ � is supercompact", we describe how to

force and construct a model in which � is both the least strongly compact and least strong

cardinal and in which � in addition satis�es certain indestructibility properties. If our

ground model contains no Mahlo cardinals above �, then in the generic extension, �'s strong

compactness will be indestructible under �-directed closed forcing, and �'s strongness will

be indestructible under �-strategically closed forcing. If we drop the restriction that our

ground model contains no Mahlo cardinals above �, then in the generic extension, �'s strong

compactness will be indestructible under �-directed closed forcing which is in addition �-

strategically closed and �'s strongness will be indestructible under �-strategically closed

forcing.

Weakly Dominating Families

Andreas Blass, Michigan, USA

We use the customary symbols for cardinal characterisitics of the continuum: d = domi-

nating number, b = unbounding number, s = splitting number, r = unsplitting (=re�ning)

number, g = groupwise density number, u = minimum character of nontrivial ultra�lters

on !, and r

�

= minimum number of in�nite subsets of ! such that no countably many

sets split them all. Let ! % ! be the set of non-decreasing maps !! !. Call D � ! % !

k-dominating if every f 2 ! % ! is eventually majorized by the (pointwise) maximum

of k members of D. The continuum hypothesis implies that the notions of k-dominating

are di�erent for all k; in contrast, u < g implies that they are the same for all k � 2. If

a dominating family is partitioned into < g pieces, some piece is 2-domination. (Various

other results about k-dominating families were brie
y mentioned in the talk.)

Most of the following is from the (forthcoming) PhD. thesis of my student, Jason Aubrey.

Call D � ! % ! pseudo-dominating ( dom) if

8f 2 ! % ! 9 a partition � of ! into �nite intervals

8 2� colorings of blocks of �

9g 2 D On one of the colors, g eventually majorizes f:
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k �  dom is similar, using maxfg

1

; : : : ; g

k

g in place of g. If a dominating family is

partitioned into < s pieces, one of the pieces is 2 �  dom. (There need not be a k-

dominating piece for any k.) If D is k �  dom but not l-dom for any l, then there

is a Borel map (! % !) ! P! sending D to a subbase for a nontrivial ultra�lter, in

particular, u � jDj. (The last two results lead to a new proof of Mildenberger's theorem

that s � cf(d).) If R � [!]

!

is unsplittable, then f next (R;�) : R 2 Rg is 2 �  dom,

where next(R,n) means the smallest number � n that is in R. Consequences include: If

r < d then r = u = r

�

.

Recent Iteration Techniques

J

�

org Brendle, Kobe, Japan

Most iterated forcing constructions adjoining real numbers are { like e.g. �nite support

iterations of ccc forcing or countable support iteration of proper forcing { of the form

hP

�

;

_

Q

�

j � < �i where P

�

is the initial segment of the iteration while

_

Q

�

is the iterand

with which we force at stage � after having forced with P

�

. Typical features of such an

iteration include

(1) the initial segments are produced recursively (i.e. the underlying order structure is

well founded)

(2) the initial segments are linearly ordered

(3) iterands are handed down simultaneously with the initial segments (along the same

structure).

While (1) seems to be crucial in many situations (e.g. when it comes to adjoining dom-

inating reals, by a theorem of Hjorth), there is no apriori necessity for (2) and (3), and

indeed, techniques which do not satisfy these properties have been considered recently, in

particular

(A) iterations along templates (Shelah)

(B) shattered iterations.

We focused on the second technique (which provides a way to adjoin many random reals

together with other kinds of reals) and gave a brief outline of the consistency proof of

\� = cov (M) and � = cov (N )" where @

2

� � < � are regular cardinals and cov (M)

( cov (N ), resp.) denotes the size of the smallest covering of the real line by meager

(null, resp.) sets. The latter consistency proof involves the amalgamated limit, a new limit

construction for systems of complete Boolean algebras satisfying some additional properties

which encompasses both the amalgamation (of two algebras over a common subalgebra)

and the direct limit.

Classi�cation problems in continua theory

Riccardo Camerlo, Torino, Italy

The study of the complexity of some classes of continua is undertaken using descriptive

set theory. In particular:

(-) For a graph P , P -like continua form a G

�

set;

(-) For a dendrite D with �nitely many branch points, the homeomorphism class [D] is

�

0

3

-complete;

(-) The homeomorphism class of the Warsaw circle is D

2

(�

0

3

)-hard;

(-) The class of graphs and the class of trees are both D

2

(�

0

3

)-complete.
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Canonical functions, non-regular ultra�lers and Ulam's problem on !

1

Oliver Deiser, Munich, Germany

(joint work with Dieter Donder)

We show the following theorems; using Jensen's core model K

�

0

for measures of order

zero:

(D1) �

con

ILM = \there is an inaccessible limit of measurables"

(UP ); (NR) �

con

SLM = \there is an inaccessible stationary limit of measurables".

Here A �

con

B means that Con (ZFC + A) implies Con (ZFC + B). (D1), (UP ), (NR)

are the following combinatorial principles on !

1

:

(D1) = \every function f : !

1

! !

1

is dominated by a canonical function h

�

;

� < !

2

; on a club subset of !

1

"

(UP ) = Ulam Property = \there is a sequence hF

�

j � < !

1

i of !

1

-complete

uniform �lters on !

1

s.t. each subset of !

1

is measurable w.r.t. one F

�

(i.e. P(!

1

) =

S

�<!

1

F

�

[ I(F

�

), where I(F ) denotes the dual ideal

of a �lter F .)"

(NR) = \there is a non-regular ultra�lter on !

1

, i.e. there is a uniform

ultra�lter U on !

1

s.t. for every hX

�

j � < !

1

i � U there is an in�nite

A � !

2

s.t.

T

�2A

X

�

6= ;."

Remark: Actually (D1) =

con

ILM holds; Larson and Shelah have shown recently that

ILM �

con

(D1) + (CH).

Wild colourings of graphs

Mirna Dzamonja, Norwich, UK

(joint work with Peter Komjath, Charles Morgan)

I presented a theorem from a joint paper with Peter Komjath and Charles Morgan, where

we consider the following situation for � singular with cf(�) = @

0

:

Suppose X is a �

+

-chromatic graph on �

+

and ask the question: Is there an edge

colouring f : E(X) �! �

+

such that for every vertex colouring g : X �! �, there is a

g-colour class on which f assumes every value?

We proved that it is consistent, modulo the consistency of a supercompact cardinal, that

such a colouring f exists for every such graph X, for some strong limit singular � with

cf(�) = @

0

. In this model 2

�

can be as large as wished.

This work continues the similar results of Hajnal and Komjath for � regular, and uses

an iteration technique by the author and Shelah.
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The Club Guessing Filter

Matt Foreman, Irvine, USA

I discuss results surrounding club guessing �lters. Ishiu showed that these can be precip-

itous and in L the �lter coincides with the closed unbounded �lter. In joint work with

Komjath, we show how to force a sequence where the club guessing �lter is the closed

unbounded �lter and in an involved result the consistency that the club guessing �lter is

saturated.

Genericity and Woodin Cardinals

Sy Friedman, Vienna, Austria

I discussed the proof of (and di�culties surrounding) the following result: If V is \L-like"

then there is a real R which is class-generic but not set-generic over V and preserves Woodin

cardinals. The proof requires use of a special type of witness to Woodinness.

Actions of the Unitary Group

Su Gao, Denton, USA

In the �rst part of this talk we consider the classi�cation problem for bounded linear

operators up to unitary equivalence, where these operators are over a separable in�nite-

dimensional complex Hilbert space. We prove that this equivalence relation is Borel, using

some (but not too much) descriptive set theory. One can interpret this result as saying

that there is still hope for some kind of Spectral Theory to work for all bounded linear

operators.

In the second part of the talk we mention in passing the result that no separable Banach

space actions (where the space is viewed as an Abelian group under +) can generate

equivalence relations not Borel reducible to any orbit equivalence relations generated by

an action of the unitary group.

Wider gaps from weaker assumptions

Moti Gitik, Tel Aviv, Israel

We discussed the following:

Theorem Suppose that � is a cardinal of countable co�nality in the core model and

8n < ! f� < � j o(�) = �

+n

g is unbounded in �. Then for every � there is a cardinal

preserving extension in which 2

�

� � and � is a strong limit.

By previous results of W. Mitchell and the author the above provides the equiconsis-

tency.
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Clones

Martin Goldstern, Vienna, Austria

For a �nite nonempty set X let O

X

=

1

S

n=1

X

n

X. A subset C � O

X

is called a clone if C

contains all projections �

n

i

: X

n

! X and is closed under composition.

Cl (X), the set of all clones (on X) is a complete algebraic lattice. Questions about the

structure of Cl (X) are often of set-theoretic nature; if X is in�nite.

Sample results:

(1) A clone C ( O

X

is called precomplete if C is a coatom in Cl (X). [Rosenberg, 1976]

There are 2

2

jXj

many precomplete clones if jXj � @

0

.

(2) In fact, there is a clone C such that the interval [C;O

X

] is order isomorphic to the

lattice of all �lters on X; precomplete clones correspond to ultra�lters.

(3) Let O

(1)

= ff � �

n

i

j f unary ; i � n < !g be the clone of all essentially unary

functions. The following are due to the author and Shelah, 1999:

(a) If jXj is weakly compact, then [O

(1)

;O] has exactly two precomplete clones

(b) If jXj satis�es a strong negative partition property, then there are 2

2

jXj

many

precomplete clones above O

(1)

.

Open Question: Is every clone C $ O

X

below a precomplete clone?

The Automorphism Tower of a Group

Joel David Hamkins, New York, USA

The automorphism tower of a group is obtained by computing its automorphism group, the

automorphism group of that group, and so on, iterating trans�nitely, by taking the natural

direct limit at limit stages. The question, known as the automorphism tower problem, is

whether the tower ever terminates, whether there is eventually a �xed point, a group that

is isomorphic to its automorphism group by the natural map. Wielandt (1939) proved the

classical result that the automorphism tower of any �nite centerless group terminates in

�nitely many steps. This was generalized to successively larger collections of groups until

Thomas (1985) proved that every centerless group has a terminating automorphism tower.

Here, it it proved that every group has a terminating automorphism tower. After this,

an overview is given of the author's (1997) result with Thomas revealing the set-theoretic

essence of the automorphism tower of a group: The very same group can have wildly

di�erent towers in di�erent models of set theory.

Another Proof of the Strong Partition Relation on !

1

Stephen Jackson, University of North Texas, USA

We assume AD throughout. We give here a new proof of the strong partition relation on

!

1

. This proof is in some sense a derivative of the proof in [1], which is currently the only

proof known to generalize to the higher odd projective ordinals (and a ways beyond). The

idea is to �nd a proof that does not depend so much on the complete inductive analysis,

and thus might be applicable to cardinals past the point to which the current inductive

theory applies. This proof is perhaps a step in that direction. It develops a coding of

the functions on !

1

using not the full analysis of measures on !

1

(as the proof in [1]),

but rather only the �rst step in that analysis, which is a general step not involving the

combinatorics at �. Thus, this proof uses only the �rst trivial step in the analysis of the
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measure, together with a \cheap" coding for the rest of the analysis. While this seems

promising, it is not clear at the moment if these ideas can be used to provide a new proof

of the strong partition on �

1

3

(say starting from a �

1

3

coding of the subsets of !

!

; it may be

unreasonable to expect a general proof starting from less). Finding a way to \decouple"

the proofs of the strong partition relation from the detailed analysis below would have

many interesting consequences.

References

[1] S. Jackson, \A new proof of the strong partition relation on !

1

," Trans. Amer. Math.

Soc. 320 (1990) 737-745

[2] S. Jackson, \Structural consequences of AD," to appear in the Handbook of Set The-

ory,M. Foreman, A. Kanamori, M. Magidor eds.

Homogeneously Souslin Sets and Mitchell Models

Peter K

�

opke, Bonn, Germany

I showed that in \small" models of set theory every homogeneously Souslin set is �

1

1

:

Theorem 1 If V is a Mitchell model L(U) for some coherent sequence of measures and

U 6= ;, then �

1

1

is exactly the class of homogeneously Souslin sets.

Theorem 2 If there is a measurable cardinal and :0

long

(= there is no mouse J

�

[U ] with

otp(U) � mindomU), then the same conclusion holds.

I employed the following techniques:

� A set X is homogeneously Souslin i� it has a 2

@

0

-closed Embedding Normal Form

(ENF) (M

s

)

s2!

<!

; (�

s;t

)

s�t2!

<!

: x 2 X i� the branch (M

x

� m)

m<!

, (�

x�m;x�n

)

m�n<!

has a well founded limit (K. + Wind�us).

� Under the hypothesis of the Theorems, the class of possible inner models M

s

and

elementary embeddings of an ENF can be described by �nite pieces of information.

Wellfoundedness along a branch of the ENF can be decided by a �

1

1

-formula in the

�nite pieces of information.

� Theorem 2 also uses the covering theorem for short sequences of measures.

Variations of Compactness and Large Cardinals

Menachem Kojman, Be'er Sheva, Israel

A topological space X is compact i� 8A � X there is a complete accumulation point. If

one requires the same only for jAj = � > @

0

, � regular, then X is linearly Lindel�of. It is

shown that if one requires that 8jAj = � = cf(�) > @

0

� < w(X), A has a converging

subset of the same cardinality, then such X exists unless there are Woodin cardinals in

inner models. The proof uses good PCF scales.

Canonical Equivalence Relations in FIN

k

Jordi L

�

opez-Abad, Paris, France

It is well known that the Banach space cannot be norm-distorted (James). Indeed, W.T.

Gowers showed that every Lipschitz map from the unit sphere of c

0

to R must be almost

constant in the unit sphere of some in�nite dimensional subspace of c

0

. The proof uses a

discretization, FIN

�

k

of the unit sphere of c

0

, which is a natural generalization of FIN ,
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the set of �nite subsets of N . FIN

�

k

has Ramsey-like properties from which one can deduce

the result about Lipschitz maps.

Our project consists in trying to understand the distortion of norms of a (in�nite di-

mensional) Banach space in terms of some discrete structure of the unit sphere of X, in

particular for the Tsirelson space. The �rst step is the case of c

0

. We give a generalization

of the results of A. Taylor about canonical equivalence relations on FIN , and we obtain

the canonical list for FIN

k

.

Borel Orders

Alain Louveau, Paris, France

I presented various old and new results about Borel orders, and especially the structure of

the Borel reducibility ordering on Borel orders. The two main new results were:

(-) a dichotomy result for when a Borel order admits a Borel linearization

(-) a dichotomy result for when a Borel order with no perfect antichains is essentially

closed.

Denser free subsets

Heike Mildenberger, Vienna, Austria

We write Fr (@

!

; !) if every structure A on @

!

with countable signature has an in�nite

free subset S. S is free in A i� 8s 2 S s =2 [S nfsg]

A

. We discuss the possible locations of

the members of free subsets on the line @

!

. We show that sets of indiscernibles for suitable

functions give rise to free subsets.

Theorem Suppose there are ! compact cardinals. Let r : ! ! !. Then the following is

consistent:

8f : [@

!

]

<!

! @

!

regressive 9hS

n

j n 2 !i s.t.

8k 2 ! 8i

0

< � � � < i

k

8�

0

; �

0

0

2 S

i

0

8�

1

; �

0

1

2 S

i

1

: : : 8�

k

; �

0

k

2 S

i

k

f(�

0

; : : : ; �

k

) = f(�

0

0

; : : : ; �

0

k

),

and such that the S

n

's have fairly large cardinality and lie in @

!

as follows:

-

@

0

@

1

S

0

@

2

gap

@

3

S

1

@

4

S

2

���

���

S

r(0)+1

@

3+r(0)+1

gap

S

r(0)+2

gap

S

r(0)+3

���

���

S

r(0)+3+r(1)

gap

:::

A Hypothesis Related to the Mahlo Property

OR

\That's not what I wanted to know"

William Mitchell, Gainesville, USA

I prove the following theorem, answering a question of Zapletal.

For sequences

~

A = hA

�

j � < !

2

i with each jA

�

j = !

1

, write

B

~

A

= f� < !

2

j 9D � � (otp(D) = !

1

^

[

D = � ^ 8� < � D \ � 2 A

�

)g:
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Set

(�) 8

~

A B

~

A

is non stationary.

Note that (CH) implies 9

~

A B

~

A

contains a club.

Theorem

Con(�) () Con(9� � is �

+

� Mahlo ):

The proof of the forward direction involves a slight modi�cation of the forcing for no

special Aronszajn trees, followed by forcing to add �

+

many club sets. The �rst stage

makes B

~

A

costationary for all

~

A, and the second makes it non stationary for all

~

A.

The subtitle is the reaction of Zapletal and of Cummings when told of this result. What

Cummings wants to know is the following modi�cation on (�):

For ~a = ha

�

j � < !

2

i let B

0

~a

= f� < !

2

j 9D � � (otp(D) = !

1

^

S

D = � ^ 8� <

� D \ � 2 fa

�

j � < �gg

Question: Is it consistent that B

0

~a

is non stationary for all ~a?

Remark: The statement of the problem in this abstract is a correction of that in the talk.

The error was pointed out to the author by Magidor.

�-semiproper Iterations

Tadatoshi Miyamoto, Nagoya, Japan

(1) Proper, semiproper, �-proper and �-semiproper preorders are characterized by preser-

vation of analogs of stationary and semistationary sets.

(2) We have preservation theorems on these notions of forcing, e.g. �-semiproper.

All of these are originated from Shelah. We give an account.

Lemma For P a preorder and � < !

1

, the following are equivalent:

(1) P is �-proper (�-semiproper)

(2) P preserves every (A; �)-stationary ((A; �)-semistationary) set, for every in�nite set

A.

Lemma Let hP

�

j � � �i be a simple iteration of �-semiproper preorders, i.e. 8
 <

� 


P




\P


;
+1

is �-semiproper" . Then 8
 � � 


P




\P


;�

is �-semiproper" . In partic-

ular, P

�

is �-semiproper.

Here, I = hP




j 
 � �i is a simple iteration, if I gets constructed recursively as usual by

taking the simple limit at every limit stage.

The simple limit, denoted by Smp (I) for I = hP




i j 
 < � with � limit is de�ned by

Smp (I) = fp 2 I

�

:= the inverse limit j 9h _�

n

j n < !i inverse limit names s.t.

(1) 


I

�

\ _�

n

� _�

n+1

� � "

(2) If x 


I

�

\ _�

n

= �� ", then xj�

_

1l 


I

�

\ _�

n

= �� "

(3) p 


I

�

\ _�

n

< �� "

(4) 


I

�

\ p � sup h _�

n

j n 2 !i 2

_

G

I

�

� sup h _�

n

j n 2 !i

�! p 2

_

G

I

�

" g

Hence, the simple iterations enjoy \the kind richness" in conditions. They are beautiful!
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Games of length !

1

Itay Neeman, Los Angeles, USA

We discuss determinacy at the level of games of length !

1

. For starters we have:

Theorem Suppose there is an iterable inner model with indiscernible Woodin cardinals.

Then de�nable open length !

1

games are determined.

Let W

#

denote the assumption that there is an iterable inner model with indiscernible

Woodin cardinals. Let M be the minimal class iterable model with a cub class of indis-

cernible Woodin cardinals. Open games of length !

1

su�ce to recover the �

1

theory ofM ,

much as length ! games with �

1

1

payo� su�ce to recover the �

1

theory of L. Drawing on

the analogy with L we are lead to search for games which recover the full theory of indis-

cernibles forM , in much the same way that length ! games with < !

2

��

1

1

payo� recover

0

#

. We describe such games in the talk. These games have length !

1

. Their determinacy

follows from W

#

. The games are stronger than open games of length !

1

. They are strong

enough that the associated game quanti�ers recover the full theory of indiscernibles inM .

Mutual Stationarity in L[E]

Ralf Schindler, Vienna, Austria

Let A 6= ; be a set of uncountable regular cardinals. Let

~

S = hS

�

j � 2 Ai be such that S

�

�

� for all � 2 A. The sequence

~

S is called mutually stationary if for all regular � � sup(A)

and for all models M = hH

�

;2; : : :i of �nite type there is some N = hX;2� X; : : :i � M

such that � 2 X \ A �! sup(X \ �) 2 S

�

. We generalize a theorem of Foreman and

Magidor's by showing the following

Theorem Suppose that 0

j

�

(\zero hand grenade") doesn't exist, and suppose that V = K

where K denotes the core model. There is then a sequence hS

n

�

j n < !; � an uncountable

successor cardinali such that the following holds:

� S

n

�

� cf(!

1

) for all n; �

� S

n

�

is a stationary subset of � for all n; �, and

� for all limit cardinals � and for all f : � �! !, hS

f(�)

�

j � is an uncountable successor

cardinal< �i is mutually stationary if and only if there is a partitionA

1

; : : : ; A

m

of the

uncountable successor cardinals < � such that sup(A

i

) � min(A

i+1

) and jf\A

i

j = 1

for all i.

Haar null sets in product groups

Slawomir Solecki, Urbana, USA

The talk discussed properties of Haar null sets in groups which are in�nite products of

countable groups. The notion of Haar nullness is a generalization of the notion of being

of Haar measure zero to all Polish groups. Answering some questions of Mycielski, I

showed that there exists a solvable Polish group G with an invariant metric for which

there exist closed Haar positive sets A;B � G with 1 =2 int (AA

�1

) and with B having

a left transversal (= a Borel probability measure � such that 8g 2 G �(gB) = 0). This

indicates that properties of Haar null sets on non-Abelian groups are rather di�erent from

the properties of such sets in Abelian groups. Furthermore, I discussed how prevalent the

above phenomenon is among product groups.
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Long Ehrenfeucht-Fra��ss�e games and forcing

Boban Velickovic, Paris, France

Given two structures A;B in the same 1

st

order language L, we study the E-F game of

length !

1

between A and B. Two players, 8 and 9, pick elements of A [ B s.t. if 8 picks

an element of A, then 9 picks an element of B and vice versa. 9 wins if she produces a

partial isomorphism.

9 has a winning strategy if there is a �-closed forcing notion P which makes A and B

isomorphic. We ask: When is this equivalent to the existence of a �-closed set of partial

isomorphisms which has the back and forth property? This is simply a positional winning

strategy for 9.

We show that these two notions are not equivalent and raise some open questions.

Illfounded Iterations

Jindrich Zapletal, Gainesville, USA

Theorem (ZFC+LC) Every suitably de�nable strongly proper forcing can be iterated along

an arbitrary linear ordering.

Here hP;�; _r

gen

i is suitably de�nable if P is a set of reals and all sets mentioned are

projective, _r

gen

is a P-name for a real and there is a projective formula '(�; �) such that




P

_

G = fp 2

�

P j '(p; _r

gen

)g:

hP;�i is strongly proper if 8M � H

�

countable 8p 2M \ P 8fD

n

j n 2 !g D

n

�M \ P

open dense 9q � p 8n D

n

is predense below q.

An iteration of a poset P along a linear order L is a poset Q adding reals hr

i

j i 2 Li

such that r

i

is P

V[r

j

j j<i]

-generic over the model V[r

j

j j < i].

The iteration I produce coincides with Kanovei's notion of iteration in the case of Sacks

forcing.

Stationary Re
ection in L[E]

Martin Zeman, Irvine, USA

We show that in L[E], every stationary subset of �

+

has a stationary subset which can

re
ect only at points from O(�) = f� < �

+

j E

�

6= ;g. Moreover, O(�) can re
ect only

at points from O(�). This has the consequence that stationary re
ection at �

+

implies

the existence of many subcompact cardinals < � that are superstrong. This shows that

the consistency strength of stationary re
ection at �

+

is larger than that of the failure of

square and indicates that it should be possible to force :�

�

starting from a subcompact

cardinal.

Edited by Gunter Fuchs
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